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Introduction to Time Series Forecasting

A time series is a sequence where a metric is recorded over regular time intervals.

Depending on the frequency, a time series can be of yearly (ex: annual budget), quarterly (ex: expenses), monthly
(ex: air traffic), weekly (ex: sales gty), daily (ex: weather), hourly (ex: stocks price), minutes (ex: inbound calls in a
call center) and even seconds wise (ex: web traffic)

Now forecasting a time series can be broadly divided into two types.

If you use only the previous values of the time series to predict its future values, it is called Univariate Time Series
Forecasting

And if you use predictors other than the series (a.k.a exogenous variables) to forecast it is called Multi Variate
Time Series Forecasting.




A Brief about the ARIMA Model

ARIMA, short for ‘Auto Regressive Integrated Moving Average’ is actually a class of models that ‘explains’ a given time
series based on its own past values, that is, its own lags and the lagged forecast errors, so that equation can be used to
forecast future values.

Any ‘non-seasonal’ time series that exhibits patterns and is not a random white noise can be modeled with ARIMA models.

An ARIMA model is characterized by 3 terms: p, d, q

where,

p is the order of the Autoregressive term

q is the order of the Moving Average term

d is the number of differencing required to make the time series stationary

These terms are further explained in their dedicated slides

If a time series, has seasonal patterns, then you need to add seasonal terms and it becomes SARIMA, short for ‘Seasonal
ARIMA!. More on that once we finish ARIMA.




Steps to be followed

Transforming Fitting the Plotting
the data Model the Results
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Results of dickey fuller test ECONOMICS:SAGDPPCP

Test Statistics P Value Lags Used \
ECONOMICS : INGDPPCP 1.498749 0.997520 0.0
ECONOMICS : SAGDPPCP -1.623561 ©.470863 8.0

Number of observations used Critical Value (1%)
ECONOMICS : INGDPPCP 31.0 -3.661429
ECONOMICS : SAGDPPCP 23.0 -3.752928

Critical value (5%) Critical Value (10%)
ECONOMICS : INGDPPCP -2.960525 -2.619319
ECONOMICS : SAGDPPCP -2.998500 -2.638967



Rolling mean and STD
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As we can see in the slide before the P
value is significantly high which denotes
that the data is not stationary.

—-0.050 A

~0.075 -
1992 1996 2000 2004 2008 2012 2016 2020
Results of dickey fuller test ECONOMICS:INGDPPCP
Rolling mean and STD

—_Price
— MA
— STD

To make the data stationary we have to
transform the data in such a way that the
moving average and standard deviation
becomes linear or close to linear. For this
we have taken the logarithm of the data set.

1992 1996 2000 2004 2008 2012 2016 2020
Results of dickey fuller test ECONOMICS:SAGDPPCP

By d0|ng th|S the P Value deCl‘easeS Test Statistics P Value Lags Used \
. ECONOMICS : INGDPPCP -5.416422 ©.000003 0.0
drastially and the values comes closer to 0, ECONOMICS : SAGDPPCP -1.813374 0.373842 9.0

th's means that our data iS now Stationary Number of observations used Critical Value (1%)

ECONOMICS : INGDPPCP 30.0 -3.669920
and now the mOdeI can be ﬁtted ECONOMICS : SAGDPPCP 21.0 -3.788386

Critical value (5%) Critical Value (10%)
ECONOMICS : INGDPPCP -2.964071 -2.621171
ECONOMICS : SAGDPPCP -3.013098 -2.646397



Values of p,d,q

ACF (p term) The ACF tells how many MA terms are required to remove any autocorrelation in the

stationarized series. Or ‘p’ is the order of the ‘Auto Regressive’ (AR) term. It refers to the number of lags of Y to
be used as predictors
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Values of p,d,q

PACF (q term) Partial autocorrelation can be imagined as the correlation between the series and its lag, after

excluding the contributions from the intermediate lags. So, PACF sort of conveys the pure correlation between a lag and
the series. That way, you will know if that lag is needed in the AR term or not. Partial autocorrelation of lag (k) of a series is
the coefficient of that lag in the autoregression equation of .

Yi=ap+ oY1 + Y o+ asY: s

from statsmodels.tsa.stattools import acf , pacf

lag pacf = pacf(df logdiffshift.iloc[:, 1], nlags=10, method

Final PACEF = []

for z in range (len (ticker)) :

EN = PP.iloc[:,z].to list ()

Final PACF.append (EN.index (1))




Values of p,d,q

D is the number of differencing required to make the time series stationary. The value of d, therefore, is the minimum
number of differencing needed to make the series stationary. And if the time series is already stationary, then d = 0.

df logdiffshift = dflogscale - dflogscale.shift () df logdiffshift?2 = df logdiffshift

df logdiffshift.shift () df logdiffshift2.dropna (inplace = )

df logdiffshift.dropna (inplace
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Results of dickey fuller test ECONOMICS:INGDPPCP
Test Statistics P Value Lags Used \
ECONOMICS : INGDPPCP -5.416422 ©.000003 0.0 ECONOMICS : INGDPPCP

Results of dickey fuller test ECONOMICS:INGDPPCP
Test Statistics P Value Lags Used \
-7.433387 6.274680e-11 0.0

Number of observations used Critical Value (1%) \ Number of observations used Critical Value (1%) \
ECONOMICS: INGDPPCP 30.0 -3.66992 ECONOMICS: INGDPPCP 29.0 -3.67906

Critical Value (5%) Critical Value (10%) Critical Value (5%) Critical Value (10%)
ECONOMICS: INGDPPCP -2.964071 -2.621171 ECONOMICS: INGDPPCP -2.967882 -2.623158




Fitting the model

from statsmodels.tsa.arima model imp

ARIMA Model Results

Dep. Variable: 7 :ING No. Observations
Model: ARIMA(1, 1, 1) Log Likelihood 66.181
Method: css-mle S.D. of innovations 0.028
Date: Wed, 12 Oct 2022 AIC -124.362
15:20:54 BIC -118.626
12-31-1991 -122.492
- 12-31-2021

isd = dflogscale.iloc[:,1i].to frame ()

model = ARIMA (isd, order = (p, d, q))

results AR = model.fit ()

e = int (Forecast Years)

ECONOMICS : INGDPPCP 0.8226

tf = results AR.forecast (e) ma.L1.D.ECONOMICS : INGDPPCP -1.0000
tf = np.exp(tf[0])
hsd.append (tf)

The model summary reveals a lot of information. The table in the middle is the coefficients table where the values under ‘coef’

are the weights of the respective terms.

print (results AR.summary())



Forecasting

We will use the following code snippet to
Forecast the Economic Growth of India

obtained in a table form

Years

2022

2023

2024

2025

2026

2096

2097

2098

2099

2100

ECONOMICS : INGDPPCP ECONOMICS:SAGDPPCP

7026.589989

7377.675262

7735.405362

8103.484302

8484.321420

194799.635187

203710.861154

213029.736490

222774909359

232965.880997

79 rows x 2 columns

45076.437847

45187.432025

45290.319639

45380.192358

45483.597097

52853.479101

52967.029587

53080.824025

53194.862940

53309.146856




Plotting the results

Plotting the growth trajectory of India’s GDP
Growth for a period of 200 years with a lag of 1

SG.plot(label = 'ticker')
lt.title('GDP / Capita')

lt.xlabel('Year'")

lt.ylabel('Income in $'")
lt.legend(loc= 'upper left')

1t.grid(

1t .show()
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