
Time Series Forecasting
With the usage of ARIMA Model
Kiran R Pande (3rd Year, BTech, NSUT Delhi)
Soham Jain (3rd Year, BTech, NSUT Delhi)

https://colab.research.google.com/drive/18dj1lUWtY2in6ZOYREtASdMUorcmJvZ5?usp=sharing

Introduction to Time Series Forecasting

A time series is a sequence where a metric is recorded over regular time intervals.

Depending on the frequency, a time series can be of yearly (ex: annual budget), quarterly (ex: expenses), monthly
(ex: air traffic), weekly (ex: sales qty), daily (ex: weather), hourly (ex: stocks price), minutes (ex: inbound calls in a
call center) and even seconds wise (ex: web traffic)

Now forecasting a time series can be broadly divided into two types.

If you use only the previous values of the time series to predict its future values, it is called Univariate Time Series
Forecasting

And if you use predictors other than the series (a.k.a exogenous variables) to forecast it is called Multi Variate
Time Series Forecasting.

A Brief about the ARIMA Model
ARIMA, short for ‘Auto Regressive Integrated Moving Average’ is actually a class of models that ‘explains’ a given time
series based on its own past values, that is, its own lags and the lagged forecast errors, so that equation can be used to
forecast future values.

Any ‘non-seasonal’ time series that exhibits patterns and is not a random white noise can be modeled with ARIMA models.

An ARIMA model is characterized by 3 terms: p, d, q
where,
p is the order of the Autoregressive term
q is the order of the Moving Average term
d is the number of differencing required to make the time series stationary

These terms are further explained in their dedicated slides

If a time series, has seasonal patterns, then you need to add seasonal terms and it becomes SARIMA, short for ‘Seasonal
ARIMA’. More on that once we finish ARIMA.

Augmented Dickey Fuller test (ADF Test) is a common
statistical test used to test whether a given Time series
 is stationary or not.

#Perform Dickey fuller test

print('Results of dickey fuller test {name}'.format

(name = ticker[i]))

dftest = adfuller(hm, autolag = 'AIC')

dfoutput = pd.Series(dftest[0:4], index =

['Test Statistics', 'P Value', 'Lags Used',

'Number of observations used'])

for key,value in dftest[4].items():

dfoutput['Critical Value (%s)'%key] = value

Ad Fuller Test

Transforming the data

As we can see in the slide before the P
value is significantly high which denotes
that the data is not stationary.

To make the data stationary we have to
transform the data in such a way that the
moving average and standard deviation
becomes linear or close to linear. For this
we have taken the logarithm of the data set.

By doing this the P value decreases
drastially and the values comes closer to 0,
this means that our data is now stationary
and now the model can be fitted.

Values of p,d,q
ACF (p term) The ACF tells how many MA terms are required to remove any autocorrelation in the
stationarized series. Or ‘p’ is the order of the ‘Auto Regressive’ (AR) term. It refers to the number of lags of Y to
be used as predictors

 from statsmodels.tsa.stattools import acf , pacf

 lag_acf = acf(df_logdiffshift.iloc[:, i], nlags=10)

Final_ACF = []

for z in range(len(ticker)):

 ER = AP.iloc[:,z].to_list()

 for i in ER:

 if i<0:

 Final_ACF.append(ER.index(i))

 break

Values of p,d,q
PACF (q term) Partial autocorrelation can be imagined as the correlation between the series and its lag, after

excluding the contributions from the intermediate lags. So, PACF sort of conveys the pure correlation between a lag and
the series. That way, you will know if that lag is needed in the AR term or not. Partial autocorrelation of lag (k) of a series is
the coefficient of that lag in the autoregression equation of Y.

 from statsmodels.tsa.stattools import acf , pacf

 lag_pacf = pacf(df_logdiffshift.iloc[:, i], nlags=10, method = 'ols')

Final_PACF = []

for z in range(len(ticker)):

 EN = PP.iloc[:,z].to_list()

 for i in EN:

 if i<0:

 Final_PACF.append(EN.index(i))

 break

Values of p,d,q
D is the number of differencing required to make the time series stationary. The value of d, therefore, is the minimum
number of differencing needed to make the series stationary. And if the time series is already stationary, then d = 0.

df_logdiffshift = dflogscale - dflogscale.shift() df_logdiffshift2 = df_logdiffshift -

df_logdiffshift.shift() df_logdiffshift2.dropna(inplace = True)

df_logdiffshift.dropna(inplace = True)

Fitting the model
from statsmodels.tsa.arima_model import ARIMA

for i in range(len(ticker)):

 p = int(Final_ACF[i])

 q = int(Final_PACF[i])

 d = int(lag)

 isd = dflogscale.iloc[:,i].to_frame()

 model = ARIMA(isd, order = (p, d, q))

 results_AR = model.fit()

 e = int(Forecast_Years)

 tf = results_AR.forecast(e)

 tf = np.exp(tf[0])

 hsd.append(tf)

The model summary reveals a lot of information. The table in the middle is the coefficients table where the values under ‘coef’

are the weights of the respective terms.
print(results_AR.summary())

Forecasting
We will use the following code snippet to

Forecast the Economic Growth of India

obtained in a table form

hsd = []

e = int(Forecast_Years)

 tf = results_AR.forecast(e)

 tf = np.exp(tf[0])

 hsd.append(tf)

Plotting the results
Plotting the growth trajectory of India’s GDP

Growth for a period of 200 years with a lag of 1

SG.plot(label = 'ticker')

plt.title('GDP / Capita')

plt.xlabel('Year')

plt.ylabel('Income in $')

plt.legend(loc= 'upper left')

plt.grid(True)

plt.show()

Thanks for a patient hearing,

Hope you enjoyed it as much as we did
while working over it!

References-

● Google Images
● Wikipedia
● Machine Learning plus
● Geeks for Geeks

