Skip to content
Permalink
master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
 
 
Cannot retrieve contributors at this time
//! Swap calculations
use {crate::error::SwapError, spl_math::precise_number::PreciseNumber, std::fmt::Debug};
#[cfg(feature = "fuzz")]
use arbitrary::Arbitrary;
/// Initial amount of pool tokens for swap contract, hard-coded to something
/// "sensible" given a maximum of u128.
/// Note that on Ethereum, Uniswap uses the geometric mean of all provided
/// input amounts, and Balancer uses 100 * 10 ^ 18.
pub const INITIAL_SWAP_POOL_AMOUNT: u128 = 1_000_000_000;
/// Hardcode the number of token types in a pool, used to calculate the
/// equivalent pool tokens for the owner trading fee.
pub const TOKENS_IN_POOL: u128 = 2;
/// Helper function for mapping to SwapError::CalculationFailure
pub fn map_zero_to_none(x: u128) -> Option<u128> {
if x == 0 {
None
} else {
Some(x)
}
}
/// The direction of a trade, since curves can be specialized to treat each
/// token differently (by adding offsets or weights)
#[cfg_attr(feature = "fuzz", derive(Arbitrary))]
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum TradeDirection {
/// Input token A, output token B
AtoB,
/// Input token B, output token A
BtoA,
}
/// The direction to round. Used for pool token to trading token conversions to
/// avoid losing value on any deposit or withdrawal.
#[repr(C)]
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RoundDirection {
/// Floor the value, ie. 1.9 => 1, 1.1 => 1, 1.5 => 1
Floor,
/// Ceiling the value, ie. 1.9 => 2, 1.1 => 2, 1.5 => 2
Ceiling,
}
impl TradeDirection {
/// Given a trade direction, gives the opposite direction of the trade, so
/// A to B becomes B to A, and vice versa
pub fn opposite(&self) -> TradeDirection {
match self {
TradeDirection::AtoB => TradeDirection::BtoA,
TradeDirection::BtoA => TradeDirection::AtoB,
}
}
}
/// Encodes all results of swapping from a source token to a destination token
#[derive(Debug, PartialEq)]
pub struct SwapWithoutFeesResult {
/// Amount of source token swapped
pub source_amount_swapped: u128,
/// Amount of destination token swapped
pub destination_amount_swapped: u128,
}
/// Encodes results of depositing both sides at once
#[derive(Debug, PartialEq)]
pub struct TradingTokenResult {
/// Amount of token A
pub token_a_amount: u128,
/// Amount of token B
pub token_b_amount: u128,
}
/// Trait for packing of trait objects, required because structs that implement
/// `Pack` cannot be used as trait objects (as `dyn Pack`).
pub trait DynPack {
/// Only required function is to pack given a trait object
fn pack_into_slice(&self, dst: &mut [u8]);
}
/// Trait representing operations required on a swap curve
pub trait CurveCalculator: Debug + DynPack {
/// Calculate how much destination token will be provided given an amount
/// of source token.
fn swap_without_fees(
&self,
source_amount: u128,
swap_source_amount: u128,
swap_destination_amount: u128,
trade_direction: TradeDirection,
) -> Option<SwapWithoutFeesResult>;
/// Get the supply for a new pool
/// The default implementation is a Balancer-style fixed initial supply
fn new_pool_supply(&self) -> u128 {
INITIAL_SWAP_POOL_AMOUNT
}
/// Get the amount of trading tokens for the given amount of pool tokens,
/// provided the total trading tokens and supply of pool tokens.
fn pool_tokens_to_trading_tokens(
&self,
pool_tokens: u128,
pool_token_supply: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
round_direction: RoundDirection,
) -> Option<TradingTokenResult>;
/// Get the amount of pool tokens for the deposited amount of token A or B.
///
/// This is used for single-sided deposits. It essentially performs a swap
/// followed by a deposit. Because a swap is implicitly performed, this will
/// change the spot price of the pool.
///
/// See more background for the calculation at:
///
/// <https://balancer.finance/whitepaper/#single-asset-deposit-withdrawal>
fn deposit_single_token_type(
&self,
source_amount: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
pool_supply: u128,
trade_direction: TradeDirection,
) -> Option<u128>;
/// Get the amount of pool tokens for the withdrawn amount of token A or B.
///
/// This is used for single-sided withdrawals and owner trade fee
/// calculation. It essentially performs a withdrawal followed by a swap.
/// Because a swap is implicitly performed, this will change the spot price
/// of the pool.
///
/// See more background for the calculation at:
///
/// <https://balancer.finance/whitepaper/#single-asset-deposit-withdrawal>
fn withdraw_single_token_type_exact_out(
&self,
source_amount: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
pool_supply: u128,
trade_direction: TradeDirection,
round_direction: RoundDirection,
) -> Option<u128>;
/// Validate that the given curve has no invalid parameters
fn validate(&self) -> Result<(), SwapError>;
/// Validate the given supply on initialization. This is useful for curves
/// that allow zero supply on one or both sides, since the standard constant
/// product curve must have a non-zero supply on both sides.
fn validate_supply(&self, token_a_amount: u64, token_b_amount: u64) -> Result<(), SwapError> {
if token_a_amount == 0 {
return Err(SwapError::EmptySupply);
}
if token_b_amount == 0 {
return Err(SwapError::EmptySupply);
}
Ok(())
}
/// Some curves function best and prevent attacks if we prevent deposits
/// after initialization. For example, the offset curve in `offset.rs`,
/// which fakes supply on one side of the swap, allows the swap creator
/// to steal value from all other depositors.
fn allows_deposits(&self) -> bool {
true
}
/// Calculates the total normalized value of the curve given the liquidity
/// parameters.
///
/// This value must have the dimension of `tokens ^ 1` For example, the
/// standard Uniswap invariant has dimension `tokens ^ 2` since we are
/// multiplying two token values together. In order to normalize it, we
/// also need to take the square root.
///
/// This is useful for testing the curves, to make sure that value is not
/// lost on any trade. It can also be used to find out the relative value
/// of pool tokens or liquidity tokens.
fn normalized_value(
&self,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
) -> Option<PreciseNumber>;
}
/// Test helpers for curves
#[cfg(test)]
pub mod test {
use super::*;
use proptest::prelude::*;
use spl_math::uint::U256;
/// The epsilon for most curves when performing the conversion test,
/// comparing a one-sided deposit to a swap + deposit.
pub const CONVERSION_BASIS_POINTS_GUARANTEE: u128 = 50;
/// Test function to check that depositing token A is the same as swapping
/// half for token B and depositing both.
/// Since calculations use unsigned integers, there will be truncation at
/// some point, meaning we can't have perfect equality.
/// We guarantee that the relative error between depositing one side and
/// performing a swap plus deposit will be at most some epsilon provided by
/// the curve. Most curves guarantee accuracy within 0.5%.
pub fn check_deposit_token_conversion(
curve: &dyn CurveCalculator,
source_token_amount: u128,
swap_source_amount: u128,
swap_destination_amount: u128,
trade_direction: TradeDirection,
pool_supply: u128,
epsilon_in_basis_points: u128,
) {
let amount_to_swap = source_token_amount / 2;
let results = curve
.swap_without_fees(
amount_to_swap,
swap_source_amount,
swap_destination_amount,
trade_direction,
)
.unwrap();
let opposite_direction = trade_direction.opposite();
let (swap_token_a_amount, swap_token_b_amount) = match trade_direction {
TradeDirection::AtoB => (swap_source_amount, swap_destination_amount),
TradeDirection::BtoA => (swap_destination_amount, swap_source_amount),
};
// base amount
let pool_tokens_from_one_side = curve
.deposit_single_token_type(
source_token_amount,
swap_token_a_amount,
swap_token_b_amount,
pool_supply,
trade_direction,
)
.unwrap();
// perform both separately, updating amounts accordingly
let (swap_token_a_amount, swap_token_b_amount) = match trade_direction {
TradeDirection::AtoB => (
swap_source_amount + results.source_amount_swapped,
swap_destination_amount - results.destination_amount_swapped,
),
TradeDirection::BtoA => (
swap_destination_amount - results.destination_amount_swapped,
swap_source_amount + results.source_amount_swapped,
),
};
let pool_tokens_from_source = curve
.deposit_single_token_type(
source_token_amount - results.source_amount_swapped,
swap_token_a_amount,
swap_token_b_amount,
pool_supply,
trade_direction,
)
.unwrap();
let pool_tokens_from_destination = curve
.deposit_single_token_type(
results.destination_amount_swapped,
swap_token_a_amount,
swap_token_b_amount,
pool_supply + pool_tokens_from_source,
opposite_direction,
)
.unwrap();
let pool_tokens_total_separate = pool_tokens_from_source + pool_tokens_from_destination;
// slippage due to rounding or truncation errors
let epsilon = std::cmp::max(
1,
pool_tokens_total_separate * epsilon_in_basis_points / 10000,
);
let difference = if pool_tokens_from_one_side >= pool_tokens_total_separate {
pool_tokens_from_one_side - pool_tokens_total_separate
} else {
pool_tokens_total_separate - pool_tokens_from_one_side
};
assert!(
difference <= epsilon,
"difference expected to be less than {}, actually {}",
epsilon,
difference
);
}
/// Test function to check that withdrawing token A is the same as withdrawing
/// both and swapping one side.
/// Since calculations use unsigned integers, there will be truncation at
/// some point, meaning we can't have perfect equality.
/// We guarantee that the relative error between withdrawing one side and
/// performing a withdraw plus a swap will be at most some epsilon provided by
/// the curve. Most curves guarantee accuracy within 0.5%.
pub fn check_withdraw_token_conversion(
curve: &dyn CurveCalculator,
pool_token_amount: u128,
pool_token_supply: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
trade_direction: TradeDirection,
epsilon_in_basis_points: u128,
) {
// withdraw the pool tokens
let withdraw_result = curve
.pool_tokens_to_trading_tokens(
pool_token_amount,
pool_token_supply,
swap_token_a_amount,
swap_token_b_amount,
RoundDirection::Floor,
)
.unwrap();
let new_swap_token_a_amount = swap_token_a_amount - withdraw_result.token_a_amount;
let new_swap_token_b_amount = swap_token_b_amount - withdraw_result.token_b_amount;
// swap one side of them
let source_token_amount = match trade_direction {
TradeDirection::AtoB => {
let results = curve
.swap_without_fees(
withdraw_result.token_a_amount,
new_swap_token_a_amount,
new_swap_token_b_amount,
trade_direction,
)
.unwrap();
withdraw_result.token_b_amount + results.destination_amount_swapped
}
TradeDirection::BtoA => {
let results = curve
.swap_without_fees(
withdraw_result.token_b_amount,
new_swap_token_b_amount,
new_swap_token_a_amount,
trade_direction,
)
.unwrap();
withdraw_result.token_a_amount + results.destination_amount_swapped
}
};
// see how many pool tokens it would cost to withdraw one side for the
// total amount of tokens, should be close!
let opposite_direction = trade_direction.opposite();
let pool_token_amount_from_single_side_withdraw = curve
.withdraw_single_token_type_exact_out(
source_token_amount,
swap_token_a_amount,
swap_token_b_amount,
pool_token_supply,
opposite_direction,
RoundDirection::Ceiling,
)
.unwrap();
// slippage due to rounding or truncation errors
let epsilon = std::cmp::max(1, pool_token_amount * epsilon_in_basis_points / 10000);
let difference = if pool_token_amount >= pool_token_amount_from_single_side_withdraw {
pool_token_amount - pool_token_amount_from_single_side_withdraw
} else {
pool_token_amount_from_single_side_withdraw - pool_token_amount
};
assert!(
difference <= epsilon,
"difference expected to be less than {}, actually {}",
epsilon,
difference
);
}
/// Test function checking that a swap never reduces the overall value of
/// the pool.
///
/// Since curve calculations use unsigned integers, there is potential for
/// truncation at some point, meaning a potential for value to be lost in
/// either direction if too much is given to the swapper.
///
/// This test guarantees that the relative change in value will be at most
/// 1 normalized token, and that the value will never decrease from a trade.
pub fn check_curve_value_from_swap(
curve: &dyn CurveCalculator,
source_token_amount: u128,
swap_source_amount: u128,
swap_destination_amount: u128,
trade_direction: TradeDirection,
) {
let results = curve
.swap_without_fees(
source_token_amount,
swap_source_amount,
swap_destination_amount,
trade_direction,
)
.unwrap();
let (swap_token_a_amount, swap_token_b_amount) = match trade_direction {
TradeDirection::AtoB => (swap_source_amount, swap_destination_amount),
TradeDirection::BtoA => (swap_destination_amount, swap_source_amount),
};
let previous_value = curve
.normalized_value(swap_token_a_amount, swap_token_b_amount)
.unwrap();
let new_swap_source_amount = swap_source_amount
.checked_add(results.source_amount_swapped)
.unwrap();
let new_swap_destination_amount = swap_destination_amount
.checked_sub(results.destination_amount_swapped)
.unwrap();
let (swap_token_a_amount, swap_token_b_amount) = match trade_direction {
TradeDirection::AtoB => (new_swap_source_amount, new_swap_destination_amount),
TradeDirection::BtoA => (new_swap_destination_amount, new_swap_source_amount),
};
let new_value = curve
.normalized_value(swap_token_a_amount, swap_token_b_amount)
.unwrap();
assert!(new_value.greater_than_or_equal(&previous_value));
let epsilon = 1; // Extremely close!
let difference = new_value
.checked_sub(&previous_value)
.unwrap()
.to_imprecise()
.unwrap();
assert!(difference <= epsilon);
}
/// Test function checking that a deposit never reduces the value of pool
/// tokens.
///
/// Since curve calculations use unsigned integers, there is potential for
/// truncation at some point, meaning a potential for value to be lost if
/// too much is given to the depositor.
pub fn check_pool_value_from_deposit(
curve: &dyn CurveCalculator,
pool_token_amount: u128,
pool_token_supply: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
) {
let deposit_result = curve
.pool_tokens_to_trading_tokens(
pool_token_amount,
pool_token_supply,
swap_token_a_amount,
swap_token_b_amount,
RoundDirection::Ceiling,
)
.unwrap();
let new_swap_token_a_amount = swap_token_a_amount + deposit_result.token_a_amount;
let new_swap_token_b_amount = swap_token_b_amount + deposit_result.token_b_amount;
let new_pool_token_supply = pool_token_supply + pool_token_amount;
// the following inequality must hold:
// new_token_a / new_pool_token_supply >= token_a / pool_token_supply
// which reduces to:
// new_token_a * pool_token_supply >= token_a * new_pool_token_supply
// These numbers can be just slightly above u64 after the deposit, which
// means that their multiplication can be just above the range of u128.
// For ease of testing, we bump these up to U256.
let pool_token_supply = U256::from(pool_token_supply);
let new_pool_token_supply = U256::from(new_pool_token_supply);
let swap_token_a_amount = U256::from(swap_token_a_amount);
let new_swap_token_a_amount = U256::from(new_swap_token_a_amount);
let swap_token_b_amount = U256::from(swap_token_b_amount);
let new_swap_token_b_amount = U256::from(new_swap_token_b_amount);
assert!(
new_swap_token_a_amount * pool_token_supply
>= swap_token_a_amount * new_pool_token_supply
);
assert!(
new_swap_token_b_amount * pool_token_supply
>= swap_token_b_amount * new_pool_token_supply
);
}
/// Test function checking that a withdraw never reduces the value of pool
/// tokens.
///
/// Since curve calculations use unsigned integers, there is potential for
/// truncation at some point, meaning a potential for value to be lost if
/// too much is given to the depositor.
pub fn check_pool_value_from_withdraw(
curve: &dyn CurveCalculator,
pool_token_amount: u128,
pool_token_supply: u128,
swap_token_a_amount: u128,
swap_token_b_amount: u128,
) {
let withdraw_result = curve
.pool_tokens_to_trading_tokens(
pool_token_amount,
pool_token_supply,
swap_token_a_amount,
swap_token_b_amount,
RoundDirection::Floor,
)
.unwrap();
let new_swap_token_a_amount = swap_token_a_amount - withdraw_result.token_a_amount;
let new_swap_token_b_amount = swap_token_b_amount - withdraw_result.token_b_amount;
let new_pool_token_supply = pool_token_supply - pool_token_amount;
let value = curve
.normalized_value(swap_token_a_amount, swap_token_b_amount)
.unwrap();
// since we can get rounding issues on the pool value which make it seem that the
// value per token has gone down, we bump it up by an epsilon of 1 to
// cover all cases
let new_value = curve
.normalized_value(new_swap_token_a_amount, new_swap_token_b_amount)
.unwrap();
// the following inequality must hold:
// new_pool_value / new_pool_token_supply >= pool_value / pool_token_supply
// which can also be written:
// new_pool_value * pool_token_supply >= pool_value * new_pool_token_supply
let pool_token_supply = PreciseNumber::new(pool_token_supply).unwrap();
let new_pool_token_supply = PreciseNumber::new(new_pool_token_supply).unwrap();
assert!(new_value
.checked_mul(&pool_token_supply)
.unwrap()
.greater_than_or_equal(&value.checked_mul(&new_pool_token_supply).unwrap()));
}
prop_compose! {
pub fn total_and_intermediate(max_value: u64)(total in 1..max_value)
(intermediate in 1..total, total in Just(total))
-> (u64, u64) {
(total, intermediate)
}
}
}