Variant Effect Prediction for Python
Switch branches/tags
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
data
hooks
images
scripts
veppy
.gitattributes
.gitignore
.travis.yml
AUTHORS
LICENSE
MANIFEST.in
README.rst
requirements.txt
run_index.py
setup.cfg
setup.py
tox.ini

README.rst

Veppy: Variant Effect Prediction for Python

About Veppy

Veppy is a genetic variant effect predictor for Python. Inspired by SnpEff and VEP.

WARNING: This code is an alpha release and not production-ready. APIs may change at any time.

doi pypi travis

Installation

$ pip install veppy

Installation from source

$ git clone git@github.com:solvebio/veppy.git
$ cd veppy
$ python setup.py install

Setup

Step 1 (OPTIONAL): Prepare a directory for veppy data

The default data path is: ./data

You can override this by setting $VEPPY_DATA_DIR.

export VEPPY_DATA_DIR=/opt/veppy

Step 2: Download source data and build indexes

NOTE: This step downloads about 1gb of data. After indexing, the data directory will consume about 8gb of disk space.

./scripts/download_data_GRCh37.sh

Step 3: Index the source data

python ./run_index.py

Example Usage

>>> from veppy.veppy import calculate_consequences
>>> variant = ('1', 8025384, 'A', 'T')
>>> result = calculate_consequences('GRCh37', *variant)
>>> print result.results

Testing

Tests are currently based on chr1 versions of input data. Full genome tests are coming soon!

# pip install -r requirements.txt
$ nosetests

Coverage:

$ nosetests --with-coverage --cover-package=veppy

About SolveBio

SolveBio is a genomics company based in New York City.

SolveBio