Skip to content

som-shahlab/aplusml

Repository files navigation

APLUS ML

A Python Library for Usefulness Simulations of Machine Learning Models

pip install aplusml

Installation

  1. Run the following commands to install APLUS ML:
pip install aplusml
  1. Install graphviz by downloading it here. If you're on Mac with homebrew, simply run:
brew install graphviz

Usage

Please see the documentation for usage examples.

Run tutorials/synthetic_pad.ipynb to try an example notebook which works out-of-the-box.

This simulates a utility analysis of PAD referral pathways for synthetic PAD patients.

Motivation

APLUS ML is a simulation framework for conducting usefulness assessments of machine learning models in workflows.

It aims to quantitatively answer the question: If I use this ML model within this workflow, will the benefits outweigh the costs, and by how much?

APLUS was originally developed for clinical workflows in healthcare settings, thus all of our examples are healthcare workflows. However, APLUS ML is a broadly applicable library to any workflow that involves a machine learning model making decisions on a stream of datapoints, and we encourage contributors from any domain to use and extend APLUS ML.

Tutorials

We showcase APLUS on two clinical workflows:

  1. Early detection of peripheral artery disease (PAD)
  2. Triaging patients for advanced care planning (ACP) consults

Jupyter notebooks for these use cases can be found in the tutorials/ folder.

Early Detection of PAD

The code used to generate the figures in our paper is located in the tutorials/ directory in pad.ipynb. This notebook loads de-identified patient data from Stanford Hospital, which can be provided upon request.

The workflows analyzed can be found in the workflows/ folder. The doctor-driven workflow is in pad_doctor.yaml while the nurse-driven workflow is in pad_nurse.yaml

This tutorials/pad.ipynb was used to generate the following figures from the APLUS paper:

PAD Figure 1

PAD Figure 2

Triaging Patients for ACP Consults

The code used to replicate the findings of Jung et al. 2021 can be found in the tutorials/ directory in acp_jung_replication.ipynb. This notebook loads de-identified patient data from Stanford Hospital, which can be provided upon request.

The workflows analyzed can be found in the workflows/ folder in acp_jung_replication.yaml

ACP Figure

Plot Gallery

Some additional example plots that can be generated by APLUS are included below:

Additional Plots

Development

Installation

# Download repo
git clone https://github.com/som-shahlab/aplus.git
cd aplus

# Create environment
conda create -n aplus python=3.10 -y
conda activate aplus
pip install poetry && poetry install

Tests

The file tests/run_tests.py runs all of the test[d].py files in the tests/ directory. Each test[d].py file has a corresponding test[d].yaml file that serves as its input.

To run tests:

cd tests
python3 run_tests.py

Documentation

We use Sphinx to build the documentation, and host it on Read the Docs.

To build the docs, run:

# View server
sphinx-autobuild docs/source docs/build/html

# Build for dist
make html

Deploy to PyPi

poetry build
poetry publish

Citation

@article{wornow2023aplus,
  title={APLUS: A Python Library for Usefulness Simulations of Machine Learning Models in Healthcare},
  author={Wornow, Michael and Ross, Elsie Gyang and Callahan, Alison and Shah, Nigam H},
  journal={Journal of Biomedical Informatics},
  pages={104319},
  year={2023},
  publisher={Elsevier}
}

About

APLUS ML = A Python Library for Usefulness Simulations of Machine Learning models

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •  

Languages