Skip to content
Switch branches/tags
Go to file

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

Generating Faces with Deconvolution Networks

Example generations

This repo contains code to train and interface with a deconvolution network adapted from this paper to generate faces using data from the Radboud Faces Database. Requires Keras, NumPy, SciPy, and tqdm with Python 3 to use.

Training New Models

To train a new model, simply run:

python3 train path/to/data

You can specify the number of deconvolution layers with -d to generate larger images, assuming your GPU has the memory for it. You can play with the batch size and the number of kernels per layer (using -b and -k respectively) until it fits in memory, although this may result in worse results or longer training.

Using 6 deconvolution layers with a batch size of 8 and the default number of kernels per layer, a model was trained on an Nvidia Titan X card (12 GB) to generate 512x640 images in a little over a day.

Generating Images

To generate images using a trained model, you can specify parameters in a yaml file and run:

python3 generate -m path/to/model -o output/directory -f path/to/params.yaml

There are four different modes you can use to generate images:

  • single, produce a single image.
  • random, produce a set of random images.
  • drunk, similar to random, but produces a more contiguous sequence of images.
  • interpolate, animate between a set of specified keyframes.

You can find examples of these files in the params directory, which should give you a good idea of how to format these and what's available.


Interpolating between identities and emotions:

Interpolating between identities and emotions

Interpolating between orientations: (which the model is unable to learn)

Interpolating between orientation

Random generations (using "drunk" mode):

Random generations


Generating faces with deconvolution networks





No releases published


No packages published