CellCognition Explorer Deep Learning learning Extension enables the unsupervised learning of cellular features directly based on image data. Only the rough bounding-box is required.
The Extension can be operated by a graphical user interface or by command line.
To run cedl.py, please unzip the demo data
- cellH5-file : CecogExCedlDemo_plate_1.ch5
- full-mapping : CecogExCedlDemo_plate_1_mapping_full.txt
- encode-mapping : CecogExCedlDemo_plate_1_mapping_encode.txt (contains only a subset of positions) into the "data" folder of the cedl command-line tool.
Downlaod ...
$ python cedl.py --help
$ python cedl.py train --help
$ python cedl.py encode --help
$ python cedl.py --im_size 60 --verbose train --learner nesterov --autoencoder_architecture c16.5r_p2_c32.3r_p2_d256.1r_d64.0s ../data/CecogExCedlDemo_plate_1.ch5 ../data/CecogExCedlDemo_plate_1_mapping_full.txt
This will create an deep learning autoencoder model called "CecogExCedlDemo_plate_1_c16.5r_p2_c32.3r_p2_d256.1r_d64.0s". This name is needed in the enocding step:
$ python cedl.py --im_size 60 --verbose encode CecogExCedlDemo_plate_1_c16.5r_p2_c32.3r_p2_d256.1r_d64.0s ../data/CecogExCedlDemo_plate_1.ch5 ../data/CecogExCedlDemo_plate_1_mapping_encode.txt
Will create "CecogExCedlDemo_plate_1_c16.5r_p2_c32.3r_p2_d256.1r_d64.0s.hdf"
Open CellCognition Explorer GUI and load "CecogExCedlDemo_plate_1_c16.5r_p2_c32.3r_p2_d256.1r_d64.0s.hdf"