CSE 435/535 Fall 2022 – Draft Syllabus Information Retrieval

Reg # 18180/18181 Lecture: Monday, Wednesday, Friday 1:00 pm – 1:50 pm (Buffalo time) Knox 109 Instructor: Sougata Saha

Description:

This course will introduce students to text-based information retrieval (IR) techniques, i.e. search engines. The course begins with the fundamentals of processing large-scale, multilingual text document collections. Various IR models such as the Boolean model, vector space model, and probabilistic models will be studied. Efficient indexing techniques for (i) general document collections, (ii) specialized collections (e.g. Wikipedia, biomedical, patents) and (iii) high velocity data such as social media will be discussed. Techniques for improving search efficiency, improving performance as well as evaluation methodology will be covered. The latter part of the course will focus on web search including link analysis techniques such as PageRank and HITS. The use of word vectors (Word2vec, GloVe) generated through neural models and their use in IR systems will be introduced. Students will work on programming projects (implemented on the AWS cloud computing platform) to gain hands-on expertise in building IR systems. This course provides the foundation for the follow-on course (CSE 635) which discusses natural language processing (NLP) and deeper text mining solutions.

Prerequisites: Programming expertise in Python, Linear Algebra

Textbook: Introduction to Information Retrieval by C. Manning, P. Raghavan, and H. Schütze, Cambridge University Press (2008, online version 2012) Note: an online version of this book is available at <u>http://informationretrieval.org</u> Other, more recent reference material will be made available on the piazza site during the semester.

Instructor: Sougata Saha, Dept. of Computer Science & Eng email: <u>sougatas@buffalo.edu</u> office hours: TBA

TAs: Souvik Das. (souvikda@buffalo.edu) TBD

Course Details:

- 1. You are expected to attend all lectures and to complete all readings on time. Recordings will be made available shortly after live class concludes. The recordings are meant to serve as study aids, not as a substitute for attending class.
- 2. There will be 4 programming assignments in this course. The assignments cover the configuration of Solr for a particular search task, building of search indexes, evaluation of IR models, and a final (group) project requiring the development of a complete IR solution based on a real-world problem. All programming assignments will require the use of the Google Cloud Platform; more information on this will be provided in class.

3. We will use Piazza for course related discussion. The Piazza link is https://piazza.com/buffalo/fall2022/cse435535

Class notes will be posted there prior to class. Projects and announcements will also be posted on this site. Piazza should be used for Q&A related to the course and particularly projects.

*** You should not post class materials (notes, exams, projects) on public sites: this would be a violation of Intellectual Property rights ****

4. Please read department policy on academic dishonesty; this will be enforced strictly.

UB Undergrad AI policy: https://catalog.buffalo.edu/policies/academic_integrity_2019-20.html

UB Graduate AI policy: <u>https://grad.buffalo.edu/succeed/current-students/policy-library.academics.html#grievanceandintegrity</u>

CSE AI policy: <u>https://engineering.buffalo.edu/computer-science-engineering/information-for-</u><u>students/policies/academic-integrity.html</u>

IMPORTANT DATES

First day of class	Aug 29		
Midterm- 1	October 5		
Midterm- 2	Nov 14		
Final Project	Dec 7 & 9		
Presentation			
Last Lecture	Dec 9		
Project 1 Due	Sept 21		
Project 2 Due	Oct 12		
Project 3 Due	Nov 2		
Project 4 Due	Dec 7		

GRADING

Midterms	40%	
Projects	60%	
Total	100%	

COURSE SCHEDULE

Week and Date	Topics	Readings *	Key Activities
Week 1	Introduction to IR	Chapter 1, 2	Project 1 Release
Aug 29, 31, Sept	Conceptual Models of IR		Create Reddit, GCP
2	Boolean Model		accounts
	Project 1 release		
Week 2	Tokenization	Chapter 3	Recitation – SOLR, GCP setup
Sept 5 (holiday),	Text analysis: stop lists, stemming	Supplements	(hands-on)
7, 9	Dictionaries, Tolerant Retrieval		
Week 3	Index Construction	Chapter 4	
Sept 12, 14, 16	Distributed Indexing and Search	Supplements	
	Hadoop		
Week 4	Text Properties: Heaps, Zipfs Laws	Chapter 5, 6	Project 1 Due on Sept 21
Sept 19, 21, 23	Index Compression		 Project 2 Release
	Vector-Space Model		
	Project 2 release		
Week 5	TF-IDF Weighting	Chapter 6, 7	
Sept 26, 28, 30	Scoring and Ranking in IR Systems		
Week 6	Evaluation	Chapter 8	Midterm 1
Oct 3, 5, 7	Machine Learned Ranking	Handouts	
	Midterm 1		
Week 7	Relevance Feedback	Chapter 9	Project 2 Due on Oct 12
Oct 10, 12, 14	Query Expansion: Local and Global		 Project 3 Release
	Project 3 release		
Week 8	Probabilistic IR: Okapi (BM 25),	Chapter 11, 12	
Oct 17, 19, 21	DFR, Language Models		
Week 9	Prob IR contd.	Chapter 13, 14	
Oct 24, 26, 28		Charles 10, 20	
Week 10	Web Search	Chapter 19, 20	• Project – 3 Due on Nov 2
UCL 31, NOV 2, 4	Secial Network Analysis Link	Chaptor 21	- Droiget 4 Delegas
Week II	Analysis DageDank LUTS		• Project 4 Release
1007, 9, 11	Project 4 release	Hanuouts	
Wook 12	Word Vectors: Latent Semantic	Chapter 18	
Nov 1/ 16 18	Indexing	Handouts	
100 14, 10, 10	Word2Vec GloVe Doc2Vec	Tiandouts	
	Using word embeddings in Search		
	Computational Advertising		
Week 13	Midterm 2		Midterm 2
Nov 21			
Nov 23, 25	***THANKSGIVING BREAK***		
,			
Week 14	E-commerce, social media search	Handouts	
Nov 28, 30, Dec	Knowledge Graphs		
2			
Week 15	Student Project Presentations		Project – 4 Due on Dec 7
Dec 5, 7, 9			

*Chapters are from the An Introduction to Information Retrieval textbook unless specified.