
How Frontend Platform
Teams can build a
data-driven relationship
with your codebase

Frontend platform teams are a vital part of many software orgs:
they accelerate company velocity; own frontend tech stacks,
tools, and libraries; and drive key cross-functional products
like accessibility standards and design systems.

But because their projects are so often wide-reaching,
it’s difficult to answer key questions like:

1. How quickly are other teams adopting the internal
 component library we invested in building?

2. When will a migration be complete?

3. Which areas of the code still need to be
 updated after our accessibility audit?

Without a system to provide easy answers to these
questions, you either spend hours and hours trying
to track them manually, or you give up.

Instead, frontend platforms should build the same data-
driven relationship to their work that every user-facing
feature team builds out of the gate. Every platform
project should have KPIs like, How many other teams
use our work? and How quickly was our work adopted?

In the data-driven world, platform work is faster
and more effective.

Data-driven development for
internal component libraries
Tracking the adoption of individual components and entire
libraries can demonstrate impact and offer key insights.

Individual component usage tracking:

Overall library usage tracking:

Metrics about the size of your library:

When you can track the reuse of your component
libraries across your entire codebase, you can:

1. Plan and prioritize future component
additions to the library. For example,
perhaps you discover a button component
was adopted across the codebase 10x faster
than a new form component. What other
components are often used along with the
button that should be added to the library
next? What other form components might be
worth deprioritizing?

2. Discover teams and projects that
aren’t using your component library,
and understand why. By tracking the
use of non-library components, you may
discover that a whole team hasn’t been
using the new components at all. Was
there a communication gap? Are the new
components not conducive to the team’s
needs? What could be improved?

3. Showcase your impact with the rest of
the organization (and your manager).
Platform team features are notoriously
difficult to justify to folks less familiar with
engineering. Being able to point to the
number of teams using and referencing the
tools you’ve built lets you celebrate and share
your success, as well as ensure future projects
get executive support.

Data-driven acceleration for
large migration projects
Large frontend migration projects – like redesigns of modularization
initiatives – can be tracked automatically to show progress and inform planning.

3. Surface what teams and code gets migrated fastest,
and learn from what works. The inverse of finding
slowdowns is that you can also learn from the progress
individual teams make.

4. Motivate teammates and teams across the organization.
It’s difficult to get buy-in on cross-team projects, but having
a chart to burn up provides a central point of focus and
excitement as it progresses.

Having this tracking will accelerate the progress of your migration:

1. Immediately discover and fix slowdowns. If the project
starts to stall out, you can filter the data by repository or team
area and understand what’s going on, then fix it. Without this
visibility, you might lose weeks to thinking things are going
well when they aren’t.

2. Ensure the migration gets done completely. Often, migrations
stall out at 70-80% completion because people aren’t able to
track the total progress.

Data-driven compliance
and maintenance
Compliance initiatives (like accessibility and licensing) and maintenance are critical
functions of a platform team and deserve the same data-driven vigor as other work.

You can track accessibility initiatives
across your user interface:

Licenses in third-party javascript libraries to
ensure your platforms are legally compliant:

And internal compliance standards,
like using versioned docs links:

Using data from your codebase to track
compliance progress makes your work faster
and more accurate, which is crucial when
contractual obligations are at stake:

• Be confident in the source of truth.
Rather than hoping everyone remembered
to update a Jira epic or spreadsheet
manually, just look in the code itself.

• Save time on follow-up. Instead of
spending days following up to make
sure every team is compliant with a new
standard, pull the answer directly from
your full codebase.

• Notice and fix when code falls out
of compliance. Since you now have
quantitative data, you can set automatic
alerts to be notified if your compliance
levels change.

Being a data-driven frontend
platform team takes you from
guessing to knowing, and from
being reactive to being proactive
Every frontend platform team has dealt with a migration, built
an internal tooling system, or owned a compliance initiative.

Few of them have access to data that would make these projects faster,
more effective, and complete. But if we can build a world where that’s
the standard, teams can spend more time on proactive consolidation,
building internal tools and libraries that will actually get used, and fixing
problems, and less time trying to figure out the impact of their work,
what they should do next, and whether or not a project is complete.

Sourcegraph’s code intelligence platform is more than
simply search. The platform drives velocity by helping
development teams quickly get unblocked, save time
resolving issues, and gain insights to make better
decisions. Request a demo to learn more about ways
we can help accelerate your development team.

Request a demo

https://about.sourcegraph.com/demo
https://about.sourcegraph.com/demo

