Spack Work Items for HEP

Chris Green greenc@fnal.gov Lynn Garren garren@fnal.gov
Patrick Gartung gartung@fnal.gov

version 0.4 (2019-05-16)

Contents
1 Introduction

2 High-Impact Core Enhancements
2.1 Support for external Spack commands

2.1.2 Enhancement of Spack subcommand facilities
2.1.3 Support for flake8 checks of external Spack commands . .
2.1.4 Support for external commands and support code in ex-
ternal package repos oL
Statuso L
2.2 Fheability-to-daver-Spack-installations-na-hievarehy . . 0 0 0 L
Status

2.3 A persistent relationship between a built package and the options

used tobuild it oo
Status L
2.4 Support for compiler-agnostic packages
Status
2.5 No-source packages
Status
2.6 i i A 2 2 2 ati
Status
2.7 self.stage.source_path should be usable before it exists. . . .
Status
2.8 Masking of installed packages and dependents
Status

3 Other Spack Core Enhancements
3.1 The ability to inherit from package-repo-specific package base
classes e
Status

W wwww M)

o w

e~

YOOy Oy O Ut Ot Ut Ut Ut

=2}

1

3.2 New environment manipulation functions for system path depri-

oritization and duplicate removal 7
Status 7
3.3 Configurable equivalency between operating systems 7
Status 7
3.4 Updates to the version comparison system 8
3.4.1 Support correct ordering of alpha, beta, pre, rc and patch
VEISIONS . .« v v v v v e e e e e 8
3.4.2 Support for half-open and closed intervals for version ranges 8
3.4.3 Correct ordering between versions X and X.Y 8
3.4.4 wversion() should recognize filename extensions from
url_from_version() including tbz2 8
Status e 9
3.5 Compact variant propagation via depends_on() 9
Statuso L 9
3.6 Improvements to the variants system 10
3.6.1 wvariant() grows awhenclause 10
3.6.2 New function variant.depends_on() 10
Status e e 10
Recipe Enhancements 10
4.1 Client-onlymysgl-ishpaekages 10
Status 10
4.2 Clent-enlypestgresgtbuild L. 10
Status 11
4.3 Updatedreotreeipe 11
Status e 11
4.4 Propagate C++ attributes through dependencies of C++-using
packages 11
Status 11
Version History 11
Version 0.1 (2019-02-25) 11
Version 0.2 (2019-03-19) 11
Version 0.3 (2019-04-30) 12
Version 0.4 (2019-05-16) e 12
Introduction

While working on the Spack-based build, development, and release system for
HEP, we have come across many instances big and small where Spack core or
its recipes require enhancements to allow us to meet our project requirements.
In some cases these are showstoppers, such as support for multiple releases and
layered (central vs local) installations; in others, they improve an aspect of Spack
operation without being essential, such as providing repo-specific package base

classes.

This document is an attempt to be a descriptive list of these work items (the
most impactful and necessary core items are listed first), along with (where
appropriate) ideas for implementation, statement of importance, and current
status.

2 High-Impact Core Enhancements

2.1 Support for external Spack commands

2.1.1 Basie-Suppertfer-external Spackecommands

In order to support the efficient operation of Spackdev, allowing the use of Spack
functions and structures internally, spack dev should be a spack command. For
purposes of ownership and ease of maintenance, this would ideally be an external
command, analogous to (e.g. git flow as an external git command).

2.1.2 Enhancement of Spack subcommand facilities

Spack’s existing handling of subcommands should be generalized to work for
external commands and at any level.

2.1.3 Support for flake8 checks of external Spack commands

A simple way to check external Spack command code for rule-correctness is
strongly desired.

2.1.4 Support for external commands and support code in external
package repos

The ability to find external commands in external package repos. This is related
to a Spack Core Enhancement described elsewhere herein.

Status

PR 8612 from Massimiliano Culpo implemented basic support for external Spack
commands. It is now integral to the operation of SpackDev and was merged
into the FNAL fork on 2018-09-19. The PR was merged upstream on 2019-03-28
with some changes from the original PR submission as merged into the FNAL
fork, which was subsequently reconciled with upstream.

A git branch consisting solely of our proposed enhancement of the subcommand
facilities was submitted as PR 11145. Comments were received and incorporated.
Subsequently, a competing PR 11209 was submitted by the original author of
PR 8612 purporting to address one of the issues addressed by PR 11145. This
PR was incorporated into PR 1145 and is awaiting further comments.

While PR 8612 supports testing of external Spack commands, it appears not to
support intuitive coding rule enforcement for same. An enhancement request
should be discussed with the author of PR 8612.

29 Theabil | Soack instalations in s hi]

In order to be able to combine locally-built and centrally-installed packages, it
becomes necessary to be able to refer to packages in a different Spack installation
from the current one.

Status

Originally conceived by Jim Amundson (as “Spack Chains”) and entered as
PR 5014, and subsequently resubmitted against a more recent version of Spack
develompent by Patrick Gartung as PR 8545, this feature has been taken up
by Peter Scheibel—a Spack principal— as PR 8772. This PR was merged
on 2019-03-27 and a subsequent PR 11152 adding documentation was merged
2019-04-10.

2.3 A persistent relationship between a built package and
the options used to build it

In order to support the use of a given Spack installation to support multiple
installed software distributions over a significant period of time, it is necessary
to be able to identify an installed or cached binary package such that it remains
possible to use it even after updates to the recipe(s) have caused a change to
the already-built package’s calculated hash.

It is the nature of HEP software installations to have a relatively static central
installation of software packages and distribution releases against which higher-
level packages are developed by users. It must be possible to install centrally
newer distribution releases while not compromising the ability of users to build
and develop their own software against older ones without unnecessary rebuilds
of lower level packages due to hash changes resulting from updated recipes.

Status

The recent Spack Environments functionality may assist with this (as may Spack
Chains, described elsewhere in this document), but this remains a thorny problem
that will require discussion and exploration before a solution is implemented.
The subject has been discussed with Spack principals such as Todd Gamblin and
Peter Scheibel and we have been assured that this feature is compatible with
the philosophy and direction of Spack, that it has other desirous parties than us,
and that it would be reasonable to expect something to look at that should do
the job by the end of September 2019.

2.4 Support for compiler-agnostic packages

The HEP community has several applications, distributions of which must be
accompanied by substantial data. Examples are particle interaction descriptions
and cross-section table. Examples outside our field might include star catalogs
and other astrophysics data. Information of this nature can be quite voluminous
(> 5~GiB). We would wish to avoid unnecessary duplication for multiple compilers
and versions by having just one compiler-agnostic package containing the data.

In addition, pure C and pure interpreted-language packages such as fftw or
pyyaml—or those which combine same—are similarly independent of compiler
and version thereof (or perhaps require only a generic compiler runtime such
as libgcc_s.o0). A way to avoid unnecessary duplication of these packages also
would be desirable, although the win here would be less in space and more in
CPU time for builds.

Status

The subject has been discussed with Spack principals such as Todd Gamblin and
Peter Scheibel, including at the telecon 2019-04-11, but no formal enhancement
request has been made. Something providing this functionality is expected to be
part of the upcoming concretization improvements, but it should be noted that
merely allowing the compiler as a “normal” dependency is insufficient to provide
the needed flexibility.

2.5 No-source packages

In our existing system, we make significant use of no-source, or “umbrella”

packages, whose only function is to facilitate the build or setup of a particular
collection of packages.

Status

This feature has been discussed with Spack principals. An available workaround
is the use of a webpage URL as a “source.”

2.6 Basebuildlecation—on—stagerather—than—expanded
seuree-loeation

The definition of the CMake build area should be changed from being relative to
the staged source directory to being relative to the stage directory.

We have use cases where a recipe needs to have information about the build
directory in the environment set by setup_environment() (e.g. if tests
need to have a directory in PATH). Specifically, staging happens after the
call to setup_environment(), and if the stage area does not exist, then
spec.stage.source_path returns, None.

Status

PR 8431 was submitted 2018-06-08 and was moribund for several months. This
PR was eventually accepted and merged upstream on 2019-03-26.

2.7 self.stage.source_path should be usable before it ex-
ists.

There are circumstances where it is desirable to e.g. set an environment variable

in setup_environment () based on self.stage.source_path. Currently this

is not possible as its existence is enforced and setup_environment () is executed
prior to any staging of the source.

Status

Currently workarounds are used when necessary: adding to the default environ-
ment for the make () object, for example. This enhancement is at the conceptual
stage only.

2.8 Masking of installed packages and dependents

A user may wish to develop packages that may already be installed (centrally,
perhaps). We require a mechanism to hide these already-installed packages and
their dependents from the concretization system

Status

This feature is not currently required for the Minimum Viable Product (MVP),
but will be essential in the finished system. It is possible that environments or
views may satisfy this requirement, although that remains to be investigated.

3 Other Spack Core Enhancements
3.1 The ability to inherit from package-repo-specific pack-
age base classes

Fermilab has a large number of experiment-related packages using a common
CMake-based system called cetmodules. Recipes for these packages share a
significant amount of boilerplate which could profitably be part of a package
base class situated in the same package repo.

Status

This feature has been discussed informally with Spack principals.

3.2 New environment manipulation functions for system
path deprioritization and duplicate removal

In order to prevent contamination of PATH-like variables with system paths due
to packages.yaml entries, several new functions provide facilities for PATH-like
variable manipulation.

Status

PR 8476 was submitted 2018-06-14 and was moribund for a long time. It has
been updated against upstream and discussed with Spack principals and further
information has been added to the PR. After changes were made to accommodate
upstream developments, it was merged on 2019-05-06.

PR 11434 was submitted 2019-05-13 to allow the production of source-able
text and pickled environment files via the command line (spack build-env
--pickle <file>, spack build-env --dump <file>). Initial comments were
addressed and the PR is awaiting final approval and merge.

3.3 Configurable equivalency between operating systems

Due to a change in how Scientific Linux installations identify themselves between
SL7.5 and SL7.6, there needs to be a configurable equivalency between compatible
operating systems e.g. in config.yaml:
equivalent-os:
rhel6:
- scientific6é
- centos6
rhel7:
- scientific7
- centos7

Status

We have a hard-wired equivalency between rhel7 and scientific7 in our local
code.

A concept for the solution exists (see above). Analysis is needed to determine
feasibility and consequences for (e.g.) hash values, buildcache packages, etc.

This issue has been discussed with Spack principals: OS string conversion, and
updating the metadata system to hadle equivalency. This issue also has relevance
to CPU architecture (Haswell, etc.).

3.4 Updates to the version comparison system

3.4.1 Support correct ordering of alpha, beta, pre, rc and patch
versions

While it is not usual to need to refer to non-mainstream versions in a recipe,
it is certainly not beyond imagining. Several packages have had long release
candidate cycles, for instance, and a build of one might be necessary to address an
observed issue prior to the final release becoming public. When non-mainstream
versions are used in ranges, the version comparison needs to be aware of the
relative ordering—release candidates following “pre” versions, but preceding
their corresponding released versions, for example.

3.4.2 Support for half-open and closed intervals for version ranges

e.g. describing something which is valid for 7.0 < version < 8.0. For purely
numeric versions, the usual workaround of when=@7.0:7.999 suffices, but for
something which is valid also for (e.g. release candidates), it becomes more
desirable to be able to specify “everything before ...” Example nomenclature:

No support before ...

conflicts('cxxstd=17', when='0:<1.27.0")

Blacklist range.

variant('bad_idea', default=True, when='00.5.0:<1.0.0"')
Last known good.

conflicts('went _bad_after', when='@1.5.7>:')

Ignore 2.0.0-alpha, pre, etc.

conflicts('Shaky prerelease', when='01.8.12>:<02.0.0'

3.4.3 Correct ordering between versions X and X.Y

There appears to be a problem ordering versions with different levels of speci-
fication. For instance, in intel-tbb, the version version of any year’s releases
is the unadorned year (2019, say), with 2019U1 being the next. These have to
be encoded currently as 2019.0 and 2019.1, because 2019 does not appear to
compare less-than 2019.1. Following discussion with Peter Scheibel, it appears
that this is intentional behavior in the numeric case, and additionally applies to
non-numeric versions where one is a front-anchored substring of another (e.g.

MVP1 vs MVP1a).

3.4.4 version() should recognize filename extensions from
url_from_version() including tbz2

Several of our recipes are of the form where the following url_from_version()
is appropriate:

def url_for_version(self, version):
url = 'http://cdcvs.fnal.gov/cgi-bin/git_archive.cgi/'\

'cvs/projects/{0}.v{1}.tbz2'
return url.format(self.name, version.underscored)

Unfortunately, for every call to version(), it is necessary to specify the extension
explicitly:
version('2.3.0"',
sha256="'4b6a29443b631957ca2a7712b5c57762"'
'0c6543e542ee9c77d246cef1el10£7324 ",
extension='tbz2')

The system should be trained to understand tbz2 as a valid extension when
returned as a URL by url_for_version().

Status

These core enhancements are at the conceptual stage only. No implementation
has been attempted, but it is likely that they are perfectly feasibly implementable
by a contributor rather than a core expert. This could be entered instead as
an enhancement request, but the likelihood of a core developer taking it on is
somewhat low. The truncated-version-ordering issue must be addressed with
care as there are use cases for both behaviors, and they should be distinguishable
and selectable as appropriate.

3.5 Compact variant propagation via depends_on()

There is a need for propagation of variants to dependencies generally, rather
than specifically. For instance, in order to pass the value of the cxxstd variant
down a dependency tree, currently one must do:

depends_on('boost cxxstd=default', when='cxxstd=default')
depends_on('boost cxxstd=98', when='cxxstd=98")

One could imagine instead a more compact syntax, something like:
depends_on('boost', propagate_variants=['cxxstd', 'python'])
If cxxstd is not specified, then nothing will be propagated (if the variant exists

in the dependency it will be defaulted). Otherwise, the value of cxxstd in the
current recipe will be used.

As a further extension, using recursive_variants instead of propagate_variants
would cause the specified variants to be propagated to lower-level dependencies
even if intermediate dependencies did not have the variant(s) in question defined.

Status

These enhancements are at the conceptual stage only.

3.6 Improvements to the variants system

Several packages have extensive feature options, which evolve over time. Features
come and go, and depend upon each other. An expanded variant specification
syntax is desired to be able to specify these variants and the relationships between
them. The archetype for this use case would be the boost recipe. Some ideas:

3.6.1 variant() grows a when clause
The when clause shall specify when the variant is defined. It shall be valid therein
to refer to versions and to any other variants that have already been defined.

3.6.2 New function variant.depends_on()

This function, having a when clause as defined for variant (), above, shall specify
upon what other variant(s) self shall depend when the when clause is valid. It
shall return the variant object allowing for chaining, e.g.

variant ('context', when='01.61.00:"').\

depends_on('thread', 'chrono', 'system', 'date_time')
variant('fiber', when='01.62.00:"').depends_on('context').\
depends_on('thread', 'chrono', 'system', 'date_time',

when='0:1.68.99")
variant('signals', when='@1.29.00:1.68.99"')

Status

These enhancements are at the conceptual stage only.

4 Recipe Enhancements

4.1 Client-only mysql-ish-packages

The existing mariadb package is GPL and therefore not usable by HEP commu-
nity in a linking context. An LGPL client-only package provided by mariadb
exists. In addition, we are constrained at Fermilab to avoid distributing servers
wherever possible due to the obligation to follow onorous update policies.

Status

PR7729 was submitted 2018-04-11 and became moribund after being nominally
approved. It was eventually merged 2019-03-15. A subsequent issue 11226 was
addressed and the fix merged upstream as PR 11237.

4.2 Client-only postgresql-build

As above, server packages are problematic. A build of postgresql without the
server component is desired.

10

Status

PR 7728 was submitted 2018-04-11 and became enmired after questions were
raised over the appropriateness of virtual packages and separate implementations
rather than a (say) ~server variant. In addition, the PR included a recipe for
py-psycopg2 which was extracted and submitted as a separate PR 9926 by a
third party 2018-11-22 and merged 2018-11-24. PR 7728 was closed 2019-03-13
and a revised PR 10877 was submitted with a client_only option to change the
way that postgresql is built rather than provide a separate client-only product.
PR 10877 was merged 2019-03-25.

4.3 UYpdatedrootreeipe

Our local root recipe had significant changes with respect to the upstream
version including more versatility in configuration and use of our local forks of
postgresql-client and mariadb-client. Significant changes to the upstream
version were submitted by CERN as PR 8428 2018-06-08 and accepted 2019-02-08
with which our local version is incompatible.

Status

After resolving a problem building more recent versions of ROOT with PR 11129,
our local recipe was eventually reconciled with upstream and submitted as PR
11215 with a companion PR 11214 with necessary updates to the recipe for
FTGL. PR 11214 was merged 2019-04-23, and PR 11215 was merged 2019-04-24.

4.4 Propagate C++4 attributes through dependencies of
C++-using packages

Several C++ recipes have a cxxstd variant, and depend on other C++ packages.
The variant should be propagated in-recipe rather than as part of a spack
install command, as currently.

Status

A survey needs to be carried out and the appropriate changes to recipes made
and propagated upstream.

5 Version History

Version 0.1 (2019-02-25)

First released version.

Version 0.2 (2019-03-19)
« Add table of contents.

11

e Expand the section on updates to the version comparison system with
examples of closed and half-open interval version ranges, and with a new
section on the ordering issue between versions X and X.Y.

e New section, Compact variant propagation via depends_on() .

e New section, Improvements to the variants system.

e Expand section on Support for external Spack commands with contribution
from Ben Morgan.

o Updates to status for Client-only mysql-ish packages, and Client-only
postgresql build.

¢ Add section number for Client-only postgresql build.

e Add version history.

Version 0.3 (2019-04-30)

e Minor re-word of Introduction for clarity.
o Updates to status for:
— Support for external Spack commands (and fix a typo in the title).
— The ability to layer Spack installations. . ..
— A persistent relationship between a built package. . ..
— Support for compiler-agnostic packages.
— Base build location on stage. . ..
— New environment manipulation functions. . ..
— Correct ordering between versions X and X.Y (and expand description).
— Client-only mysql-ish packages.
— Client-only postgresql build.
— Updated root recipe.
o Add status section for Improvements to the variants system.
o Consolidate status updates into a single coherent statement of status where
appropriate.
e New section, self.stage.source_path should be usable before it exists.
e Improve code snippet sections for line overruns and Python-style format-
ting.

Version 0.4 (2019-05-16)

o New section Masking of installed packages and dependents.
o Updates to status for:
— New environment manipulation functions. ...
— No-source packages.
— Configurable equivalency between operating systems.
o Strikethrough notation is used in item titles to indicate resolution.

12

	Introduction
	High-Impact Core Enhancements
	Support for external Spack commands
	Basic Support for external Spack commands
	Enhancement of Spack subcommand facilities
	Support for flake8 checks of external Spack commands
	Support for external commands and support code in external package repos
	Status

	The ability to layer Spack installations in a hierarchy
	Status

	A persistent relationship between a built package and the options used to build it
	Status

	Support for compiler-agnostic packages
	Status

	No-source packages
	Status

	Base build location on stage rather than expanded source location
	Status

	self.stage.source_path should be usable before it exists.
	Status

	Masking of installed packages and dependents
	Status

	Other Spack Core Enhancements
	The ability to inherit from package-repo-specific package base classes
	Status

	New environment manipulation functions for system path deprioritization and duplicate removal
	Status

	Configurable equivalency between operating systems
	Status

	Updates to the version comparison system
	Support correct ordering of alpha, beta, pre, rc and patch versions
	Support for half-open and closed intervals for version ranges
	Correct ordering between versions X and X.Y
	version() should recognize filename extensions from url_from_version() including tbz2
	Status

	Compact variant propagation via depends_on()
	Status

	Improvements to the variants system
	variant() grows a when clause
	New function variant.depends_on()
	Status

	Recipe Enhancements
	Client-only mysql-ish packages
	Status

	Client-only postgresql build
	Status

	Updated root recipe
	Status

	Propagate C++ attributes through dependencies of C++-using packages
	Status

	Version History
	Version 0.1 (2019-02-25)
	Version 0.2 (2019-03-19)
	Version 0.3 (2019-04-30)
	Version 0.4 (2019-05-16)

