
Cryptographic Techniques over a Wireless Micro-

Controller Connection for Wireless Sensor Networks

using nRF24L01+ Antenna

Spanos Georgios

Department of Digital Security

University of Piraeus

Department of Telecommunication

University of Malaga

Malaga, Spain

spaniakos@gmail.com

Abstract—This paper proposes the usage of a new wireless

antenna (nRF24L01+) in sensors along with cryptographic

functions. In this research the antenna is used in mirco-

controllers in order to simulate a Wireless Sensor Network along

with cryptographic algorithms and techniques. The research

aims to prove that the usage of this antenna will be reliable and

feasible secure in such networks using micro-controllers as a

base. There are many different libraries used and extensively

enhanced so that the algorithm will ultimately provide a unified

framework for micro-controllers to use with this antenna.

Furthermore, the libraries are built against the standard micro-

controller libraries and are following similar standards in the

information technology field, like openssl for cryptography and

OSI network layers for the communication. The algorithms are

coded in a way to ensure further development as well as support

for many different micro-controllers, architectures and

specifications. Moreover, this research shows that the

nRF24L01+ antenna modules can be used alongside with several

micro-controllers efficiently and the cryptographic algorithms

are robust and secure.

Key Words— Intel Galileo, Arduino, Raspberry pi,

nRF24L01+, Micro-controller, Cryptography, Wireless Sensor

Networks, WSN, X86, ARM.

I. INTRODUCTION

In the new information era there is an increasing demand

for sensors in many fields of commercial and non-commercial

use. Moreover, along with this demand the security concerns

and requirements from the consumers rise as well. In addition,

the sensors are required to be cheap but reliable and efficient.

Furthermore, they need to be appealing and enduring in order

to be used in commercially. Finally, for the case that the sensor

use batteries, it is required that the sensors should have low

power consumptions.

Regarding those requirements, the first thought is to use

Ethernet for the data communication, which is fast, reliable,

secure and well established, but is not wireless, thus

inconvenient and requires one cable per sensor which can be

expensive in long distances.

Furthermore, in order to solve the disadvantages of the

Ethernet solution, there is the standard Wireless solution, Wi-

Fi. Wi-Fi has all the Ethernet advantages and in addition it has

good encryption techniques which are well documented and

secure. It provides good and reliable communication even at

long distances using specific antennas. In the other hand, Wi-Fi

has high power consumption and can deplete a sensor battery

in just a few hours.

Considering the two well established solutions and the

sensor requirements, there is one more solution, which should

be developed and studied more in order to ensure its security,

reliability and functionality. This solution is using nRF24L01+

antennas (1) which may be a good solution for wireless

communication on sensors and specifically on Wireless Sensor

Networks.

II. MOTIVATION

The idea behind this research was initially originated from

the need of low cost but power efficient wireless connection

between micro-controllers such as Intel Galileo, Arduino,

Raspberry pi and similar boards. Moreover, nowadays more

people are concerned for their privacy and security over such

networks, as said in section (I), so it`s a requirement for such

networks to include security measures in there toolset. The first

step towards this goal was to implement a wireless connection

between such micro-controller using bleeding edge libraries to

analyze their capabilities and note possible limitations,

improvements and cryptographic primitives that can be used.

Finally it was required to implement such improvements and

cryptographic techniques, which should be compared with

already existing libraries in similar systems in order to prove

there usability.

III. BACKGROUND

The cryptographic libraries that will be used, existing or

not, will follow the openssl standards for the coding part, and

will be tested against standard test vectors, such as FIPS from

NIST (2). All cryptographic libraries and there origin are

explained in the section (X).

On top of the standard cryptographic techniques that will be

implemented, the communication will follow the Encrypt-then-

MAC (3) implementation, which is proposed as the next

standard, in order to avoid the weaknesses of the previous

implementation (MAC-Then-Encrypt and Encrypt-and-MAC).

Finally, HMAC will be used for every MAC module in order

to ensure both the uniqueness of the mac for the similar

packets, and the authenticity of the data.

In the area of wireless micro-controller communication

there are several wireless modules to choose from. The most

known modules are: Wi-Fi Shields, ZigBee, XBee, Nordic

nRF24L01+ transceiver and Bluetooth. In this project the

Nordic nRF24L01+ transceiver is selected as it is the one with

the lowest cost that combines high speed communication, up to

2Mbps, and low power consumption, 1uA at standby mode.

Moreover, there are bleeding edge libraries derived from

community work that includes the basic nRF24L01+ library, a

network layer and a mesh implementation. As noted above, the

libraries and their origin are explained in the section (X).

IV. LIMITATIONS

The micro controllers have limited memory and processing

power, thus the coding requires optimizations in order to work

efficient. Moreover, the encryptions have to be fast and

efficient, resulting to symmetric cryptographic schemes and

leaving public key cryptography as a future work.

The majority of boards have embedded EEPROM, but this

rom has limited read and writes. Some boards offer a guarantee

for 100.000 erase/write cycle to the EEPROM slot. This cycle

may seem large, but in networks that will have rapid

developments and power downs, it may lead to node

malfunction. Furthermore, The EEPROM data is saved as

plaintext, therefore it may lead to node compromise if there is

physical access.

The architecture in each micro controller may differ. Some

controllers runs with ARM chipset while other, like Intel

Galileo, function with X86. This difference broadens, as some

micro controllers do not support AVR headers and pgmspace.

This raises the complexity, as the program that will be created

will have to support the majority of the official micro

controllers with concern to the differences of each one.

Finally, the RF24L01+ antenna does not support more than

6 channels or communication, thus connections (1). This

results to the need of implementing and more complex network

scheme, like true Mesh networks.

V. CRYPTOGRAPHIC PRIMITIVES

The Base of the implementation coding is the cryptography

that will be used. The implementation requires that End-to-End

encryption should be used in order to ensure the secrecy of the

messages. Moreover, the program has to ensure the Integrity of

the messages and the Authenticity of the clients. In addition a

key function is that there will not be a single message that will

be transmitted unencrypted except the Initialization Vector

(IV) that is required for the encryption modules.

Server-side, the primary concern is that the server should

be available at all times to the clients, and should be able to

produce and deliver network keys for every node at the

beginning of the communication, specifically during the

authentication process, and at required time intervals, thus the

cryptographic classes have to be fast but efficient and secure.

Furthermore, the program have to support as many

cryptographic modules as possible, thus it have to handle all

cryptographic modules as a “black box” in order to be easy to

change the cryptography fast and without a lot of effort.

As noted before, the libraries are explained in the section

(X).

VI. SYSTEM DESIGN

For the micro-controllers, there are several boards with a

wide range of specification. The list includes, but is not limited

to the following boards:

 More than 130 Arduino like boards

 5 Raspberry pi boards

 Several boards with similar functionality.

The boards that were selected are Raspberry pi B+ for the

server and Intel Galileo Gen 1 as Nodes. The selection was

based on available hardware with consideration to

compatibility with the rest of the controllers.

The wireless antenna selected is the nRF24L01+ wireless

module described in section (III).

For the programming part, OOP (object oriented

programming) was used for all classes while C++ and ANSI C

were used as the programming languages. In addition each

class is separated in at least three files for the code, plus some

compile files if necessary. These compile files are mainly for

the Raspberry pi. The three separate files include: the

configuration file, the header file, and the method coding. The

configuration file includes all the library calls and definitions.

In addition, the configuration file includes definitions for

different architectures and development boards in order for the

library to be able to support different architectures and systems.

The header file includes the class definition, methods and notes

for the documentation, while the method coding includes all

class methods and their code. Using this coding method, the

program ensures easy debugging and further development. For

the documentation of each class, a code parser is used. This

parser is reading notes from the header file in order to generate

html pages with the notes and explanations for each class.

The program except from the classes uses a handler for

some libraries, like the encryption libraries, in order to be able

to encrypt, decrypt, hash and verify the messages using

different encryptions and hashing algorithms. Those algorithms

are defined in the program configuration file and the nodes

configuration structure that will be explained later.

There are two different types of message frames that the

RF24 libraries are using. The first frame is the header frame

and the seconds is the message frame.

The first frame, as shown in Figure VI-1, is 18bytes long.

The first 4 bytes are the Node address that the message

originates, the following 4 bytes are the address of the node

that the message will be delivered. The next 4 bytes represents

the sequential ID of the message (mainly used in order to avoid

replay attacks). The subsequent 1 byte is the Message type

header while the successive 1 byte is a reserved byte for future

use. Finally the last 4 bytes are used for the next message id.

Figure VI-1Header frame

The second frame, as shown in Figure VI-2, has dynamic

payload length. This length depends from the payload length

plus the hash length and an 8 byte IV. As the nRF24l01+

antenna does not support frames larger than 32bytes in total

(4), the library supports message assembly/disassembly for

larger frames. That single frame is not going to be explained as

it`s plain 32 bytes of data and is depended on the header type.

For the frame of Figure VI-2, as the program uses Encrypt-

then-MAC (3), the first X bytes are the encrypted payload

while the following bytes hold the hash of the encrypted

message using HMAC and the last 8 bytes are the IV in

plaintext. The hash size is 16 or 20 or 32 bytes long, depending

on the hashing algorithm used. The IV is in plaintext as all the

encryption methods are used in CBC mode and the CBC mode

requires the random IV to be known from both sides.

Figure VI-2Message frame

All these information about the encryption mechanism,

hashing procedure and cryptographic keys are known to both

server and client nodes because each node uses a Structure

named NodeStuct that holds all these information. This

NodeStuct differs from the client and the sever nodes.

The Client node Structure holds the information about the

cryptographic algorithms, the hash functions, the encryption

keys and the default encryption keys. For time being, the

default encryption keys are hard-coded inside the nodes code.

In addition, the NodeId and the re-key time interval is also hard

coded.

The server node Structure is an array of NodeStuct that

includes information about each node. The index for this array

is the NodeID. This Array of structures contains information

about the cryptographic algorithms of each node, the hash

functions, the encryptions keys and the time interval for the re-

key requests. All this information is requested from a local

database during the authentication process. The data inside the

database can be inserted or manipulated from the administrator.

The default key is replaced from the random generated key

during the re-key function but only inside the NodeStruct and

not inside the database. The Re-key process is made using

Encrypted messages with key the default node key that is

stored in the database. In the case of continues non-

authentication, the client node is requested to de-authenticate

and wait for re-authentication in 30 minutes. In the case of

continues message transmission with false password or with

bad hash generally, the server cuts the node from the network

requesting re-authentication. The above description of the

authentication process can be seen visually in Figure VI-3.

Figure VI-3Authentication process

The Figure IV-4 shows the information exchange process

using direct transmission of the message from client to server

or server to client. Initially the Node that sends the message

encrypts and hashed the payload using Encrypt-then-MAC and

HMAC functions. Following, it transmits the message using

the wireless channel. The message as previously described has

two frames, the header and the message frame. Both frames are

transmitted. When both the header and the message frame are

received, the receiving node acknowledges the sending node

that the message has been received correctly. Consecutive, the

receiving node takes appropriate actions depending from the

header frame. The first actions are always to check the integrity

and authenticity of the messages. Depending on the outcome of

the authenticity and the integrity check the receiving node

continues with the appropriate actions.

Figure VI-4 Information exchange process using

direct message transmission

The Figure VI-5 shows the same process as above, but

because the network can be a Mesh or a tree network, the

information exchange process may include proxy clients from

the sending to the receiving node. In this case the proxy client

just proxies the messages without taking any action. It can be

considered as a router that forwards the messages that are not

for it.

Figure VI-5Information exchange process using a proxy client

As previously described, the implementation can support

various different types of network schemes. The basic network,

using one node to each channel out of six that the antenna

supports, is considered to be a star network. Derived from that

and using the RF24Netowkr library, the network is expanded

to a tree like implementation with sudo-mesh capabilities. The

network is a tree network scheme but can support reconnection

to the network using a different path if the parent node cannot

be found.

Figure VI-6Network explanation

As the three main communication libraries are mostly

community driven, the primary focus of this research in the

system design was to program the encryption libraries

alongside with the network libraries in order to have an

efficient system that will use the network libraries in an

effective way and enhances the libraries in a way that the

encryption methods will provide a unified framework for the

network libraries to use.

For the coding of the cryptographic libraries, the openssl

code was taken as a base, and the function were adapted in

order to be usable in micro-controllers. Furthermore, the

classes were enchanted in a way that they can easily be used

from the encryption handler.

After the coding of the libraries and the encryption handler

layer, it was required to have some comparisons with this

libraries using Raspberry pi and Intel Galileo with openssl and

the custom framework, wherever was possible.

VII.COMPARISONS

There are three different comparison arrays for the

cryptographic class. The first array makes a comparison

between Raspberry pi and Intel Galileo encryption and

decryption times using the same classes. The second compares

the times in Raspberry pi between custom classes and the

openssl framework; the openssl framework is measured using

ANSI C functions. The third array compares the openssl

framework in both Raspberry pi and Intel Galileo. In the Intel

Galileo a simple linux OS was used, which is downloaded from

Intel website; the openssl framework is measured using openssl

speed function for both devices.

There are more than 10.000 measurements per module per

table in order to have a good specimen to compare.

In the first table (VII-1) the top values are for Raspberry pi

while the bottom values are for Intel Galileo. The values are

measured in milliseconds.

Raspberry Pi

Intel Galileo

MIN MAX AVERAGE MEDIAN

3DES-CBC ENC 0,2930

1,3390

1,1510

1,8950

0,3084

1,3564

0,2970

1,3460

3DES-CBC DEC 0,5640

26,6900

1,1590

32,2000

0,5889

26,9378

0,5680

26,7300

AES-CBC

ENC

0,0300

0,0410

0,4420

1,8930

0,0344

0,0501

0,0330

0,0440

AES-CBC

DEC

0,0340

0,0520

0,1740

1,9080

0,0386

0,0613

0,0370

0,0550

MD5 0,0320

0,0180

0,6120

1,8220

0,0394

0,0278

0,0380

0,0200

SHA1 0,0260

0,0560

0,3040

1,6610

0,0385

0,0650

0,0420

0,0620

SHA256 0,0380

0,0670

0,2480

1,6940

0,0560

0,0782

0,0630

0,0690

Table VII-1Raspberry pi vs Intel Galileo using the framework

In the second table (VII-2) the top values are for the custom

classes while the bottom values are for the openssl framework

using ANSI C. All the measurements are taken using

Raspberry pi. The values are measured in milliseconds.

Custom

Openssl

MIN MAX AVERAGE MEDIAN

3DES-CBC

ENC

0,2930

0,0410

1,1510

0,3240

0,3084

0,0466

0,2970

0,0450

3DES-CBC

DEC

0,5640

0,0410

1,1590

0,1800

0,5889

0,0461

0,5680

0,0450

AES-CBC

ENC

0,0300

0,0180

0,4420

0,2690

0,0344

0,0206

0,0330

0,0200

AES-CBC

DEC

0,0340

0,0250

0,1740

0,1870

0,0386

0,0286

0,0370

0,0270

MD5 0,0320

0,0290

0,6120

0,1570

0,0394

0,0323

0,0380

0,0310

SHA1 0,0260

0,0250

0,3040

0,3440

0,0385

0,0280

0,0420

0,0270

SHA256 0,0380

0,0390

0,2480

0,1760

0,0560

0,0429

0,0630

0,0420

Table VII-2Custom framework vs openssl in Raspberry pi

In the third table (VII-3) the top values are for Raspberry pi

while the bottom values are for the Intel Galileo. All the

measurements are taken using openssl speed function and the

values are operations using x bit inputs where x is the header.

R. pi

Intel

16 64 256 1024 8192

DES-

CBC

1500320

313545

397488

81146

100734

20327

25264

5099

3150

632

AES-

CBC

3138198

213357

898188

55665

233251

14064

58891

6007

7388

745

MD5 364478

81067

352552

72950

270153

56262

13980

1

30084

25185

5417

SHA

1

517674

73910

426695

59687

253254

36856

96750

15107

14247

2223

SHA

256

863934

104447

510689

57222

223078

24484

68733

7407

9219

985

Table VII-3Rasberry pi vs Intel Galileo using openssl

VIII. VALIDATION

The implementation and code have been extensively tested

using various re-key intervals, various information retrieving

intervals, with one client node and three client nodes.

Moreover, there are several tests made using a mixture of the

above settings.

The results were satisfying, as the majority of the messages

were transmitted successfully inside the mesh network. The re-

key function was working without any error except in the cases

of re-key intervals setting lower than 5 seconds for each node.

Therefore, the implementation has good functionality for time

being.

The results for the cryptographic library and framework are

also satisfying, and the majority of the cryptographic

algorithms have similar execution time compared to the

standards, except the DES and 3DES section, as shown in the

previous section.

In general the encryption mechanism for the micro-

controllers using nRFL01+ antennas is robust and considered

secure, depending on the setting for the encryption algorithm

and the re-key intervals. Though, the communication is not

DDOS resistant as the antennas cannot handle several

messages and their buffers can be overflown. Finally as the

antennas are working using 2.4GHz radio signals, the

communication can be jammed using market jammers, but this

flaws are known in the field of wireless communication (5).

The implementation is considered secure, but as stated in

the following section (IX) there are a lot more to be

implemented.

IX. FUTURE WORK

Considering that this system is not in a mature state but

close to the initial state of development there are several

aspects of functionality and usability to be added. This section

is separated in two different sub-sections. General future work

and specific future work in cryptography.

In the first sub-section it is recommended an

implementation of a Command Line Interface (CLI) to be

added. Moreover, a Dynamic NodeId system that won’t

extensively use the EEPROM should be developed in order to

avoid static NodeId declaration inside the code of each

respective node. Following, a configuration profile template

should be created in order to be fairly easy to support more

microcontrollers in the near future. It is also recommended the

addition of sensor functionality. Finally there is a need to

enhance the RF24Mesh library in order to function like a true

mesh network instead of a tree and sudo-mesh network that is

currently implemented. On top of that, it is mandatory to add

sleep functionality to all non-AVR compatible devices like

Intel Galileo, in order to optimize power consumption.

In the second sub-section, Cryptography, it is

recommended to implement public key cryptography function

using Elliptic curve cryptography (ECC) for 8-bit micro-

controllers. Moreover the key-handing function should be

enhanced in order to use Diffie-hellman key exchange;

provided that, will eliminate the need to have hard coded

encryption keys in the sensor code. Finally all the encryption

and hash classes should be encapsulated into a single

framework, like openssl, in order to have a unified library for

the encryption in the micro-controllers. Furthermore, this

framework should be optimized using inline assembly

wherever possible in order to achieve lower encryption-

decryption times.

X. LIBRARIES

All the libraries used except the main program, are listed in

this section. The classes are of three types:

a) Forked and extended to use in Intel Galileo

b) Forked and extensively enchanted in order to help

usability and efficiency.

c) Created from scratch.

All the libraries are Arduino, Intel Galileo and Raspberry pi

compatible unless noted differently.

In the first section (a), the Libraries are:

RF24 (6) This is the underlying

network driver.

RF24Network (4) This Library resembles the

OSI network layer

RF24Mesh (7) This library is used to

enhance the Network layer in

order to create a dynamic

mesh layer.

Table X-1Forked and extended

 In the second section (b) the libraries are:

Cryptosuite (8)

Implements Sha, Sha25,

HMAC-Sha, HMAC-sha256.

ArduinoDES (9) Implements DES, 3DES in

CBC mode.

ArduinoMD5 (10)

Implements MD5, HMAC-

MD5.

AES (11) AES in CBC mode, 128, 192,

256 bits

Table X-2 Forked and extensively enchanted

In the Third section (c) the libraries are:

TempSensor (12) This library uses the

Temperature sensor from the

seed kit or any TTC03

Thermistor and creates a

usability layer.

The library is Arduino and

Intel Galileo compatible.

LightSensor (13) This library uses the Light

sensor from the seed kit or

any GL5528 LDR sensor and

creates a usability layer.

The library is Arduino and

Intel Galileo compatible.

LCD (14) This library inherits the LCD

screen class of the Arduino

seed kit and creates a layer

with usability functions and

ease of usage for the LCD

screen

The library is Arduino and

Intel Galileo compatible.

KEYGEN (15) This library is a key

generation algorithm with

ease of use in generation of

passwords and cryptographic

IV.

Table X-3Created from scratch

XI. ACKNOWLEDGMENT

I would like to acknowledge the University of Malaga for

hosting me as an Erasmus student. Also my professor in

University of Piraeus, mr. K. Lamprinoudakis for

recommended me for this master thesis. My professor in Spain

Mr. Javier Lopez for making me a part of his research team

and his assistant professor Isaac Agudo Ruiz for giving me all

the materials needed and guided me though the whole thesis.

Moreover I would like to acknowledge the Erasmus+ program

for funding me as a master Erasmus student and made this

option available to me. In addition I would like to

acknowledge the rest of the research group that helped me

with my assignment and made me feel a part of the team. I

would like to acknowledge the contributors for designing and

updating the RF24 (6) driver, the RF24Network layer library

(4) and the RF24Mesh library (7) and all other libraries used

in this Project. Finally I would like to acknowledge the Intel

Corporation for Granting the University of Malaga the

hardware needed in order to complete this thesis, such as Intel

Galileo boards and Arduino Seed kits.

XII. WORKS CITED

1. semiconductor, Nordic. nRF24L01 - 2.4Ghz RF Products -

Nordic Semiconductor. Ultra Low Powered Wireless solutions

from NORDIC SEMICODUCTOR. [Online] july 2007.

http://www.nordicsemi.com/eng/content/download/2730/3410

5/file/nRF24L01_Product_Specification_v2_0.pdf.

2. NIST. NIST Computer Security Publications - FIPS

(Federal Information Processing Standards). National Institute

of Standards and Technology. [Online]

http://csrc.nist.gov/publications/PubsFIPS.html.

3. Gutmann, P. Encrypt-then-MAC for Transport Layer

Security (TLS) and Datagram Transport Layer Security

(DTLS). information on RFC 7366. [Online] September 2014.

http://www.rfc-editor.org/info/rfc7366.

4. TMRh20. TMRh20/RF24Netowork at Development.

Github. [Online]

https://github.com/TMRh20/RF24Network/tree/Development.

5. Coleman D., Diener N. Protecting WiFi Networks from

Layer 1 Security Threats. cisco. [Online] 2007.

http://www.cisco.com/c/dam/en/us/products/collateral/wireles

s/spectrum-expert-wi-

fi/prod_white_paper0900aecd807395b9.pdf.

6. TMRh20. TmRh20/RF24. Github. [Online]

https://github.com/TMRh20/RF24.

7. —. TMRh20/RF24Mesh. Github. [Online]

https://github.com/TMRh20/RF24Mesh.

8. Spanos, Georgios. spaniakos/Cryptosuite. Github. [Online]

https://github.com/spaniakos/Cryptosuite.

9. —. spaniakos/ArduinoDES. Github. [Online]

https://github.com/spaniakos/ArduinoDES.

10. —. spaniakos/ArduinoMD5. Github. [Online]

https://github.com/spaniakos/ArduinoMD5.

11. —. spaniakos/AES. Github. [Online]

https://github.com/spaniakos/AES.

12. —. spaniakos/Tempsensor. Github. [Online]

https://github.com/spaniakos/TempSensor.

13. —. spaniakos/Lightsensor. Github. [Online]

https://github.com/spaniakos/LightSensor.

14. —. spanaikos/LCD. Github. [Online]

https://github.com/spaniakos/LCD.

15. —. spaniakos/KEYGEN. Github. [Online]

https://github.com/spaniakos/KEYGEN/.

