Skip to content

spatie/dashboard-coffee-listener

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code
This branch is 10 commits ahead of datarootsio:master.

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 

Dashboard Coffee Listener

This is a fork from Dataroot's Fresh-Coffee-Listener repo. It includes the following changes:

  • added python-dotenv (see .env.example)
  • removed the PostreSQL integration
  • added a simple API request to handle the coffee event (url in .env)

Below is the original readme by Dataroot.


A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption. From now on, the total number of coffee consumption stats have to be audited live via listening to the coffee grinder sound in Raspberry Pi, because why not? Check stats from here.

Overall flow to collect coffee machine stats

  1. Relocate the Raspberry Pi microphone just next to the coffee machine
  2. Listen and record environment sound at every 0.7 seconds
  3. Compare the recorded environment sound with the original coffee grinder sound and measure the Euclidean distance
  4. If the distance is less than a threshold it means that the coffee machine has been started and a datarootsian is grabbing a coffee
  5. Connect to DB and send timestamp, office name, and serving type to the DB in case an event is detected ( E.g. 2021-08-04 18:03:57, Leuven, coffee )

Raspberry Pi Setup

  1. Hardware: Raspberry Pi 3b
  2. Microphone: External USB microphone (doesn't have to be a high-quality one). We also bought a microphone with an audio jack but apparently, the Raspberry Pi audio jack doesn't have an input. So, don't do the same mistake and just go for the USB one :)
  3. OS: Raspbian OS
  4. Python Version: Python 3.7.3. We used the default Python3 since we don't have any other python projects in the same Raspberry Pi. You may also create a virtual environment.

Detecting the Coffee Machine Sound

  1. In the sounds folder, there is a coffee-sound.m4a file, which is the recording of the coffee machine grinding sound for 1 sec. You need to replace this recording with your coffee machine recording. It is very important to note that record the coffee machine sound with the external microphone that you will use in Raspberry Pi to have a much better performance.
  2. When we run detect_sound.py, it first reads the coffee-sound.m4a file and extracts its MFCC features. By default, it extracts 20 MFCC features. Let's call these features original sound features
  3. The external microphone starts listening to the environment for about 0.7 seconds with a 44100 sample rate. Note that the 44100 sample rate is quite overkilling but Raspberry Pi doesn't support lower sample rates out of the box. To make it simple we prefer to use a 44100 sample rate.
  4. After each record, we also extract 20 MFCC features and compute the Euclidean Distance between the original sound features and recorded sound features.
  5. We append the Euclidean Distance to a python deque object having size 3.
  6. If the maximum distance in this deque is less than self.DIST_THRESHOLD = 85, then it means that there is a coffee machine usage attempt. Feel free to play with this threshold based on your requirements. You can simply comment out line 66 of detect_sound.py to print the deque object and try to select the best threshold. We prefer to check 3 events (i.e having deque size=3) subsequently to make it more resilient to similar sounds.
  7. Go back to step 3, if the elapsed time is < 12 hours. (Assuming that the code will run at 7 AM and ends at 7 PM since no one will be at the office after 7 PM)
  8. Exit

Scheduling the coffee listening job

We use a systemd service and timer to schedule the running of detect_sound.py. Please check coffee_machine_service.service and coffee_machine_service.timer files. This timer is enabled in the makefile. It means that even if you reboot your machine, the app will still work.

coffee_machine_service.service

In this file, you need to set the correct USER and WorkingDirectory. In our case, our settings are;

User=pi
WorkingDirectory= /home/pi/dashboard-coffee-listener

To make the app robust, we set Restart=on-failure. So, the service will restart if something goes wrong in the app. (E.g power outage, someone plugs out the microphone and plug in again, etc.). This service will trigger make run the command that we will cover in the following sections.

coffee_machine_service.timer

The purpose of this file is to schedule the starting time of the app. As you see in;

OnCalendar=Mon..Fri 07:00

It means that the app will work every weekday at 7 AM. Each run will take 7 hours. So, the app will complete listening at 7 PM.

Deploying Fresh-Coffee-Listener app

  1. Installing dependencies: If you are using an ARM-based device like Raspberry-Pi run

    make install-arm

    For other devices having X84 architecture, you can simply run

    make install
  2. Set Variables in makefile

    • COFFEE_AUDIO_PATH: The absolute path of the original coffee machine sound (E.g. /home/pi/coffee-machine-monitoring/sounds/coffee-sound.m4a)
    • SD_DEFAULT_DEVICE: It is an integer value represents the sounddevice input device number. To find your external device number, run python3 -m sounddevice and you will see something like below;
         0 bcm2835 HDMI 1: - (hw:0,0), ALSA (0 in, 8 out)
         1 bcm2835 Headphones: - (hw:1,0), ALSA (0 in, 8 out)
         2 USB PnP Sound Device: Audio (hw:2,0), ALSA (1 in, 0 out)
         3 sysdefault, ALSA (0 in, 128 out)
         4 lavrate, ALSA (0 in, 128 out)
         5 samplerate, ALSA (0 in, 128 out)
         6 speexrate, ALSA (0 in, 128 out)
         7 pulse, ALSA (32 in, 32 out)
         8 upmix, ALSA (0 in, 8 out)
         9 vdownmix, ALSA (0 in, 6 out)
        10 dmix, ALSA (0 in, 2 out)
      * 11 default, ALSA (32 in, 32 out)

    It means that our default device is 2 since the name of the external device is USB PnP Sound Device. So, we will set it as SD_DEFAULT_DEVICE=2 in our case.

  3. Sanity check: Run make run to see if the app works as expected. You can also have a coffee to test whether it captures the coffee machine sound.

  4. Enabling systemd commands to schedule jobs: After configuring coffee_machine_service.service and coffee_machine_service.timer based on your preferences, as shown above, run to fully deploy the app;

    make run-systemctl
  5. Check the coffee_machine.logs file under the project root directory, if the app works as expected

  6. Check service and timer status with the following commands

    systemctl status coffee_machine_service.service

    and

    systemctl status coffee_machine_service.timer

Having Questions / Improvements ?

Feel free to create an issue and we will do our best to help your coffee machine as well :)

About

Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 66.5%
  • Makefile 30.1%
  • Shell 3.4%