
Long Short-Term Memory in Recurrent Neural Net-
work
Shixiang Gu, Andrey Malinin

sg717@cam.ac.uk,am969@cam.ac.uk

November 20, 2014

sg717@cam.ac.uk, am969@cam.ac.uk

Outline

NN: Review

Early RNN

LSTM

Modern RNN

2 of 17

Machine Learning Review
Discrimitive Model learns P(Y |X)
Generative Model learns P(X ,Y), or P(X)
Supervised Learning uses pairs of input X and output Y , and
aims to learn P(Y |X) or f : X −→ Y
Unsupervised Learning uses input X only, and aims to learn P(X)
or f : X −→ H, where H is “better” representation of X
Models can be stochastic or deterministic

In this presentation, we focus on deterministic, supervised,
discrimitive model based on Recurrent Neural Network
(RNN)/Long Short-Term Memory (LSTM)

Applications: Speech Recognition, Machine Translation, Online
Handwriting Recognition, Language Modeling, Music Composition,
Reinforcement Learning, etc.

3 of 17

NN (1940s-, or early 1800s)
input: X ∈ RQ

target output: Y ∈ RD

predicted output: Ŷ ∈ RD

hidden: H,Z ∈ RP

weights: WX ∈ RP×Q,WY ∈ RD×P

activations: f : RP −→ RP ,g : RD −→ RD

loss function: L : RD × RD −→ R
loss: E ∈ R
objective: minimize total loss E for
(X (i),Y (i))i=1...N training examples

Forward Propagation:
Z = WX · X
H = f (Z)
Ŷ = g(WY · H)
E = L(Y , Ŷ)

4 of 17

Activation functions
Common activation functions f : X −→ Y on X ,Y ∈ RD:

Linear: f (X) = X

Sigmoid/Logistic: f (X) = 1
1+e−X

Rectified Linear (ReLU): f (X) = max(0,X)

Tanh: f (X) = tanh(X) = eX−e−X

eX+e−X

Softmax: f : Yi =
eXi∑j=D

j=1 eXi

Most activations are element-wise and non-linear
Derivatives are easy to compute

5 of 17

NN: Backpropagation (1960s-1981)
Backpropagation (i.e. chain rule):
assume g(X) = X ,

L(Y , Ŷ) = 1
2
∑D

i=1(Yi − Ŷi)
2:

∂E
∂Ŷ

= Ŷ − Y , ∂Ŷ
∂H = WY , ∂H

∂Z = f ′(Z)

∂E
∂Z = ∂E

∂Ŷ
∂Ŷ
∂H

∂H
∂Z = (W T

Y · (Ŷ − Y))� f ′(Z)

∂E
∂WY

= ∂E
∂Ŷ

∂Ŷ
∂WY

= (Ŷ − Y)⊗ H
∂E
∂WX

= ∂E
∂Z

∂Z
∂WX

= ∂E
∂Z ⊗ X

*abusing matrix calculus notations

Stochastic Gradient Descent
learning rate: ε > 0
W = W − ε ∂E

∂W ,∀W ∈ {WY ,WX}

6 of 17

RNN (1980s-)

Why Recurrent?
I Human brain is a recurrent neural network, i.e. has feedback

connections

I A lot of data is sequential and dynamic (can grow or shrink)

I RNNs are Turing-Complete
[Siegelmann and Sontag, 1995, Graves et al., 2014]

7 of 17

Unrolling RNNs

Figure: RNN

Figure: Unrolled RNN

8 of 17

RNN (1980s-)
Forward Propagation:
Given H0
Zt = WX · Xt + WH · Ht−1
Ht = f (Zt)
Ŷt = g(WY · Ht)
Et = L(Yt , Ŷt)
E =

∑T
t=1 Et

RNN=Very Deep NN w/ tied weights

Sequence learning: unknown input
len −→ unknown output len

9 of 17

Vanishing/exploding gradients (1991)

Fundamental Problem in Deep Learning [Hochreiter, 1991]:

Let vj,t =
∂E
∂Zj,t

vi,t−1 = f ′(Zi,t−1) ·
∑P

j=1 wji · vj,t

∂vi,t−q
∂vj,t

=
∑P

l1=1 · · ·
∑P

lq−1=1
∏q

m=1 f ′lm(Zlm,t−m) · wlm,lm−1

|f ′lm(Zlm,t−m) · wlm,lm−1 | > 1.0∀m −→ explodes
|f ′lm(Zlm,t−m) · wlm,lm−1 | < 1.0∀m −→ vanishes

Gradient vanishes/increases exponentially in terms of time steps T
e.g. “bufferfly effect”

10 of 17

Early work on RNN (1980s-90s)

Exact gradient (TOO HARD!(back then)):
I Backpropagation Through Time (BPTT) [Werbos, 1990]

Approximate gradient:
I Real Time Recurrent Learning (RTRL)

[Robinson and Fallside, 1987, Williams and Zipser, 1989]

I Truncated BPTT [Williams and Peng, 1990]
Non-gradient methods:

I Random Guessing [Hochreiter and Schmidhuber, 1996]
Unsupervised “pretraining”:

I History Compressor [Schmidhuber, 1992]
Others:

I Time-delay Neural Network [Lang et al., 1990], Hierarchical
RNNs [El Hihi and Bengio, 1995], NARX [Lin et al., 1996] and
more...

sources: [Graves, 2006, Sutskever, 2013, Schmidhuber, 2014]
11 of 17

Pretraining RNN (1992)

History compressor (HC) [Schmidhuber, 1992] = unsupervised,
greedy layer-wise pretraining of RNN
(Recall in standard DNN: unsupervised pretraining (AE,RBM)
[Hinton and Salakhutdinov, 2006]−→ supervised
[Krizhevsky et al., 2012])
Forward Propagation:
Given H0,X0,Yt = Xt+1
Zt = WXH · Xt−1 + WH · Ht−1
Ht = f (Zt)
Ŷt = g(WY · Ht + WXY · Xt)
Et = L(Yt , Ŷt)
E =

∑T−1
t=0 Et

X ′ ←− {X0,H0, (t ,Xt) ∀ t 3 Xt 6= Ŷt−1}
−→ train new HC using X ′

Figure: HC

Greedily pretrain RNN, using “surprises” from previous step
12 of 17

Basic “LSTM” (1991-95)

Idea: Have separate linear units that simply deliver errors
[Hochreiter and Schmidhuber, 1997]

Forward Propagation*:
Let Ct ∈ RP = “cell state”,
Given H0,C0
Ct = Ct−1 + f1(WX · Xt + WH · Ht−1)
Ht = f2(Ct)
BPTT: Truncate gradients outside the

cell
*approximately

13 of 17

Original LSTM (1995-97)

Idea: Have additional controls for R/W access (input/output gates)
[Hochreiter and Schmidhuber, 1997]

Forward Propagation*:
Given H0,C0
Ct = Ct−1 + it � f1(WX · Xt + WH · Ht−1)
Ht = ot � f2(Ct)
it = σ(Wi,X ·Xt +Wi,C ·Ct−1+Wi,H ·Ht−1)
ot = σ(Wo,X ·Xt +Wo,C ·Ct +Wo,H ·Ht−1)
BPTT: Truncate gradients outside the

cell
*approximately

14 of 17

Modern LSTM (full version) (2000s-)

Idea: Have control for forgeting cell state (forget gate)
[Gers, 2001, Graves, 2006]

Forward Propagation:
Given H0,C0
Ct = ft�Ct−1+ it� f1(WX ·Xt +WH ·Ht−1)
Ht = ot � f2(Ct)
it = σ(Wi,X ·Xt +Wi,C ·Ct−1+Wi,H ·Ht−1)
ot = σ(Wo,X ·Xt +Wo,C ·Ct +Wo,H ·Ht−1)
ft = σ(Wf ,X ·Xt +Wf ,C ·Ct−1+Wf ,H ·Ht−1)
BPTT: Use exact gradients

15 of 17

Recent Progress in RNN

Echo-State Network (ESN): [Jaeger and Haas, 2004]
I only train hidden-output weights

I other weights drawn from carefully-chosen distribution and
fixed

Hessian-Free (HF) optimization: [Martens and Sutskever, 2011]
I approximate second-order method

I outperformed LSTM on small-scale tasks
Momentum methods: [Sutskever, 2013]

I Could we get some good results without HF?

I Yes! With “good” intialization & aggressive momemtum
scheduling

I Nesterov’s accelerated gradient?

16 of 17

LSTMs on Theano
DEMO!

17 of 17

El Hihi, S. and Bengio, Y. (1995).
Hierarchical recurrent neural networks for long-term
dependencies.
In NIPS, pages 493–499. Citeseer.

Gers, F. (2001).
Long Short-Term Memory in Recurrent Neural Networks.
PhD thesis, Ecole Polytechnique Federale de Lausanne.

Graves, A. (2006).
Supervised Sequence Labelling with Recurrent Neural
Networks.
PhD thesis, Technische Universitat Munchen.

Graves, A., Wayne, G., and Danihelka, I. (2014).
Neural turing machines.
arXiv preprint arXiv:1410.5401.

Hinton, G. E. and Salakhutdinov, R. R. (2006).
Reducing the dimensionality of data with neural networks.
Science, 313(5786):504–507.

17 of 17

Hochreiter, S. (1991).
Untersuchungen zu dynamischen neuronalen Netzen.
PhD thesis, Institut fur Informatik, Technische Universitat
Munchen.

Hochreiter, S. and Schmidhuber, J. (1996).
Bridging long time lags by weight guessing and\ long
short-term memory.
Spatiotemporal models in biological and artificial systems,
37:65–72.

Hochreiter, S. and Schmidhuber, J. (1997).
Long short-term memory.
Neural computation, 9(8):1735–1780.

Jaeger, H. and Haas, H. (2004).
Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication.
Science, 304(5667):78–80.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
17 of 17

Imagenet classification with deep convolutional neural
networks.
In Advances in neural information processing systems, pages
1097–1105.

Lang, A., Waibel, A., and Hinton, G. E. (1990).
A time-delay neural network architecture for isolated word
recognition.
3:23–43.

Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1996).
Learning long-term dependencies in narx recurrent neural
networks.
Neural Networks, IEEE Transactions on, 7(6):1329–1338.

Martens, J. and Sutskever, I. (2011).
Learning recurrent neural networks with hessian-free
optimization.
In Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 1033–1040.

17 of 17

Robinson, A. and Fallside, F. (1987).
The utility driven dynamic error propagation network.
University of Cambridge Department of Engineering.

Schmidhuber, J. (1992).
Learning complex, extended sequences using the principle of
history compression.
Neural Computation, 4(2):234–242.

Schmidhuber, J. (2014).
Deep learning in neural networks: An overview.
arXiv preprint arXiv:1404.7828.

Siegelmann, H. T. and Sontag, E. D. (1995).
On the computational power of neural nets.
Journal of computer and system sciences, 50(1):132–150.

Sutskever, I. (2013).
Training Recurrent Neural Networks.
PhD thesis, University of Toronto.

17 of 17

Werbos, P. J. (1990).
Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560.

Williams, R. J. and Peng, J. (1990).
An efficient gradient-based algorithm for on-line training of
recurrent network trajectories.
Neural Computation, 2(4):490–501.

Williams, R. J. and Zipser, D. (1989).
A learning algorithm for continually running fully recurrent
neural networks.
Neural computation, 1(2):270–280.

17 of 17

	NN: Review
	Early RNN
	LSTM
	Modern RNN

