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Machine Learning Review
Discrimitive Model learns P(Y |X )
Generative Model learns P(X ,Y ), or P(X )
Supervised Learning uses pairs of input X and output Y , and
aims to learn P(Y |X ) or f : X −→ Y
Unsupervised Learning uses input X only, and aims to learn P(X )
or f : X −→ H, where H is “better” representation of X
Models can be stochastic or deterministic

In this presentation, we focus on deterministic, supervised,
discrimitive model based on Recurrent Neural Network
(RNN)/Long Short-Term Memory (LSTM)

Applications: Speech Recognition, Machine Translation, Online
Handwriting Recognition, Language Modeling, Music Composition,
Reinforcement Learning, etc.
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NN (1940s-, or early 1800s)
input: X ∈ RQ

target output: Y ∈ RD

predicted output: Ŷ ∈ RD

hidden: H,Z ∈ RP

weights: WX ∈ RP×Q,WY ∈ RD×P

activations: f : RP −→ RP ,g : RD −→ RD

loss function: L : RD × RD −→ R
loss: E ∈ R
objective: minimize total loss E for
(X (i),Y (i))i=1...N training examples

Forward Propagation:
Z = WX · X
H = f (Z )
Ŷ = g(WY · H)
E = L(Y , Ŷ )
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Activation functions
Common activation functions f : X −→ Y on X ,Y ∈ RD:

Linear: f (X ) = X

Sigmoid/Logistic: f (X ) = 1
1+e−X

Rectified Linear (ReLU): f (X ) = max(0,X )

Tanh: f (X ) = tanh(X ) = eX−e−X

eX+e−X

Softmax: f : Yi =
eXi∑j=D

j=1 eXi

Most activations are element-wise and non-linear
Derivatives are easy to compute
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NN: Backpropagation (1960s-1981)
Backpropagation (i.e. chain rule):
assume g(X ) = X ,

L(Y , Ŷ ) = 1
2
∑D

i=1(Yi − Ŷi)
2:

∂E
∂Ŷ

= Ŷ − Y , ∂Ŷ
∂H = WY , ∂H

∂Z = f ′(Z )

∂E
∂Z = ∂E

∂Ŷ
∂Ŷ
∂H

∂H
∂Z = (W T

Y · (Ŷ − Y ))� f ′(Z )

∂E
∂WY

= ∂E
∂Ŷ

∂Ŷ
∂WY

= (Ŷ − Y )⊗ H
∂E
∂WX

= ∂E
∂Z

∂Z
∂WX

= ∂E
∂Z ⊗ X

*abusing matrix calculus notations

Stochastic Gradient Descent
learning rate: ε > 0
W = W − ε ∂E

∂W ,∀W ∈ {WY ,WX}
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RNN (1980s-)

Why Recurrent?
I Human brain is a recurrent neural network, i.e. has feedback

connections

I A lot of data is sequential and dynamic (can grow or shrink)

I RNNs are Turing-Complete
[Siegelmann and Sontag, 1995, Graves et al., 2014]
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Unrolling RNNs

Figure: RNN

Figure: Unrolled RNN
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RNN (1980s-)
Forward Propagation:
Given H0
Zt = WX · Xt + WH · Ht−1
Ht = f (Zt)
Ŷt = g(WY · Ht)
Et = L(Yt , Ŷt)
E =

∑T
t=1 Et

RNN=Very Deep NN w/ tied weights

Sequence learning: unknown input
len −→ unknown output len
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Vanishing/exploding gradients (1991)

Fundamental Problem in Deep Learning [Hochreiter, 1991]:

Let vj,t =
∂E
∂Zj,t

vi,t−1 = f ′(Zi,t−1) ·
∑P

j=1 wji · vj,t

∂vi,t−q
∂vj,t

=
∑P

l1=1 · · ·
∑P

lq−1=1
∏q

m=1 f ′lm(Zlm,t−m) · wlm,lm−1

|f ′lm(Zlm,t−m) · wlm,lm−1 | > 1.0∀m −→ explodes
|f ′lm(Zlm,t−m) · wlm,lm−1 | < 1.0∀m −→ vanishes

Gradient vanishes/increases exponentially in terms of time steps T
e.g. “bufferfly effect”
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Early work on RNN (1980s-90s)

Exact gradient (TOO HARD!(back then)):
I Backpropagation Through Time (BPTT) [Werbos, 1990]

Approximate gradient:
I Real Time Recurrent Learning (RTRL)

[Robinson and Fallside, 1987, Williams and Zipser, 1989]

I Truncated BPTT [Williams and Peng, 1990]
Non-gradient methods:

I Random Guessing [Hochreiter and Schmidhuber, 1996]
Unsupervised “pretraining”:

I History Compressor [Schmidhuber, 1992]
Others:

I Time-delay Neural Network [Lang et al., 1990], Hierarchical
RNNs [El Hihi and Bengio, 1995], NARX [Lin et al., 1996] and
more...

sources: [Graves, 2006, Sutskever, 2013, Schmidhuber, 2014]
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Pretraining RNN (1992)

History compressor (HC) [Schmidhuber, 1992] = unsupervised,
greedy layer-wise pretraining of RNN
(Recall in standard DNN: unsupervised pretraining (AE,RBM)
[Hinton and Salakhutdinov, 2006]−→ supervised
[Krizhevsky et al., 2012])
Forward Propagation:
Given H0,X0,Yt = Xt+1
Zt = WXH · Xt−1 + WH · Ht−1
Ht = f (Zt)
Ŷt = g(WY · Ht + WXY · Xt)
Et = L(Yt , Ŷt)
E =

∑T−1
t=0 Et

X ′ ←− {X0,H0, (t ,Xt) ∀ t 3 Xt 6= Ŷt−1}
−→ train new HC using X ′

Figure: HC

Greedily pretrain RNN, using “surprises” from previous step
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Basic “LSTM” (1991-95)

Idea: Have separate linear units that simply deliver errors
[Hochreiter and Schmidhuber, 1997]

Forward Propagation*:
Let Ct ∈ RP = “cell state”,
Given H0,C0
Ct = Ct−1 + f1(WX · Xt + WH · Ht−1)
Ht = f2(Ct)
BPTT: Truncate gradients outside the

cell
*approximately
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Original LSTM (1995-97)

Idea: Have additional controls for R/W access (input/output gates)
[Hochreiter and Schmidhuber, 1997]

Forward Propagation*:
Given H0,C0
Ct = Ct−1 + it � f1(WX · Xt + WH · Ht−1)
Ht = ot � f2(Ct)
it = σ(Wi,X ·Xt +Wi,C ·Ct−1+Wi,H ·Ht−1)
ot = σ(Wo,X ·Xt +Wo,C ·Ct +Wo,H ·Ht−1)
BPTT: Truncate gradients outside the

cell
*approximately
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Modern LSTM (full version) (2000s-)

Idea: Have control for forgeting cell state (forget gate)
[Gers, 2001, Graves, 2006]

Forward Propagation:
Given H0,C0
Ct = ft�Ct−1+ it� f1(WX ·Xt +WH ·Ht−1)
Ht = ot � f2(Ct)
it = σ(Wi,X ·Xt +Wi,C ·Ct−1+Wi,H ·Ht−1)
ot = σ(Wo,X ·Xt +Wo,C ·Ct +Wo,H ·Ht−1)
ft = σ(Wf ,X ·Xt +Wf ,C ·Ct−1+Wf ,H ·Ht−1)
BPTT: Use exact gradients

15 of 17



Recent Progress in RNN

Echo-State Network (ESN): [Jaeger and Haas, 2004]
I only train hidden-output weights

I other weights drawn from carefully-chosen distribution and
fixed

Hessian-Free (HF) optimization: [Martens and Sutskever, 2011]
I approximate second-order method

I outperformed LSTM on small-scale tasks
Momentum methods: [Sutskever, 2013]

I Could we get some good results without HF?

I Yes! With “good” intialization & aggressive momemtum
scheduling

I Nesterov’s accelerated gradient?
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LSTMs on Theano
DEMO!
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