
Manual Judgment Backend API Implementation
Design Document

Version 2.0

OpsMx Confidential



Problem Definition: 3

High Level Design: 3

Sample Test Case: 6

Rest API: 8

2



Problem Definition:

Spinnaker supports complex workflows that can be split into reusable chunks of workflows
(pipelines) that can be used as part of one top level workflow (pipeline) with each of the
dependent workflows as a pipeline stage (child pipeline). When this structure is used with a
dependent sequence of pipeline stages in child workflows, they form a tree structure with
navigating to the currently executing pipeline requiring multiple steps. When a dependent
pipeline is waiting on manual judgement, it poses two usability problems - one is that there is
no indication that a child pipeline is waiting on manual judgement, and two is that it takes
multiple clicks to reach the child pipeline depending on the number of children.

The requirement is to simplify the navigation process when a child pipeline in the tree is
waiting for manual judgement. If a pipeline is waiting on a manual judgement stage then a
single click on any of the parent pipelines that are waiting for the child pipeline to complete,
should navigate to the pipeline waiting for manual judgement even if the waiting pipeline is
not an immediate child.

High Level Design:

Current Spinnaker implementation API only supports navigating to the immediate child
pipeline with the metadata available in the context of the pipeline. To support navigation to
the pipeline that is more than one level deep in the execution dependency tree structure, a
new metadata needs to be created in the pipeline context to hold the leaf pipeline in the
execution tree. Since we are primarily interested in manual judgement navigation, the design
will only support the single click navigation to the leaf pipeline only if the leaf pipeline is
currently waiting in the manual judgement stage. All other conditions will only navigate to the
immediate child pipeline as is the case with current implementation.

Deck code will be updated to examine the new metadata added to the “pipeline” stage in the
executions of all pipelines. If a user clicks on the pipeline stage with the new metadata field
then the user will be navigated to the pipeline currently waiting for manual judgement. If the
field is absent then the user will be navigated to the child pipeline represented by the
“pipeline” stage.

For optimal performance of this new feature implementation, additional processing will only
be performed when Orca task execution enters or exits the Manual Judgement stage of any
pipeline. This will ensure that there is no additional processing when users request pipeline
execution information thus making performance impact on number of users or user actions
on the GUI negligible.

The change in the design is as follows:
When Orca enters a “Manual Judgement” stage (call this leaf pipeline), it triggers navigation
for parent pipelines
The walk for parent pipelines is a linear walk. For each parent pipeline, the “pipeline” is the
current execution stage for the pipeline

3



In the pipeline stage of parent pipeline, a new metadata referring to the leaf pipeline is added
with the execution id of the leaf pipeline
The walk ends when it reaches a pipeline that is not executed by another pipeline. This is
referred to as root pipeline
When Deck fetches pipeline executions, it will process the pipeline for additional metadata in
“pipeline” stage
If the metadata exists then the “pipeline” stage is displayed as “Manual Judgement”, else no
change
When user clicks on stage with “Manual Judgement” then the user is navigated to the
pipeline represented by the execution ID set in the “Pipeline” stage

Here is the flow diagram of the interaction from Deck. There is no change in this flow.

4



Change in Orca flow:

We will be adding two additional attributes “leafnodePipelineExecutionId”,
”leafnodePipelineApplicationName” in the “pipeline execution’s trigger other
parameters map object” attribute(see the below rest api).

Similarly, when a manual judgement is complete, using the same process the additional
attributes are removed.

When the pipeline enters the ‘Running’ manual judgment stage, we check for parent
execution id in the pipeline execution context’s trigger object. If it exists, we fetch all the
parent pipeline execution context from the manual judgment stage and update it with

5



leafnode pipeline execution id and application name and store them to the underlying
database. We get this leafnode pipeline execution id(manual judgment execution id),
application name(manual judgment stage application name) and assign to the pipeline
context’s trigger object’s others map object as
“leafnodePipelineExecutionId”:”01F1D72066T9GVTSSKC30X8Z3P”,
“leafnodePipelineApplicationName”: “testdemo”. From the next rest api call(below), the
updated pipeline execution is sent to the UI and displayed accordingly.

Note :- flag to enable/disable manual judgment navigation in orca-local.yml.

spinnaker:
manual-judgment-navigation: true/false

Sample Test Case:

Pipeline Name Application Name Execution Id Stage Others Attribute

P1 A1 1 {“leafnodePipelineExecutio
nId”:4,”leafnodePipelineAp

plicationName”:”A4”}

P2 A2 2 {“leafnodePipelineExecutio
nId”:4,”leafnodePipelineAp

plicationName”:”A4”}

P3 A3 3 {“leafnodePipelineExecutio
nId”:4,”leafnodePipelineAp

plicationName”:”A4”}

P4 A4 4 {}

6



Pipeline Name Application Name Execution Id Stage Others Attribute

P1 A1 1 stages: [s1
others:{“leafnodePipelineE
xecutionId”:2,”leafnodePip
elineApplicationName”:”A2

”},s2
others:{“leafnodePipelineE
xecutionId”:3,”leafnodePip
elineApplicationName”:”A3

”},s3
others:{“leafnodePipelineE
xecutionId”:4,”leafnodePip
elineApplicationName”:”A4

”}]

P2 A2 2 {}

P3 A3 3 {}

P4 A4 4 {}

7



Rest API:
Example:

http://xx.xx.xx.xx:8084/applications/abcd/pipelines?expand=true&limit=30&statuses=RUNNI
NG,SUSPENDED,PAUSED,NOT_STARTED

Rest API Output:

[
{
"type": "PIPELINE",
"id": "01F1D72066T9GVTSSKC30X8Z3P",
"application": "siddhu1",
"name": "test-demo3",
"buildTime": 1616425059053,
"canceled": false,
"limitConcurrent": true,
"keepWaitingPipelines": false,
"stages": [
{
"id": "01F1D720QD02B37K4Q4GT066EZ",
"refId": "1",
"type": "wait",

"name": "Wait",
"startTime": 1616425059770,
"endTime": 1616425062901,
"status": "SUCCEEDED",
"context": {
"waitTime": 3

},
"outputs": {},
“others”: { “leafnodePipelineExecutionId”:”01F1D72066T9GVTSSKC30X8Z3P”,

“leafnodePipelineApplicationName”:”testdemo”}
"tasks": [
{
"id": "1",
"implementingClass": "com.netflix.spinnaker.orca.pipeline.tasks.WaitTask",
"name": "wait",
"startTime": 1616425059883,
"endTime": 1616425062838,
"status": "SUCCEEDED",
"stageStart": true,
"stageEnd": true,
"loopStart": false,
"loopEnd": false

}

8



],
"requisiteStageRefIds": []

},
{
"id": "01F1D720QDM7B9ZTTG8Q0G0B52",
"refId": "2",
"type": "manualJudgment",
"name": "Manual Judgment",
"startTime": 1616425062984,
"status": "RUNNING",
"context": {
"judgmentInputs": [],
"failPipeline": true,
"notifications": []

},
"outputs": {},
"tasks": [
{
"id": "1",
"implementingClass":

"com.netflix.spinnaker.orca.echo.pipeline.ManualJudgmentStage.WaitForManualJudgmentT
ask",

"name": "waitForJudgment",
"startTime": 1616425063008,
"status": "RUNNING",
"stageStart": true,
"stageEnd": true,
"loopStart": false,
"loopEnd": false

}
],
"requisiteStageRefIds": [
"1"

]
}

],
"startTime": 1616425059638,
"status": "RUNNING",
"authentication": {
"user": "sanjeev@opsmx.io",
"allowedAccounts": []

},
"origin": "api",
"trigger": {
"type": "manual",
"user": "sanjeev@opsmx.io",
"parameters": {},
"artifacts": [],

9



"notifications": [],
"rebake": false,
"dryRun": false,
"strategy": false,
"resolvedExpectedArtifacts": [],
"expectedArtifacts": [],
"executionId": "01F1D72066T9GVTSSKC30X8Z3P",
"eventId": "573eda57-eeed-48ea-9e58-a5aa046e994e",
"enabled": false,
"preferred": false

},
"pipelineConfigId": "268d2757-7e71-4eef-838d-3b3a4aff9a6b",
"notifications": [],
"initialConfig": {},
"systemNotifications": [],
"spelEvaluator": "v4"

}
]

10


