Skip to content

sportsdataverse/recruitR

Repository files navigation

recruitR

Lifecycle: experimental Version-Number R-CMD-check Contributors Twitter Follow

A college football recruiting package

recruitR is an R package for working with college sports recruiting data. It is an R API wrapper around collegefootballdata’s recruiting and roster endpoints.

Note: For details on the data sources, please go the website linked above. Sometimes there are inconsistencies in the underlying data itself. Please report issues here or to https://collegefootballdata.com/.

Installation

You can install the released version of recruitR from GitHub with:

# You can install using the pacman package using the following code:
if (!requireNamespace('pacman', quietly = TRUE)){
  install.packages('pacman')
}
pacman::p_load_current_gh("sportsdataverse/recruitR")
# if you would prefer devtools installation
if (!requireNamespace('devtools', quietly = TRUE)){
  install.packages('devtools')
}
# Alternatively, using the devtools package:
devtools::install_github(repo = "sportsdataverse/recruitR")

Offensive Tackle Example

library(recruitR)
library(dplyr)
library(ggplot2)

Let’s say that we are interested in seeing how many offensive tackles in the 2020 recruiting cycle were:

  • located in Florida
  • located in the states bordering Florida
  • ranked inside the top 1000
FL_OTs <- cfbd_recruiting_player(2020, recruit_type = 'HighSchool', state='FL', position ='OT')
GA_OTs <- cfbd_recruiting_player(2020, recruit_type = 'HighSchool', state='GA', position ='OT')
AL_OTs <- cfbd_recruiting_player(2020, recruit_type = 'HighSchool', state='AL', position ='OT')
SE_OTs <- dplyr::bind_rows(FL_OTs, GA_OTs, AL_OTs)

SE_OTs_1k <- SE_OTs %>% 
  dplyr::filter(ranking < 1000) %>% 
  dplyr::arrange(ranking)

SE_OTs_1k %>% 
  dplyr::select(ranking, name, school, committed_to, position, 
         height, weight, stars, rating, city, state_province)
#> # A tibble: 20 × 11
#>    ranking name    school committed_to position height weight stars rating city 
#>      <int> <chr>   <chr>  <chr>        <chr>     <dbl>  <int> <int>  <dbl> <chr>
#>  1      11 Broder… Litho… Georgia      OT         77      298     5  0.995 Lith…
#>  2      38 Tate R… Darli… Georgia      OT         78      322     4  0.982 Rome 
#>  3      74 Myles … Great… Stanford     OT         78      308     4  0.966 Norc…
#>  4     110 Marcus… St. T… LSU          OT         77      305     4  0.952 Fort…
#>  5     128 Jalen … Oakle… Miami        OT         78      331     4  0.942 Oran…
#>  6     157 Issiah… Norla… Florida      OT         76      309     4  0.931 Miami
#>  7     271 Joshua… Suwan… Florida      OT         78      335     4  0.905 Live…
#>  8     318 Connor… Jesuit Stanford     OT         79      260     4  0.897 Tampa
#>  9     333 Javion… Centr… Alabama      OT         77      295     4  0.895 Phen…
#> 10     491 Cayden… Fort … North Carol… OT         78      260     3  0.879 Fort…
#> 11     530 Austin… South… Georgia      OT         77      278     3  0.876 Guyt…
#> 12     538 Michae… Lenna… Georgia Tech OT         77      295     3  0.876 Rusk…
#> 13     562 Jordan… Gaine… Georgia Tech OT         78      310     3  0.874 Gain…
#> 14     577 Brady … St. P… Ole Miss     OT         79      310     3  0.873 Mobi…
#> 15     614 Trey Z… Roswe… North Carol… OT         78      294     3  0.871 Rosw…
#> 16     658 Gerald… Cardi… Florida      OT         77      320     3  0.868 Fort…
#> 17     752 Jake W… Marie… Colorado     OT         77      300     3  0.864 Mari…
#> 18     934 Joshua… Centr… Kentucky     OT         76.5    304     3  0.856 Phen…
#> 19     953 Wing G… Lee C… Georgia Tech OT         79      285     3  0.855 Lees…
#> 20     971 Kobe M… Herit… Cincinnati   OT         78      275     3  0.855 Ring…
#> # … with 1 more variable: state_province <chr>

Plotting the Offensive Tackles by State

You can also create a plot:

SE_OTs_1k$stars <- factor(SE_OTs_1k$stars,levels = c(5,4,3,2))

SE_OTs_1k_grp <- SE_OTs_1k %>%
  dplyr::group_by(state_province, stars) %>%
  dplyr::summarize(players = n()) %>% 
  dplyr::ungroup()

ggplot(SE_OTs_1k_grp ,aes(x = state_province, y = players, fill = factor(stars))) +
  geom_bar(stat = "identity",colour='black') +
  xlab("State") + ylab("Number of Players") +
  labs(title="Top-1000 Offensive Tackles in FL, GA, and AL - Class of 2020",
       subtitle="Figure: @SaiemGilani | Data: @CFB_data with #recruitR")+
  geom_text(aes(label = players),size = 4, position = position_stack(vjust = 0.5))+
  scale_fill_manual(values=c("dodgerblue2","lightskyblue","red3","ghostwhite"))+
  theme(legend.title = element_blank(),
        legend.text = element_text(size = 12, margin=margin(t=0.2,r=0,b=0.2,l=-1.2,unit=c("mm")), 
                                   family = "serif"),
        legend.background = element_rect(fill = "grey99"),
        legend.key.width = unit(.2,"cm"),
        legend.key.size = unit(.3,"cm"),
        legend.position = c(0.25, 0.84),
        legend.margin=margin(t = 0.4,b = 0.4,l=-1.2,r=0.4,unit=c('mm')),
        legend.direction = "horizontal",
        legend.box.background = element_rect(colour = "#500f1b"),
        axis.title.x = element_text(size = 12, margin = margin(0,0,1,0,unit=c("mm")), 
                                    family = "serif",face="bold"),
        axis.text.x = element_text(size = 10, margin=margin(0,0,1,0,unit=c("mm")),
                                   family = "serif"),
        axis.title.y = element_text(size = 12, margin = margin(0,0,0,0,unit=c("mm")), 
                                    family = "serif",face="bold"),
        axis.text.y = element_text(size = 12, margin = margin(1,1,1,1,unit=c("mm")), 
                                    family = "serif"),
        plot.title = element_text(size = 14, margin = margin(t=0,r=0,b=1.5,l=0,unit=c("mm")),
        lineheight=-0.5, family = "serif",face="bold"),
        plot.subtitle = element_text(size = 12, margin = margin(t=0,r=0,b=2,l=0,unit=c("mm")), 
                                     lineheight=-0.5, family = "serif"),
        plot.caption = element_text(size = 12, margin=margin(t=0,r=0,b=0,l=0,unit=c("mm")),
                                    lineheight=-0.5, family = "serif"),
        strip.text = element_text(size = 10, family = "serif",face="bold"),
        panel.background = element_rect(fill = "grey95"),
        plot.background = element_rect(fill = "grey85"),
        plot.margin=unit(c(top=0.4,right=0.4,bottom=0.4,left=0.4),"cm"))

Documentation

For more information on the package and function reference, please see the recruitR documentation website.

Breaking Changes

Full News on Releases

Follow the SportsDataverse on Twitter and star this repo

Twitter Follow

GitHub stars

Our Authors

Citations

To cite the cfbfastR R package in publications, use:

BibTex Citation

@misc{gilani_2021_recruitr,
  author = {Gilani, Saiem},
  title = {recruitR: The SportsDataverse's R Package for College Sports Recruiting Data.},
  url = {https://recruitR.sportsdataverse.org/},
  year = {2021}
}