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Use Case Name: "Building a Movie Recommendation Service with Apache Spark."  
Use Case URL: https://www.codementor.io/@jadianes/building-a-recommender-with-apache-
spark-python-example-app-part1-du1083qbw. 
 
Introduction: 
This use case involves building a movie recommender system called Pumpkinmeter using Apache 
Spark. The project uses the MovieLens dataset provided by GroupLens Research to train the 
recommender system. The goal is to measure collaborative recommendations for millions of fans 
on Ripe Pumpkins, a movie review-aggregation service. The board of directors wants to 
understand the potential of the Pumpkinmeter score and its impact on the new initiative. 
 
Dataset used:  
Name: MovieLens Latest Datasets  
Source Address: https://grouplens.org/datasets/movielens/  
Summary: GroupLens Research has collected and made available rating datasets from the 
MovieLens website, which are widely used in recommendation systems. For this use case, we will 
use the latest datasets, including the "small" dataset with 100,000 ratings and 3,600 tag applications 
applied to 9,000 movies by 600 users last updated 09/2018, and the "full" dataset with 27,000,000 
ratings and 1,100,000 tag applications applied to 58,000 movies by 280,000 users which includes 
tag genome data with 14 million relevance scores across 1,100 tags last updated 09/2018. These 
datasets include information such as movie IDs, user IDs, ratings given by users, and timestamps. 
 
Technical Details:  
This use case applies the following technologies: 
 

1. PySpark, the Python API for Apache Spark, to write Spark applications using Python by 
providing a Pythonic interface to interact with Spark's distributed computing capabilities. 

2. Apache Spark's MLlib’s Machine learning library and utilities for data preprocessing, 
feature engineering, and model training. 

3. Collaborative Filtering algorithm to make personalized recommendations based on the 
preferences of similar users using the collective wisdom of a large group of users. 

4. Alternating Least Squares (ALS) optimization algorithm to minimize the prediction error 
by iterating alternates between updating user and item factors.  
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Spark's ALS implementation provides collaborative recommendation capabilities. The code is 
executed in a Jupyter Notebook environment, allowing for interactive analysis and visualization 
of the results, and uses the PySpark API to interact with Spark. The above technologies are used 
together to preprocess the dataset, train the collaborative filtering model using ALS, and generate 
personalized movie recommendations based on user ratings and preferences. 
 
Debugging Details:  
During the project, several challenges were encountered and overcome, including_ 
 

1. Data preprocessing: The MovieLens dataset required parsing and preprocessing to 
transform it into the appropriate format for training the recommender system. 

2. Handling missing values: The dataset might contain missing values or incomplete 
information, which must be handled properly to avoid errors during training. 

3. Performance optimization: Techniques such as caching intermediate results are employed 
to optimize performance. Caching commonly used data structures or RDDs in memory 
reduces the need for repeated computations, improving overall performance. 

4. Hyperparameter tuning: The project applied hyperparameter tuning techniques, such as 
cross-validation, to find the optimal values for parameters in the Collaborative Filtering 
algorithm and enhance the quality of recommendations generated by the model. 
  

The project successfully built a recommender system using Apache Spark’s Collaborative Filtering 
algorithm, demonstrating the ability to handle large-scale datasets and generate accurate 
recommendations. The key features of coding practices in this project include modular code 
design, code reusability, efficient data processing using Spark's DataFrame API, and leveraging 
the distributed computing capabilities of Spark for scalability. 
 
Results:  
The Spark-based recommender system was evaluated using two test scenarios for two users. The 
scenarios involved filtering out movies with less than 25 ratings and less than 100 ratings from the 
entire dataset. The results showed personalized recommendations based on the users' ratings and 
preferences. For each user and scenario, the top 15 recommended movies were generated. 
 
Insights:  
The insights gained from this use case have several business implications and impacts. Some of 
the insights and actionable items include: 
 

1. Personalized movie recommendations: The Pumpkinmeter score can provide personalized 
movie recommendations to individual customers, enhancing their movie-watching 
experience and increasing the likelihood of staying with Ripe Pumpkins' services. 



2. Customer retention and satisfaction: By understanding individual customers' preferences, 
Ripe Pumpkins can tailor their movie recommendations and improve customer satisfaction, 
reducing the likelihood of customers switching to competitors' services. 

3. Business growth: A robust and accurate recommendation engine like Pumpkinmeter can 
attract more customers, increase engagement, and drive revenue growth for Ripe 
Pumpkins. 
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Appendix: 
 
Fields of the Dataset: 

• movieId: ID of the movie 
• title: Title of the movie 
• genres: Genres of the movie 
• userId: ID of the user 
• rating: Rating given by the user for the movie 
• timestamp: Timestamp of the rating 

 
 


