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Abstract 

The study aims to assess a patient dataset from the New York region to predict the required 
healthcare services for individuals. Accurate anticipation of healthcare service needs is vital for 
aligning hospital resources with the demands of the population. In addition to patient data, various 
alternative data, including population statistics, park availability, and income distribution, were 
incorporated. Employing machine learning and data mining techniques, we have identified few 
patient attributes, insurance details, and socio-economic factors that serve as robust predictors for 
healthcare service prediction. The paper specifically concentrates on predicting the demand for 
four services: Inpatient, Outpatient, Emergency Care, and Residential. This predictive analysis 
facilitates proactive planning and efficient resource allocation within healthcare facilities, 
significantly influencing patient well-being and associated costs. 
We focused on identifying an individual's genuine requirement for healthcare services. Hence, we 
are considering recall, which identified positive cases of services. Our top models are Random 
Forest, Gradient Boosting, and Decision Tree models, which use recall numbers to identify the 
majority of positive cases for outpatient and inpatient service categories. Outcome of feature 
selection had 20 features out of all which contribute to define the prediction. 

Introduction

The US healthcare system is a complex and diverse mix of public and private, for-profit and 
nonprofit insurers and health care providers. It does not have a system of universal healthcare, and 
many people lack health insurance or face high costs of care. The US spends more on healthcare 
than any other country but does not have better health outcomes. Therefore, there is a need for 
more comprehensive and coordinated reforms to improve the value and quality of health care in 
the US. By analyzing patient data, their medical history, insurance coverage, household income, 
education and many more, we are trying to identify trends and patterns of healthcare service 
choices to be opted for by patients.
Our research uses predictive models to anticipate patients' healthcare services needed based on 
their profiles, streamlining care plans across inpatient, outpatient, residential, and emergency 
services. This proactive approach can enhance care quality, efficient resource allocation, and may 
curtail unnecessary hospitalizations and costs. By engaging patients in personalized care and 
informed decision-making, we aim for better health outcomes, improved care quality, and reduced 
expenses, aligning with healthcare's triple aim while ensuring fair access and enriched patient 
experiences.

Problem Statement

In analyzing the correlation between patient demographics, socio-economic factors, medical 
conditions, and healthcare service utilization, our study predicts that certain demographic and 
socio-economic characteristics, along with specific medical conditions, significantly influence the 
type of healthcare service utilized. Factors such as age, income level, insurance status, chronic 
illnesses, and severity of medical conditions are pivotal in determining whether patients are more 
inclined towards inpatient, outpatient, residential, or emergency healthcare services.
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Background information

The US healthcare system is a complex and diverse mix of public and private, for-profit, and 
nonprofit insurers and health care providers. It does not have a system of universal healthcare, and 
many people lack health insurance or face high costs of care. The US spends more on healthcare 
than any other country but does not have better health outcomes. The US healthcare system has 
been the subject of ongoing debate and reform efforts, especially in the areas of cost, coverage, 
and quality. 
The US healthcare system is not very effective in delivering cost-effective and quality service 
compared to other high-income countries. According to a report by the Commonwealth Fund, the 
US ranks last among 11 countries on measures of access, equity, quality, efficiency, and health 
outcomes, despite spending the most on health care. The US also has the highest rate of preventable 
deaths, the lowest life expectancy, and the lowest patient satisfaction among the countries studied. 
Some of the factors that contribute to the poor performance of the US healthcare system are the 
lack of universal coverage, the fragmentation and complexity of the system, the high 
administrative costs, the low investment in primary care and prevention, and the misalignment of 
incentives and quality. Therefore, there is a need for more comprehensive and coordinated reforms 
to improve the value and quality of health care in the US.

Description of Datasets

Patient Characteristics Survey (PCS) 2019 Dataset 
This dataset was chosen for the capstone project because it provides a rich and diverse collection 
of information about patients and their interactions with the healthcare system. By analyzing this 
data, we can gain insights into how different factors, such as age, medical conditions, and insurance 
coverage, influence the type of healthcare services patients use. This knowledge can help improve 
resource allocation and patient care, making healthcare more efficient and effective.
Data Size: Records: 196K | Attributes: 76 | file size: 102 MB
Data Overview: This data set is a comprehensive collection of healthcare-related information, 
encompassing a diverse range of attributes related to patients and their interactions with the 
healthcare system. The data are organized by OMH Region‐specific (Region of Provider).
County population listed by zip code 
Data Overview: This dataset is a comprehensive collection of population and density in US 
counties, by zip code
Data Size: Records: 33K | Attributes: 18 | file size: 6 MB

New York Hospitals listed by zip code 
Data Overview: This data set lists the Hospital on New York State Department of Health Hospital 
Profile website and includes demographic, inspection, complaint summary, and enforcement fine 
data for hospitals in New York State.
Data Size: Records: 225 | Attributes: 10 | file size: 60 KB

New York Parks listed by latitude and longitude (converted to zipcode) 
State_Park_Facilities_Points_Map.csv
Data Overview: This dataset lists the Parks in New York State.
Data Size: Parks in NY: 255 | Attributes: 17 | file size: 38 KB
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Mean income by Zip code (Income aggregated by zip code) income.csv
Data Overview: The Statistics of Income (SOI) Division’s ZIP code data is tabulated using 
individual income tax returns. 
Data Size: AGI: 255 | Attributes: 152 | file size:  199.7MB
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Data Exploration
Exploring Healthcare Service Utilization Patterns

Our analysis of 196,102 patient records reveals intriguing trends in healthcare service utilization. 
Outpatient care emerges as the predominant choice, with approximately 68% of patients favoring 
this service. Interestingly, adults constitute around 78% of the patient population, with children 
displaying a higher preference for outpatient services, possibly indicating a leaning towards 
preventive and routine care. Conversely, adults show a greater inclination towards residential care, 
suggesting a propensity for self-care.
Gender plays a nuanced role in healthcare utilization, with men exhibiting higher rates across 
categories except for Outpatient care. Women tend to favor Outpatient services, potentially 
indicating a preference for routine care over intensive inpatient services.
The analysis also unveils regional disparities; for instance, the Hudson River region displays lower 
outpatient but higher inpatient proportions, hinting at underlying health, insurance, and 
demographic factors influencing this pattern.
Transgender individuals, constituting less than 5% of the population, exhibit similar healthcare 
service patterns to non-transgender individuals. However, understanding and addressing 
disparities among this group are crucial for equitable healthcare access and outcomes.
Ethnicity appears to influence healthcare utilization, with Hispanic individuals showing higher 
outpatient service usage, while Black individuals favor residential services, reflecting distinct 
healthcare preferences.
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Insurance type significantly impacts healthcare choices, with patients under private insurance 
preferring outpatient services, while those with no insurance lean towards inpatient and support 
services.
Regarding disease distribution, high blood pressure is predominant among outpatients, followed 
by issues such as obesity and chronic conditions. Mental health disorders, particularly serious 
mental illness, constitute a significant portion among outpatients. Physical impairments like visual 
and mobility disorders are prevalent, with outpatient care being a more frequent choice across all 
categories.
Understanding these utilization patterns across demographics, regions, and disease categories is 
pivotal for devising strategies to ensure equitable access and improved healthcare outcomes for 
diverse populations.

Literature Review
In the realm of healthcare management, the decision of whether a patient should receive inpatient, 
outpatient, residential, or emergency care is a critical one. It not only influences the allocation of 
valuable resources within healthcare facilities but also profoundly impacts patient well-being and 
the associated costs. Accurate prediction of the type of healthcare service a patient is likely to 
require is essential. It enables hospitals to efficiently manage their bed capacity, staffing levels, 
and medical supplies, ultimately alleviating the financial strain on healthcare systems while 
ensuring that patients receive precisely the level of care they need when they need it. This 
predictive capability hinges on the art of predictive modeling, where patient characteristics are 
harnessed to make informed decisions. While predictive modeling is at the heart of this endeavor, 
it also explores the critical need to understand the web of factors influencing health care access 
disparities and mitigate these disparities. In this literature review, we delve into the wealth of 
research pertaining inpatient and outpatient patterns based on patient characteristics and factors 
for healthcare access disparities.

Department Patients: Hype or Hope? 
In a bid to harness the capability of Machine Learning for predicting models to improvise 
healthcare systems, the research paper by Hond et al. 2021 contributes to the ongoing discussion 
about the utility of machine learning in healthcare. It acknowledges the persistent challenges 
associated with ED overcrowding and its detrimental effects on patient outcomes, emphasizing the 
importance of accurate prediction models for early identification of patients requiring 
hospitalization to expedite the admission process and potentially improve patient satisfaction and 
outcomes. The study highlights the potential advantages of using machine learning (ML) models 
in predicting hospital admissions, including their ability to handle complex data patterns and large 
datasets and the growing availability of electronic health records. The study emphasizes the need 
for prediction models that can provide real-time guidance to medical professionals, thereby 
facilitating swift decision-making within the ED, which ultimately has the potential to impact 
patient care positively.

Machine Learning for Developing a Prediction Model of Hospital Admission of Emergency
Another comprehensive study presented in the paper by Melhem et al. 2021 addresses a critical 
issue in the healthcare sector. It discusses the challenges doctors and specialists face in determining 
whether patients should receive inpatient or outpatient care, emphasizing the time-consuming 
nature of this decision-making process and the potential for human errors that can impact patient 
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safety. To tackle this problem, the study utilizes Electronic Health Record (EHR) data from a 
private hospital in Indonesia and employs four machine learning models, including Support Vector 
Machine, Decision Tree, Random Forest, and K-Nearest Neighbors, to predict the appropriate type 
of care based on patient conditions and laboratory test results. The authors then evaluate these 
models based on various performance metrics. The results indicate that the Random Forest model 
achieved the highest accuracy, sensitivity, and precision, making it a promising approach to 
enhance patient care classification. The paper underscores the potential of machine learning to 
enhance healthcare services, reduce medical errors, and improve patient outcomes. Additionally, 
it highlights the potential benefits of integrating machine learning into healthcare decision-making 
processes and the importance of selecting the appropriate model for specific healthcare 
applications.

Predicting hospital admission at emergency department triage using machine learning 
Inpatient and hospitalization prediction from Emergency Department triage is an actively 
researched area for predicting inpatient patterns. To this, Hong et al. (2018) focuses on the use of 
machine learning to predict hospital admission from emergency department data, aimed at 
improving the triage process and optimizing resource allocation by identifying patients who are 
likely to be admitted or discharged. Using data from three Emergency Rooms in a single hospital 
system, and including 972 variables from various categories, the study trained and tested three 
algorithms (logistic regression, gradient boosting, and deep neural networks) on three types of 
datasets (triage only, history only, and full). The paper proposes a low-dimensional model with 
the intent of facilitating implementation into an EHR system. The study also emphasizes the usage 
of the addition of historical information along with Trigae information resulting in significantly 
improved predictive performance.

Predicting hospital admissions to reduce emergency department boarding.      
Contemporary study by Golmohammadi (2016) reviews the causes and consequences of delay in 
transferring patients from the emergency department to inpatient units within the hospital, such as 
lack of inpatient beds, inefficient diagnostic services, and poor communication between units. It 
proposes a prediction model to estimate the likelihood of admission of each ED patient to the 
hospital, based on their demographic and clinical information. The paper claims that this model 
can help improve hospital operational efficiency and reduce ED boarding, by providing better 
estimation of required resources and preparedness for inpatient care. 
Diabetes-Related Inpatient Stays, 2018 
Another researched patient characteristic contributing to increase in inpatient patterns was 
published by Fingar et al. 2018. The study sheds light on the significant contribution of diabetes 
to inpatient hospitalizations in the United States. The findings indicate that in 2018, there were 
over 8 million hospital stays related to type 1 or type 2 diabetes, with type 2 diabetes accounting 
for a substantial 95 percent of these stays. The research also highlights age disparities, with type 1 
diabetes being more prevalent among patients aged 18–34 years, while type 2 diabetes 
predominantly affected those aged 65–84 years. According to study the leading principal diagnosis 
for stays involving type 1 diabetes was diabetes itself, accounting for half of all stays with this 
diagnosis. Conversely, septicemia was the leading principal diagnosis for stays involving type 2 
diabetes, making up 10 percent of all stays with a type 2 diabetes diagnosis. These findings 
emphasize the impact of diabetes on hospitalization reasons. This research demonstrated the 
significant burden of diabetes-related hospitalizations in the United States, with type 2 diabetes 
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being particularly prevalent among older adults. It also highlights the disparities in in-hospital 
mortality rates and the leading reasons for hospitalization in patients with diabetes. Diabetes 
remains a major contributor to inpatient hospital stays and healthcare costs. 

Hospitalizations Related to Diabetes in Pregnancy
On the same front, research by Wier et al. 2008 highlights that diabetes-related maternal stays 
accounted for about 6.5 percent of all maternal stays in 2008, with 5.4 percent involving gestational 
diabetes and 1.1 percent involving pre-existing diabetes complicating pregnancy. Notably, women 
with pre-existing diabetes were more prone to hospitalizations for diabetes-related complications 
during pregnancy, as one-third of hospital stays with pre-existing diabetes complicating pregnancy 
involved no delivery, primarily aimed at treating maternal complications. The article also mentions 
that from 1997 to 2007, there was a significant increase in hospitalizations for deliveries involving 
gestational diabetes and pre-existing diabetes complicating pregnancy, highlighting the increased 
risk for these patients. Finally, it is noted that the mean length of stay, and mean costs were higher 
for diabetes-related stays resulting in delivery, indicating the increased burden of hospitalization 
for diabetic patients during pregnancy.

Reducing Health Care Disparities: Where Are We Now? 
Alternative research areas for us would be exploring factors affecting healthcare access disparity. 
The study by Gold et al. 2014, from Mathematica Policy Research, provides an overview of the 
evolution and status of efforts to reduce racial and ethnic disparities in healthcare. The article 
highlights the ongoing disparities in healthcare outcomes despite improvements in overall quality. 
It references the 2003 Institute of Medicine (IOM) report "Unequal Treatment," which raised 
awareness of disparities in healthcare quality. The U.S. Department of Health and Human Services 
(HHS) released its 10th annual report on healthcare disparities in 2013, emphasizing suboptimal 
quality and access, particularly for minority and low-income groups. The article also discusses 
Health and Human Services (HHS) goals for achieving health equity, ensuring access to quality 
care for vulnerable populations, and improving data collection by race, ethnicity, and other 
demographic factors. It notes the release of HHS's Action Plan to Reduce Racial and Ethnic Health 
Disparities in 2011, aiming for a nation free of disparities in health and healthcare. The article 
highlights the development of tools for measuring disparities and cultural competency, as well as 
efforts to enhance data collection. Furthermore, the article addresses the involvement of various 
stakeholders, including hospitals, physicians, and health plans, in initiatives to collect race, 
ethnicity, and language data. It emphasizes the importance of data collection to assess gaps in care 
and monitor progress in reducing disparities. 

Implicit Bias and Racial Disparities in Health Care 
Another contemporary research by Bridges in the paper “Implicit Bias and Racial Disparities in 
Health Care” explores the question of why black individuals tend to experience poorer health 
outcomes and earlier mortality compared to other racial groups. Bridges discusses the role of 
healthcare providers and the quality of care received by black patients as a significant factor 
contributing to these disparities. She cites the Institute of Medicine's report, which found that even 
when factors like insurance status, income, age, and severity of conditions are comparable, racial 
and ethnic minorities receive lower-quality healthcare than white individuals. The article delves 
into studies demonstrating that healthcare providers are less likely to offer effective treatments to 
people of color, even after controlling for various factors. These disparities are not solely attributed 



Page 11 of 64

to explicit racial biases among physicians but are proposed to involve implicit biases—
unconscious negative attitudes about racial groups that affect medical decision-making. Bridges 
argues that implicit biases can explain the observed disparities in healthcare outcomes for racial 
minorities. The author highlights experiments indicating that physicians with pro-white implicit 
biases were more likely to prescribe certain treatments to white patients than to black patients. 
This evidence supports the idea that implicit biases among healthcare providers contribute to racial 
disparities in health.

Data Pre-Processing

Data Integration
We integrated four alternative datasets with our original patient dataset by a crucial common 
attribute across all the datasets: Zip code. To ensure seamless integration across diverse sources, 
we implemented a uniform preprocessing step involving the extraction of the first three digits of 
zip codes. Furthermore, to maintain consistency, we renamed this attribute in alignment with our 
original dataset. Subsequently, we leveraged these first three-digit zip codes and standardized the 
data to the context of New York State; we enhanced our original dataset with additional layers of 
information on demographic and environmental factors, namely population count, unique hospital 
count, park count, and median household income data by three-digit zip code. 
By tailoring the data to the geographical scope of New York State, we ensured consistency and 
introduced valuable insights into the dynamics of hospital resources, recreational spaces, and the 
economic landscape within the region. The overall objective of this data integration process was 
to create a more comprehensive data set that encompasses a broader spectrum of external factors. 
By doing so, we aimed to uncover deeper insights and enhance our understanding of the intricate 
interplay between healthcare dynamics and socio-economic and environmental determinants.

Removal of Obviously Irrelevant Data/Columns
In the initial phase of data preprocessing, we streamlined the dataset by excluding columns that 
were deemed irrelevant to our analysis. The "Survey Year" column, bearing a constant value 
("2019") for all records, was excluded as it did not contribute any discriminatory information to 
our analysis. Additionally, the "Number of Hours Worked Each Week" column, loaded with 
approximately 85% "Not Applicable" and "Unknown" entries, was omitted due to its limited utility 
and potential skewing effects on our analysis. Instead, we considered the "Employment Status" 
column, which promised more relevance and could offer valuable insights into the relationship 
between employment status and patient care utilization.

Processing Null Values
Addressing missing or unknown values is critical for reliable analysis. Various strategies were 
employed:

 Removing Rows with Unknown Values: For attributes like "Age Group," "Sex," and 
"Hispanic Ethnicity," where unknown values were infrequent, we opted to eliminate rows 
with such instances. This approach ensures data quality and mitigates potential noise.

 Creating a New Label: Attributes like ‘Transgender’ and ‘Religious Preference’ with 
unknown or unprovided values were assigned a new label, "Not Shared," to accurately 
represent the available information while respecting individual preferences.
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 Replacing Unknown Values: Attributes such as "Sexual Orientation," "Race," and "Living 
Situation" with unknown values were replaced with the label "Other" to maintain data 
integrity while handling the ambiguity introduced by unknown values.

 Numerical Imputation: Filled the null values in numerical columns (Population, Unique 
Hospital Count, Unique Park Count, Median Household Income) with zeros. 

Dropping Rows, Categorical Standardization by replacing variations of categorical values with 
standardized labels, Categorical Replacement by replacing unknown values with another category, 
Numerical Imputation by filling null values in numerical columns with zeros collectively ensure 
that the dataset is cleansed of null values and is ready for subsequent analysis.

Correlation Analysis
To identify and address multicollinearity, a correlation analysis using Cramer’s V values was 
conducted on the cleaned dataset. Cramer's V, a measure of association for nominal attributes, 
aided in pinpointing highly correlated variables (correlation > 0.7). Columns exhibiting strong 
correlations were removed to mitigate redundancy and potential noise:

 Unknown Chronic Med Condition
 No Chronic Med Conditions
 Unknown Insurance Coverage
 Medicare Insurance
 Other Chronic Med Condition
 Veterans Cash Assistance

Converting nominal/ordinal values to numerical values

In the process of preparing our dataset for analysis, we undertook the transformation of nominal 
and ordinal values into a numerical format. We adopted systematic mapping to convert these 
ordinal values into a numeric scale for the "Education Status" column, initially containing ordinal 
values representing various education levels. The transformation involved assigning numerical 
values to each education level. Consequently, "Pre-K to fifth grade" was mapped to 1, "Middle 
school to High school" to 2, "Some College" to 3, and "College or Graduate Degree" to 4. 
Additionally, we introduced a numerical value, 5, to represent the "Unknown Education" category, 
indicating instances where the education level is unknown or missing.
In the "Hispanic Ethnicity" column, we simplified the representation by replacing the original 
values "Yes, Hispanic/Latino" and "No, Not Hispanic/Latino" with binary values, where "Yes" 
now indicates Hispanic ethnicity, while "No" indicates non-Hispanic ethnicity.
Moreover, to effectively handle nominal attributes, except for "Program Category" (which is our 
target variable) and "Education Status," we employed a technique known as one-hot encoding, 
which converts nominal categorical data into a binary format. By incorporating these 
transformations, our dataset is now structured and compatible with machine learning algorithms, 
allowing for more meaningful and compelling analysis of the underlying patterns and relationships 
within the data.
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Normalization

Our data preprocessing methodology employed a data transformation technique known as z-score 
normalization. This process standardizes the scale of numerical features within the dataset by 
subtracting the mean of each feature and dividing it by its standard deviation. This step is crucial 
in ensuring that the numerical features are on a comparable scale, preventing any particular feature 
from influencing the learning process during model training. We applied normalization to the data 
except for dummy variables. By excluding the dummy variables from this normalization, we 
preserve their binary nature and the inherent information they provide, striking a balance between 
standardization and feature preservation in our predictive model for healthcare service utilization.

Feature Selection using Feature Importance’s using the Random Forest Model

Our analysis employed a feature selection technique based on the importance of features to identify 
critical factors influencing patient care outcomes. Initially, the original dataset was partitioned into 
training (70%) and testing (30%) subsets, with a Random Forest classifier being trained on the 
training data. Subsequent predictions on the test data yielded an overall accuracy of 0.81, a 
precision of 0.81, and a recall of 0.81. Next, we leveraged the Random Forest classifier to compute 
their importance values to determine the significance of individual features and eliminate 
redundant features providing less information. We sorted the importance values to identify the top 
20 features. Subsequently, we built a feature selection model by establishing a threshold based on 
the minimum importance value among these top features. This approach resulted in selecting a 
reduced set of features that retained predictive efficacy. The resulting Random Forest model, 
trained on this reduced feature set, exhibited noteworthy performance on the test data with an 
overall accuracy of 0.77, a precision of 0.74, and a recall of 0.77
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Primary Component Analysis (PCA)

After performing the feature selection technique, we opted for PCA to capture the linear 
combination of features. Principal Component Analysis (PCA) is a statistical method for 
dimensionality reduction. It helps simplify the complexity of high-dimensional data while 
retaining underlying trends and patterns. Our original dataset comprised 208 features, including 
dummy variables generated through one-hot encoding. In our study, we applied PCA to the 
original dataset and developed a scree plot to identify an elbow or inflection point to determine the 
optimal number of components. Following a thorough analysis of the plot, we selected 20 
components as the optimal choice. Further analysis, including an alternative plot using cumulative 
ratios, revealed that these 20 features accounted for approximately 70% of the cumulative 
explained variance.

Scree Plot                                                                Alternative Plot using Cumulative ratio

      

Subsequently, we partitioned the original and PCA-transformed data into training (70%) and 
testing (30%) subsets. The next step involved employing the Random Forest classifier to compare 
the performance of models built on the original and PCA-transformed datasets. Surprisingly, the 
PCA-transformed data model exhibited slightly lower performance metrics than the original 
despite a substantial reduction of almost 90% in features. The overall accuracy of the PCA-
transformed model was 0.77, with a precision of 0.76 and a recall of 0.77. In contrast, the original 
data model demonstrated slightly superior metrics, with an overall accuracy of 0.81, a precision of 
0.81, and a recall of 0.81.

Dataset Experimentation for Data Mining Models
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In our study, we employed a diverse set of datasets to comprehensively understand and address 
the challenges present in the original data. These datasets served as crucial inputs for training and 
evaluating machine learning models. The three primary datasets used in our analysis are:

Original Dataset: This is our baseline dataset, encompassing the original healthcare survey data 
collected for the analysis. This dataset serves as our starting point, providing a comprehensive 
view of the data landscape before any modifications or enhancements.

Oversampled Dataset: To address the imbalanced class distribution present in our baseline dataset, 
we implemented the Naïve Random oversampling technique. This technique involves artificially 
increasing instances of the minority class, contributing to a more balanced dataset. 

Oversampled PCA Dataset: Recognizing the importance of dimensionality reduction, we 
performed Primary Component Analysis (PCA) and applied the oversampling technique (Naïve 
Random Over Sampler) on the PCA dataset. This process reduces the number of features while 
retaining critical information and addresses the class imbalance, potentially enhancing model 
efficiency and performance.

Rationale for Dataset Experimentation:
Our strategy involves leveraging diverse datasets to address specific challenges in healthcare 
services data analysis. The oversampled dataset directly mitigates class imbalance, ensuring fair 
representation of target classes for improved model accuracy. Additionally, the oversampled PCA 
dataset combines dimensionality reduction through Principal Component Analysis (PCA) with 
augmented representation of the minority class. This hybrid approach optimizes the feature space, 
enhancing predictive capabilities while overcoming challenges associated with high-dimensional 
datasets. Together, these datasets aim to facilitate model generalization to unseen data, making our 
predictive models more robust and applicable to real-world scenarios.

Data Mining Models and Evaluations 

To predict the type of healthcare service a patient might use based on their characteristics and 
medical history, we have undertaken a thorough analysis employing various data mining models, 
including Random Forest, Decision tree, Gradient Boosting, Neural networks, Logistic 
Regression, and Naive Bayesian. Adopting a standardized approach, we trained these models on 
three distinct datasets.
To establish a fair evaluation framework, we partitioned each dataset into 30% for testing and 
allocated the remaining 70% for training. Ensuring the equitable distribution of the target variable 
in both training and testing sets was vital, especially given the presence of imbalanced classes. The 
use of stratified sampling maintained the ratio of target classes in both subsets, guaranteeing a 
representative split of the dataset's class distribution. Subsequently, we stored the training and 
testing subsets for all three datasets—Original, Oversampled, and Oversampled with PCA—ready 
for deployment in the training and evaluation of machine learning models.
We trained individual models for each dataset, evaluating their performance using test sets without 
oversampling. This approach allowed us to scrutinize the influence of oversampling and 
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dimensionality reduction on the models' predictive capabilities within a balanced and high-
dimensional feature space. 
Based on the use case of predicting the type of patient service, the top three models are selected 
employ the following criteria:

 Accuracy: The ratio of correct predictions to the total number of predictions. Accuracy 
measures how often the model predicts correctly.

 Precision: The ratio of true positives to the sum of true positives and false positives. 
Precision measures how accurate the model is when it predicts a positive class.

 Recall: The ratio of true positives to the sum of true positives and false negatives. It 
measures how complete the model is when it identifies a positive class.

 F1 score: The harmonic means of precision and recall. It balances both accuracy and 
completeness of the model.

We considered Recall as one of our major evaluation metrics for all models, as in healthcare 
services, identifying all patients who require specific services is critical for delivering appropriate 
care. Hence, while predicting healthcare services for patients, striking a balance between precision 
and recall is crucial, as both minimizing unnecessary services and ensuring no service is 
overlooked are vital considerations in the healthcare domain. While the F1 score is a relevant 
metric for assessing overall model performance, the specific emphasis varies based on the 
healthcare service's priorities, including associated costs and consequences for a patient.

Table: Top Performing Models Evaluation metrics

Classification Model Precision Recall Accuracy Computation 
Time (in sec)

Random Forest 0.98 0.97 0.97 215.25 
Decision Tree 0.96 0.96 0.96 22.84
Gradient Boosting 0.78 0.79 0.79 2322.39

Domain contributions:

Many hospitals are facing economic challenges. With the changing demographics across the 
country, the demand patterns for their services are changing, while their costs are increasing.   
Many rural hospitals have shut down in the last few years, despite receiving some COVID-19 
funding. Another problem that affects hospital quality is the shortage of nurses and increasing 
personnel costs.
Our study offers a tool for hospital administrators to plan their services according to the changing 
population characteristics around their hospital. We use the demographic data and patient 
characteristics to estimate the number of different types of services that will be needed, such as 
Outpatient, Residential, Support, Inpatient, and emergency. Each service has different 
requirements for staff, skills, and costs. Outpatient care is the most utilized and the most cost and 
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resource-efficient for acute conditions. Inpatient care also addresses acute conditions but is 
significantly more resourceful and cost intensive.  Residential services are most appropriate for 
chronic conditions that the patient needs long-term help with. Emergency services use a 
disproportionate number of resources but are critical to saving the lives of patients. 
Our model identifies the need for these different services and assists in the appropriate allocation 
of resources, staffing levels, skills, and cost structures for successful patient care. This can help to 
optimize the use of resources in the hospital.
Government administrators can also use our tool to identify the service demand and the cost 
structures for maintaining services. They can support the hospitals that serve the rural populations 
with more significant needs and reduce the services of hospitals with low utilization. They can 
also approve new hospitals and services in areas where the population is growing.
By optimizing the patient care services to meet the needs of the population, the right staffing needs 
can be allocated to the hospitals that serve populations with greater needs.
 

Methodological Contributions 

Throughout the course of our diverse analyses, we made several key observations. We observed 
that Classification models exhibited optimal performance after normalizing the numeric and non-
binary features. 
Prior to executing models on the dataset, we tried PCA to reduce dimensionality, capturing the 
most important features, and employed oversampling to address imbalances in the dataset. We 
experimented with performing oversampling on PCA data and performing PCA on oversampled 
data. Oversampling on PCA data was computationally efficient as dimensionality reduction was 
before oversampling, and then oversampling was focused on principal components. In the case of 
PCA on the oversampled dataset, PCA was performed on the expanded dataset, which retained all 
information present in the oversampled data. While evaluating the model performance, we got 
better results and computational performance for Oversampling on the PCA dataset. Later, we 
tried model execution on PCA data and applied oversampling post train-validate-test split to 
preserve the test data integrity. This approach ensured model evaluation on completely unseen data 
without leakage to test data. 
A key step in our model creation and testing involved careful separation of the data into training 
and a distinct unbiased testing dataset, ensuring that the final model was evaluated with data whose 
patterns were not utilized to fine-tune model parameters. Additionally, we implemented Train-
Validate-Test splits to create three distinct sets of data: one for training the model, a second for 
evaluating model performance and tuning, and a third for assessing the final generalization error. 
This methodology guaranteed the separation of test data from both the training process and 
performance evaluations until the final step. This approach ensured that the model is evaluated 
against completely unseen data, enhancing the reliability and generalizability of our results. 
Stratification played a critical role in maintaining a consistent representation of target classes 
across test and train subsets for all the datasets. Addressing imbalances in the dataset, particularly 
concerning the minority class, was achieved through oversampling. Importantly, the oversampling 
technique was performed post Train-Validate-Test split to preserve the integrity of the test data. 
This approach prevents knowledge leakage from oversampled test data into the training set, 
preserving the distinctiveness of the two sets and preventing potential impacts on results with 
unseen data. Furthermore, to predict the target values using the test data, a deliberate decision was 
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made to generate predictions using the original test data and PCA test data for the Oversampled 
model and Oversampled PCA model, respectively. This approach, as opposed to using the 
respective test datasets, ensured that the test data remained unseen and unaltered by the 
oversampling technique.
Moreover, cross-validation technique proved valuable for evaluating performance and variance, 
providing mean and variance scores to estimate variations in the training procedure, and achieving 
consistency in the model's performance with unseen data. The adjustment of hyperparameters also 
played a crucial role in fine-tuning our model's behavior for enhanced performance. 
Simultaneously, the strategic application of regularization techniques played a pivotal role in 
shaping the learning process of our algorithm. Through careful adjustments to hyperparameters 
and the incorporation of regularization, we ensured the model's adaptability, effectively preventing 
overfitting, maintaining the balanced importance of components, and optimizing the learning 
process.
In this analysis, we applied the k-means clustering algorithm to the preprocessed dataset after 
scaling the original data and handling outliers. The objective was to identify patterns and group 
similar data points into clusters for further exploration. Descriptive statistics for each cluster were 
obtained, considering numerical features such as population, unique hospital count, and unique 
park count. However, the results showed that the clusters appeared loosely connected, indicating 
that the algorithm may not effectively capture distinct groupings in the data. Despite these efforts, 
the lack of well-defined clusters led us to explore alternative methodologies for extracting 
meaningful insights from the dataset.

Conclusions 
Summary:

The primary objective of our research was to investigate the feasibility of utilizing machine 
learning methodologies for accurately predicting the type of healthcare service a patient might 
require. Our findings suggest that we have successfully demonstrated the potential for achieving 
this goal, regardless of the availability of a written review from a healthcare professional. 
Throughout our study, we have shed light on the strengths and limitations of various machine 
learning models. Notably, Random Forest, Decision Tree, Gradient Boosting and Neural Network 
models exhibited strong predictive capabilities for outpatient and non-emergency services. 
However, accurately predicting emergency services remained challenging due to their 
unpredictable nature. Despite the limitations detailed below, our models hold promise for 
outpatient services, requiring further refinements for emergency service predictions and broader 
data validation to enhance real-world applicability.
Limitations:

While our study presents promising results in forecasting healthcare service utilization based on 
diverse patient attributes, it is vital to acknowledge inherent limitations. Our model encounters 
challenges in accurately predicting Emergency class, attributed to the unpredictable and urgent 
nature of such cases, compromising optimal performance in scenarios where precise prediction of 
emergency healthcare services is essential. 
A significant temporal limitation arises from the model's reliance on 2019 data, needing more 
consideration for post-2019 temporal changes in patient characteristics and healthcare service 
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utilization trends. Furthermore, our reliance solely on New York healthcare data raises concerns 
about the model's generalizability to a broader population. Another critical limitation is the need 
for more access to an external dataset for testing our model's performance on real-world data.
Additionally, the income information in our dataset is aggregated by zip codes, lacking individual 
patient income details. This constraint hinders the granularity of our analysis, as variations in 
income at the personal level within a specific zip code are not accounted for. Consequently, our 
study may not capture the full spectrum of individual income disparities that could influence 
healthcare service utilization.
Finally, computational challenges are tied to the size of our dataset, particularly with implementing 
the Support Vector Model. Our SVM model could not execute and generate results on the original 
and oversampled datasets due to its resource limitations, underscoring the necessity of exploring 
alternative modeling approaches for large datasets in future research endeavors. Addressing these 
limitations collectively will refine our predictive model, ensuring its reliability and effectiveness 
in the dynamic landscape of healthcare service utilization. 

Recommendations

Innovative predictive models like Random Forest, Decision Trees, and Gradient Boosting 
revolutionize healthcare resource allocation. By forecasting patient needs, these models enable 
precise distribution of staff, facilities, and equipment. This proactive approach ensures resources 
are optimally available, curbing unnecessary spending and enhancing timely deployment where 
most critical. Efficient allocation directly translates to heightened operational efficiency and 
reduced financial strains.
These models also empower proactive healthcare interventions. By foreseeing patient needs, 
healthcare providers can customize treatment plans and identify at-risk individuals early. This 
intervention-centric approach prevents complications, curtails chronic conditions, and 
significantly cuts healthcare costs. It champions a preventive healthcare strategy, prioritizing 
patient wellness and cost-effective care delivery.
Moreover, leveraging data insights for personalized care plans enriches the patient's experience. 
Tailoring care based on individual preferences fosters patient engagement, trust, and satisfaction. 
This engagement encourages active participation in treatment decisions, strengthening adherence 
and yielding improved health outcomes. Collectively, these strategies reshape healthcare delivery, 
making it more patient-centric and tailored to individual needs.

Future projects

To ensure the continued relevance and broad applicability of our predictive model, future research 
endeavors should prioritize updating the dataset to capture the latest trends in patient 
characteristics and healthcare service utilization. Given that our study is solely based on healthcare 
data from New York, it becomes imperative to conduct external validation to assess the model's 
generalizability beyond the limitations of our current dataset. It is advisable to expand the model's 
testing scope to include data from diverse U.S. states and advanced economies within the European 
Union (EU), recognizing the significant impact of variations in healthcare systems, cultural factors, 
and socioeconomic conditions on healthcare service utilization patterns. It aids in exploring 
healthcare disparities among demographic groups and identifying regions with limited access to 
healthcare services.
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For future studies, a collaborative approach with healthcare institutions across various U.S. states 
and EU countries should be pursued to facilitate the collection of region-specific data. This 
collaboration will contribute to a more comprehensive understanding of healthcare service 
utilization and enhance the model's robustness and applicability on a broader scale. 
Additionally, a nuanced approach could involve developing separate models to predict different 
care needs, allowing for tailored accuracy tuning with each distinct care category. This approach 
acknowledges the inherent variability in healthcare services and aims to create specialized models 
that cater to specific care requirements, further refining the predictive capabilities of our model in 
diverse healthcare settings.

Appendix

Data Dictionary

Field Name and Description Valid Domain Values Type Length Data 
Type

Null 
Ratio

Survey Year: The year in 
which the survey was 
conducted. Dates are between 
10/21/2019 and 10/27/2019.

 2019 Number 4 Year 0.00

Target:

Program Category: The 
category or type of healthcare 
program the patient is 
enrolled in.

 Outpatient
 Inpatient
 Emergency
 Residential
 Support

Text 11 Nominal 0.00

Region Served: Represents 
region where the patients 
received healthcare services.

 New York City Region
 Western Region
 Hudson River Region
 Central NY Region
 Long Island Region

Text 20 Nominal 0.00

Age Group: The age group 
of the patient.

 Adult
 Child
 Unknown

Text 7 Nominal 0.00

Sex: Gender of the patient.
 Female
 Male
 Unknown

Text 7 Binary 0.00

Transgender: Indicates 
whether the patient identifies 
as transgender.

 No, Not Transgender
 Yes, Transgender
 Client didn’t answer
 Unknown

Text 20 Boolean 0.08
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Sexual Orientation: The 
patient's sexual orientation.

 Straight or Heterosexual
 Bisexual
 Lesbian or Gay
 Other
 Client didn’t answer
 Unknown

Text 24 Nominal 0.18

Hispanic Ethnicity: 
Indicates whether the patient 
identifies as Hispanic or 
Latino.

 Yes, Hispanic/Latino
 No, Not Hispanic/Latino
 Unknown

Text 23 Boolean 0.03

Race: The patient's racial 
background.

 White only
 Black only
 Multi-Racial
 Other
 Unknown Race

Text 12 Nominal 0.04

Living Situation: The 
patient's current living 
situation or housing status.

 Private Residence
 Other Living Situation
 Institutional Setting
 Unknown

Text 22 Nominal 0.05

Household Composition: 
Describes the patient's 
household composition.

 Cohabitates with Others
 Lives Alone
 Not Applicable
 Unknown

Text 23 Nominal 0.23

Preferred Language: The 
patient's preferred language 
for communication.

 English
 Spanish
 Indo-European
 Asian and Pacific Island
 Afro-Asiatic
 All other languages
 Unknown

Text 24 Nominal 0.02

Religious Preference: The 
patient's religious preference.

 I belong to a formal 
religious group

 I do not have a formal 
religion, nor am I a 
spiritual person

 I consider myself 
spiritual, but not religious

 Data not available

Text 60 Nominal 0.29

Veteran Status: Indicates 
whether the patient is a 
military veteran.

 Yes
 No
 Unknown

Text 7 Boolean 0.04
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Employment Status: The 
patient's current employment 
status.

 Employed
 Unemployed, looking for 

work
 Non-paid/Volunteer
 Not in Labor Force: 

Unemployed and not 
looking for work  

 Unknown Employment 
Status

Text 54 Nominal 0.06

Number Of Hours Worked 
Each Week: The number of 
hours the patient works each 
week.

 01 – 14 Hours
 15 – 34 Hours
 35 Hours or more
 Unknown
 Not Applicable

Text 24 Ordinal 0.84

Education Status: The 
patient's education status.

 Pre-K to Fifth grade
 Middle School to High 

School
 Some College
 College or Graduate 

Degree
 No Formal Education
 Other
 Unknown

28 Ordinal 0.11

Special Education Services: 
Indicates if the patient 
receives special education 
services.

 Yes
 No
 Not Applicable

Text 14 Boolean 0.80

Mental Illness: Indicates if 
the patient has a mental 
illness.

 Yes
 No
 Unknown

Text 7 Boolean 0.01

Intellectual Disability: 
Indicates if the patient has an 
intellectual disability.

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Autism Spectrum: Indicates 
if the patient is on the autism 
spectrum.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Other Developmental 
Disability: Indicates if the 
patient has other 
developmental disabilities.

 Yes
 No
 Unknown

Text 7 Boolean 0.08
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Alcohol Related Disorder: 
Indicates if the patient has an 
alcohol-related disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.06

Drug Substance Disorder: 
Indicates if the patient has a 
drug substance disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.06

Opioid Related Disorder: 
Indicates if the patient has an 
opioid-related disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Mobility Impairment 
Disorder: Indicates if the 
patient has a mobility 
impairment disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Hearing Impairment: 
Indicates if the patient has a 
hearing impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Visual Impairment: 
Indicates if the patient has a 
visual impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Speech Impairment: 
Indicates if the patient has a 
speech impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Hyperlipidemia: Indicates if 
the patient has 
hyperlipidemia.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

High Blood Pressure: 
Indicates if the patient has 
high blood pressure.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Diabetes: Indicates if the 
patient has diabetes.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Obesity: Indicates if the 
patient has obesity.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Heart Attack: Indicates if 
the patient has had a heart 
attack.

 Yes
 No
 Unknown

Text 7 Boolean 0.07
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Stroke: Indicates if the 
patient has had a stroke.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Other Cardiac: Indicates if 
the patient has other cardiac 
conditions.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Pulmonary Asthma: 
Indicates if the patient has 
pulmonary asthma.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Alzheimer or Dementia: 
Indicates if the patient has 
Alzheimer's disease or 
dementia.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Kidney Disease: Indicates if 
the patient has kidney 
disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Liver Disease: Indicates if 
the patient has liver disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Endocrine Condition: 
Indicates if the patient has an 
endocrine condition.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Neurological Condition: 
Indicates if the patient has a 
neurological condition.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Traumatic Brain Injury: 
Indicates if the patient has 
had a traumatic brain injury.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Joint Disease: Indicates if 
the patient has joint disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Cancer: Indicates if the 
patient has been diagnosed 
with cancer.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Other Chronic Med 
Condition: Indicates if the 
patient has other chronic 
medical conditions

 Yes
 No
 Unknown

Text 7 Boolean 0.07
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No Chronic Med Condition: 
Indicates if the patient has no 
chronic medical conditions

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Unknown Chronic Med 
Condition: Indicates if the 
patient's chronic medical 
condition is unknown

 False
 True Text 5 Boolean 0.00

Cannabis Recreational Use: 
Indicates if the patient uses 
cannabis recreationally

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Cannabis Medicinal Use: 
Indicates if the patient uses 
cannabis for medicinal 
purposes

 Yes
 No
 Unknown

Text 7 Boolean 0.12

Smokes: Indicates if the 
patient smokes

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Received Smoking 
Medication: Indicates if the 
patient has received smoking 
cessation medication

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Received Smoking 
Counseling: Indicates if the 
patient has received smoking 
counseling

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Serious Mental Illness: 
Indicates if the patient has a 
serious mental illness

 Yes
 No
 Unknown

Text 7 Boolean 0.01

Alcohol 12m Service: 
Indicates if the patient 
received alcohol-related 
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Opioid 12m Service: 
Indicates if the patient 
received opioid-related 
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Drug/Substance 12m 
Service: Indicates if the 
patient received 
drug/substance-related 
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.09
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Principal Diagnosis Class: 
The principal diagnosis class 
of the patient

 Mental illness
 Not MI – Organic Mental 

Disorder
 Not MI – Developmental 

Disorders
 Not MI – Other
 Substance-Related and 

Addictive Disorders
 Unknown

Text 41 Nominal 0.04

Additional Diagnosis Class: 
Additional diagnosis class of 
the patient

 Mental illness
 Not MI – Organic Mental 

Disorder
 Not MI – Developmental 

Disorders
 Not MI – Other
 Substance-Related and 

Addictive Disorders
 No Additional Diagnosis
 Unknown

Text 41 Nominal 0.19

SSI Cash Assistance: 
Indicates if the patient 
receives Supplemental 
Security Income (SSI)

 Yes
 No
 Unknown

Text 7 Boolean 0.14

SSDI Cash Assistance: 
Indicates if the patient 
receives Social Security 
Disability Insurance (SSDI)

 Yes
 No
 Unknown

Text 7 Boolean 0.14

Veterans Disability 
Benefits: Indicates if the 
patient receives veterans' 
disability benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Veterans Cash Assistance: 
Indicates if the patient 
receives veterans' cash 
assistance

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Public Assistance Cash 
Program: Indicates if the 
patient receives public 
assistance cash benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.15

Other Cash Benefits: 
Indicates if the patient 
receives other cash benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.14
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Medicaid and Medicare 
Insurance: Indicates if the 
patient has both Medicaid and 
Medicare insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

No Insurance: Indicates if 
the patient has no insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.03

Unknown Insurance 
Coverage: Indicates if the 
patient's insurance coverage 
is unknown

 False
 True Text 5 Boolean 0.00

Medicaid Insurance: 
Indicates if the patient has 
Medicaid insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.04

Medicaid Managed 
Insurance: Indicates if the 
patient has managed 
Medicaid insurance

 Yes
 No
 Not Applicable
 Unknown

Text 14 Boolean 0.40

Medicare Insurance: 
Indicates if the patient has 
Medicare insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Private Insurance: Indicates 
if the patient has private 
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Child Health Plus 
Insurance: Indicates if the 
patient has Child Health Plus 
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Other Insurance: Indicates 
if the patient has other 
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Criminal Justice Status: 
Indicates the criminal justice 
status of the patient

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Three Digit Residence Zip 
Code: Three-digit residence 
zip code of the patient

 100 – 149
 777 - Indicates the patient 

lived in another state in 
US or another country.

 888 - Indicates the patient 
was homeless at the time 
of the survey.

Number 3 Nominal 0.00
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 999 - Indicates the 
residential zip code is 
unknown

Population: Aggregate 
population in the 3-digit zip

Simplemaps.com:  
https://simplemaps.com/data
/us-zips

 Numeric Number 7 Number 0.10

Hospital Count: Number of 
hospitals in the 3-digit zip 

HealthData.gov: 
healthdata.gov/State/Hospital
-Profile/gw4x-xyhe

 Numeric Number 2 Number 0.10

Parks Count: Number of 
parks in the 3-digit zip

Data.ny.gov: 
data.ny.gov/Recreation/State-
Park-Facilities-Points-
Map/97ur-5r4b

 Numeric Number 2 Number 0.20

Income: Aggregate Mean 
Income by Zipcodes

IRS.gov :
https://www.irs.gov/statistic
s/soi-tax-stats-individual-
income-tax-statistics-2019-
zip-code-data-soi

 Numeric Number 7 Number 0.10

https://simplemaps.com/data/us-zips
https://simplemaps.com/data/us-zips
https://healthdata.gov/State/Hospital-Profile/gw4x-xyhe
https://healthdata.gov/State/Hospital-Profile/gw4x-xyhe
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
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Python Code:

====================================
Importing the relevant libaries
====================================
import pandas as pd, numpy as np
from scipy.stats import chi2_contingency
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn import metrics
from imblearn.over_sampling import RandomOverSampler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
import time
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, confusion_matrix
from sklearn.svm import LinearSVC

========================================================
Loading the PCS 2019 dataset into a pandas DataFrame
========================================================
df_pcs = pd.read_csv('Patient_Characteristics_Survey__PCS___2019.csv')
print(df_pcs.shape)
print(df_pcs.info())  # Get the null count & data type of each attribute
print(df_pcs.nunique()) # Get the number of unique values in each attribute

==================================================================
1. Identify other datasets and Merge the files into one dataset
==================================================================
# Merging the population variable using zip code
df_pop = pd.read_csv('uszips.csv')
df_pop.info()
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# Extracting first 3 digits of zip code
df_pop['Three Digit Residence Zip Code'] = df_pop['zip'] // 100  
 
# Filtering New York data
df_pop = df_pop[(df_pop['state_id'] == 'NY') & (df_pop['Three Digit Residence Zip Code'] > 
99)] 
 
# Selecting only zip code and Population columns from the dataset 
df_pop = df_pop[['Three Digit Residence Zip Code', 'population']].groupby('Three Digit 
Residence Zip Code').sum() 
 
df1_merged = pd.merge(df_pcs, df_pop, on='Three Digit Residence Zip Code', how='left')
 
# Merging the hospital count per zip code variable
df_hsptl = pd.read_csv('Entity_Hospitals_Q1_2023.csv')
df_hsptl.info()
 
# Extracting first 3 digits of zip code
df_hsptl['Three Digit Residence Zip Code'] = df_hsptl['Zipcode'] // 100  
 
# Calculate the unique hospital count per zip code
hsptl_count = df_hsptl.groupby(['Three Digit Residence Zip 
Code'])['Name'].nunique().reset_index()  
 
# Renaming the column Name to Unique hospital Count 
hsptl_count.rename(columns={'Name': 'Unique Hospital Count'}, inplace=True)
 
# Selecting only zip code and Hospital count columns from the dataset 
hsptl_count = hsptl_count[['Three Digit Residence Zip Code', 'Unique Hospital Count']] 
 
df2_merged = pd.merge(df1_merged, hsptl_count, on='Three Digit Residence Zip Code', 
how='left')
 
# Merging the Park dataset using zipcode 
df_park = pd.read_csv('park_zip.csv', encoding='ISO-8859-1')
df_park.info() 
 
# Extracting first 3 digits of zip code
df_park['Three Digit Residence Zip Code'] = df_park['Zipcode'] // 100
 
# Calculate the unique park count per zip code 
park_count = df_park.groupby(['Three Digit Residence Zip 
Code'])['Name'].nunique().reset_index()   
 
# Renaming the column Name to Unique Park Count 
park_count.rename(columns={'Name': 'Unique Park Count'}, inplace=True) 
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# Selecting only zip code and Park count columns from the dataset 
park_count = park_count[['Three Digit Residence Zip Code', 'Unique Park Count']]  
 
df3_merged = pd.merge(df2_merged, park_count, on='Three Digit Residence Zip Code', 
how='left') 
 
# Merging the Income dataset using Zip code 
df_income = pd.read_csv('Income.csv')
df_income.info()
 
# Extracting first 3 digits of zip code
df_income['Three Digit Residence Zip Code'] = df_income['ZIPCODE'] // 100
 
# Filtering New York data
df_income = df_income[(df_income['STATE'] == 'NY') & (df_income['Three Digit Residence 
Zip Code'] != 999)] 
 
# Calculate the median household income per zip code 
median_income = df_income.groupby(['Three Digit Residence Zip 
Code'])['A00100'].median().reset_index()  
 
# Renaming the column Name to Median Household Income
median_income.rename(columns={'A00100': 'Median Household Income'}, inplace=True)
 
# Selecting only zip code and Median Household Income columns from the dataset 
median_income = median_income[['Three Digit Residence Zip Code', 'Median Household 
Income']]
 
df_merged = pd.merge(df3_merged, median_income, on='Three Digit Residence Zip Code', 
how='left') 

# df_merged.to_csv('PCSdata_merged.csv', index=False)   

===================================================================
2. Show the number of distinct values and frequency of each nominal and ordinal values 
===================================================================
print('Distinct values and their frequencies of each nominal and ordinal value\n' )
 
for col in df_merged.columns:
    print(f"Column Name: {col}")

    max_length = df_merged[col].astype(str).str.len().max()
    print(f"Max Length: {max_length}")
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    distinct_count = df_merged[col].nunique()
    print(f"Distinct Count: {distinct_count}")
    
    value_counts = df_merged[col].value_counts()
    print(f"Frequencies:\n{value_counts}")
    
    print("\n")

=======================================================
3. Removal of obviously irrelevant data/columns
=======================================================
print('Irrelevant Columns:\n 1) Survey Year\n 2) Three Digit Residence Zip Code\n 3) Number 
Of Hours Worked Each Week \n')
    
df_merged.drop(columns=['Survey Year', 'Number Of Hours Worked Each Week','Three Digit 
Residence Zip Code'], inplace=True)

=========================
4. Processing Null Values
=========================
print('Processing null values \n')
df_merged = df_merged[df_merged['Age Group'] != "UNKNOWN"]  #dropping 80 rows with 
that are neither Adult nor child
df_merged = df_merged[df_merged.Sex != "UNKNOWN"]  #droping 395 rows with that are 
neither Male nor Female
df_merged = df_merged[df_merged['Hispanic Ethnicity'] != "UNKNOWN"]  #dropping 5,965 
rows with unknown hispanic ethnicity 
 
#Replacing the text with yes or no
df_merged['Transgender'] = df_merged['Transgender'].replace({'YES, TRANSGENDER': 

'YES', 'NO, NOT TRANSGENDER': 'NO',\
                                                       "CLIENT DIDN'T ANSWER": 'NOT SHARED',\
                                                       'UNKNOWN':'NOT SHARED'})
 
#Replacing Unknown and Client did not answer with OTHER
df_merged['Sexual Orientation'] = df_merged['Sexual Orientation'].replace({'UNKNOWN': 

'OTHER',"CLIENT DID NOT ANSWER": 'OTHER'})
 
#Replacing the Unknown Race with OTHER
df_merged['Race'] = df_merged['Race'].replace({'UNKNOWN RACE':'OTHER'})
 
#Replacing Unknown living condition  with OTHER
df_merged['Living Situation'] = df_merged['Living Situation'].replace({'UNKNOWN': 'OTHER 

     LIVING SITUATION'})
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# Replace "unknown" with "cohabitates with other" where "Living situation" is "private 
#residence"
df_merged.loc[(df_merged['Living Situation'] == 'PRIVATE RESIDENCE') & \
           (df_merged['Household Composition'] == 'UNKNOWN'),\
           'Household Composition'] = 'COHABITATES WITH OTHERS'
 
# Replace the remaining "unknown" with "not applicable"
df_merged.loc[df_pcs['Household Composition'] == 'UNKNOWN', 'Household Composition'] = 
'NOT APPLICABLE'
 
#Replacing Unknown Prefered language with OTHER
df_merged['Preferred Language'] = df_merged['Preferred Language'].replace({'UNKNOWN': 
'ALL OTHER LANGUAGES'})
 
#Replacing Data not available with Religion nt shared
df_merged['Religious Preference'] = df_merged['Religious Preference'].replace({'DATA NOT 
AVAILABLE': 'RELIGION NOT SHARED'})
 
#Replacing Unknown veteran satus with NO
df_merged['Veteran Status'] = df_merged['Veteran Status'].replace({'UNKNOWN': 'NO'})
 
#Replacing Unemployed-looking for work and not looking for work with Unemployed & Non-
#paid/Volunteer with unknown employment status 
df_merged['Employment Status'] = df_merged['Employment Status'].replace({'UNEMPLOYED, 

LOOKING FOR WORK':'UNEMPLOYED',\
                                                            'NOT IN LABOR FORCE:UNEMPLOYED AND NOT 

LOOKING FOR WORK':'UNEMPLOYED',\
                                                            'NON-PAID/VOLUNTEER': 'UNKNOWN 
EMPLOYMENT STATUS'})
 
#Replacing No formal education, other & unknown status with Unknown education
df_merged['Education Status'] = df_merged['Education Status'].replace({'NO FORMAL 

EDUCATION': 'UNKNOWN EDUCATION',\
                                                            'OTHER': 'UNKNOWN EDUCATION',\
                                                            'UNKNOWN': 'UNKNOWN EDUCATION'})
 
#Replacing Unknown status with NO
df_merged['Special Education Services'] = df_merged['Special Education 
Services'].replace({'NOT APPLICABLE': 'NO', 'UNKNOWN': 'NO'})
 
#Replacing Unknown status with NOT MI - Other
df_merged['Principal Diagnosis Class'] = df_merged['Principal Diagnosis 
Class'].replace({'UNKNOWN': 'NOT MI - OTHER'})
 
#Replacing Unknown status with NOT MI - Other
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df_merged['Additional Diagnosis Class'] = df_merged['Additional Diagnosis 
Class'].replace({'UNKNOWN': 'NOT MI - OTHER'})
 
#Replacing Not Applicable status with NO
df_merged['Medicaid Managed Insurance'] = df_merged['Medicaid Managed 
Insurance'].replace({'NOT APPLICABLE': 'NO'})
 
#Replacing Null values with 0 in 'Population', 'Hospital Count', 'Park Count', and 'Median 
Income' columns
df_merged['population'] = df_merged['population'].fillna(0)
df_merged['Unique Hospital Count'] = df_merged['Unique Hospital Count'].fillna(0)
df_merged['Unique Park Count'] = df_merged['Unique Park Count'].fillna(0)
df_merged['Median Household Income'] = df_merged['Median Household Income'].fillna(0)

====================================================================
5. Correlation Analysis for nominal data using Cramer's V and chi-square values 
====================================================================
print('Correlation Analysis \n')
 
# This function generates the Cramer's V value
def cramer_v(x, y):
    n = len(x)
    ct = pd.crosstab(x, y) # crosstab
    chi2 = chi2_contingency(ct)[0]
    v = np.sqrt(chi2 / (n * (np.min(ct.shape) - 1)))
    return v
 
# This function returns a dataframe with Cramer's V values.
def cramer_values (df):
    '''Parameters:DataFrame; Returns: DataFrame
    Takes a DataFrame with nominal attributes and returns a DataFrame with
    Cramer's V values between all pairs of those attributes
    Required libraries:
        import pandas as pd, numpy as np
        from scipy.stats import chi2_contingency'''
    
    cramer_table = pd.DataFrame(columns=['col1','col2','Cramers V'])
    for i in df.columns:
        for j in df.columns:
            if i != j:
                v = cramer_v(df[i],df[j])
                row = pd.DataFrame({'col1':[i],'col2':[j],'Cramers V':[v]})
                cramer_table = pd.concat([cramer_table, row], ignore_index=True)
    return cramer_table.sort_values(by=['Cramers V'],ascending=False)
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# cramer_values
pd.options.display.float_format = '{:.2f}'.format
c_results = cramer_values(df_merged)
c_results.to_csv('Cramer_Values.csv', index=False)
 
# Dropping highly correlated variables considering Cramer's value
df_merged.drop(columns=['Unknown Chronic Med Condition','No Chronic Med Condition',\
                     'Unknown Insurance Coverage','Medicare Insurance',\
                     'Other Chronic Med Condition', 'Veterans Cash Assistance'], inplace=True)

========================================================   
6. Converting nominal/ordinal values to numerical values 
========================================================
# Ordinal to numeric values
df_merged = df_merged.replace({'Education Status':{'PRE-K TO FIFTH GRADE':1,'MIDDLE 
SCHOOL TO HIGH SCHOOL':2,\
                               'SOME COLLEGE':3,'COLLEGE OR GRADUATE 
DEGREE':4,'UNKNOWN EDUCATION':5}})
 
# Replacing the text with Yes or No
df_merged['Hispanic Ethnicity'] = df_merged['Hispanic Ethnicity'].replace({'YES, 
HISPANIC/LATINO': 'YES',\
                                                               'NO, NOT HISPANIC/LATINO': 'NO'})
 
# Converting Nominal attribute to multiple binary attributes
cols_to_exclude = ['Program Category','Education Status','population','Unique Hospital 
Count','Unique Park Count','Median Household Income']
df_merged = pd.get_dummies(df_merged, columns=[col for col in df_merged.columns if col not 
in cols_to_exclude])
 
# Coverting categorical target variable to numerical values
le = LabelEncoder()
df_merged['Program Category'] = le.fit_transform(df_merged['Program Category'])
# df_merged.to_csv('PCS_converted.csv', index=False)
 
# Get the mapping of class names to numerical values
class_names = list(le.classes_)
 
# Generating correlation matrix for numerical data
corr_matrix = df_merged.corr()

 
================================================================
7. Feature Selection using Feature Importances using the Random Forest Model 
================================================================
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# Assigning target and feature variables
X = df_merged.iloc[:, 1: ]
y = df_merged.iloc[:, 0]
print(f'\nShape of the original feature data: {X.shape}')
 
fn = X.columns[0:]
print(f'Originally, we have {len(fn)} features.')
 
# Split the data into training and testing subsets
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =.3,stratify=y)
 
# Create an instance (object) for classification and build a model.
rfcm = RandomForestClassifier().fit(X_train, y_train)
 
# Make predictions using the test data
y_pred = rfcm.predict(X_test)
 
# Show the Classification Report.
print('***Random Forest Model***')
print('\nClassification Report - Original data\n')
print(metrics.classification_report(y_test,y_pred, target_names=class_names))
 
# Find out the significant features for determining the Patient Care
importances = rfcm.feature_importances_
np.sum(importances)
 
# Draw a bar chart to see the sorted importance values with feature names.
df_importances = pd.DataFrame(data=importances, index=fn, 
                              columns=['importance_value'])
df_importances.sort_values(by = 'importance_value', ascending=False, 
                           inplace=True)
top_20_features = df_importances.head(20)
 
plt.barh(top_20_features.index,top_20_features.importance_value)
plt.xlabel('Importance Value')
plt.title(‘Top 20 Feature Importances using Random Forest Classifier')
plt.show()
 
# Set the threshold to the min importance value among the top 20 features
threshold = top_20_features['importance_value'].min()
 
# Build a model with a threshold based on the importance values of the top 20 features
selector = SelectFromModel(estimator=RandomForestClassifier(),threshold=threshold)
X_reduced = selector.fit_transform(X,y)
selected_TF = selector.get_support()



Page 38 of 64

print(f'\nBy setting the threshold to be the min imporatnce of the top 20 features, 
{selected_TF.sum()} features are selected from the original feature data.')

# Show the first five names of those selected features.
selected_features = []
for i,j in zip(selected_TF, fn):
    if i: 
        selected_features.append(j)
print(f'The first five names of selected features are: \n{selected_features[:5]}') 
 
# Build a model using those reduced number of features.
X_reduced_train, X_reduced_test, y_reduced_train, y_reduced_test \
       = train_test_split(X_reduced,y,test_size =.3, stratify=y)
 
rfcm2 = RandomForestClassifier().fit(X_reduced_train, y_reduced_train)
y_reduced_pred = rfcm2.predict(X_reduced_test)
print('\nClassification Report - Reduced set of data\n')
print(metrics.classification_report(y_reduced_test,y_reduced_pred,target_names=class_names))

Output:

Shape of the original feature data: (189870, 208)

Originally, we have 208 features.

***Random Forest Model***
 
Classification Report - Original data
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              precision    recall  f1-score   support

EMERGENCY       0.74      0.09     0.16       941
INPATIENT       0.80      0.30      0.43      2643
OUTPATIENT      0.83     0.95      0.88     38794
RESIDENTIAL       0.71      0.70      0.70      8851
SUPPORT       0.87      0.41      0.56      5732
 
accuracy                           0.81     56961
macro avg       0.79      0.49      0.55     56961
weighted avg  0.81      0.81     0.79     56961
 
By setting the threshold to be the min importance of the top 20 features, 20 features are 
selected from the original feature data.

The first five names of selected features are: 
['Education Status', 'population', 'Unique Hospital Count', 'Unique Park Count', 'Median 
Household Income']
 
Classification Report - Reduced set of data
 
              precision    recall  f1-score   support
 
EMERGENCY      0.29      0.05      0.09       941
INPATIENT       0.57      0.21      0.31      2643
OUTPATIENT       0.81      0.92      0.86     38794
RESIDENTIAL       0.61      0.59      0.60      8851
SUPPORT       0.67      0.39      0.49      5732
 
accuracy                           0.77     56961
macro avg       0.59      0.43      0.47     56961
weighted avg  0.74      0.77      0.74     56961
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=====================================
8. PCA (Primary Component Analysis)
=====================================
# z_score normalize the data except the dummy variables
scaler = StandardScaler()
Xn = np.c_[scaler.fit_transform(X.iloc[:,:5].values), X.iloc[:, 5:].values] 
 
# Create an instance PCA and build the model using Xn
pca_prep = PCA().fit(Xn)
 
pca_prep.explained_variance_  #Eigen Values
pca_prep.explained_variance_ratio_
 
# Generating a scree plot to find an elbow or an inflection point on the plot
plt.plot(pca_prep.explained_variance_ratio_)
plt.xlabel('k number of components')
plt.ylabel('Explained variance')
plt.grid(True)
plt.show()
 
# Alternative plot using cumulative ratios
plt.plot(np.cumsum(pca_prep.explained_variance_ratio_))
plt.xlabel('k number of components')
plt.ylabel('cumulative explained variance')
plt.grid(True)
plt.show()
 
# From scree plot, we choose 30 components  
n_pc = 20
pca = PCA(n_components= n_pc).fit(Xn)
 
# X_pca has now 30 columns of primary components.
Xp = pca.transform(Xn)
print(f'After PCA, we use {pca.n_components_} components.\n')
 
# Split the data into training and testing subsets for PCA data
Xp_train, Xp_test, yp_train, yp_test = train_test_split(Xp,y,test_size =.3,
                                        random_state=1234,stratify=y)
 
# Create random forest model using the transformed data.
rfcm_pca = RandomForestClassifier().fit(Xp_train, yp_train)
 
# Predict the target values using the test data.
y_pred_pca = rfcm_pca.predict(Xp_test)
 
# Generate the Classification report
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print('Classification Report - PCA\n')
print(metrics.classification_report(yp_test,y_pred_pca, target_names=class_names))

Output:

Scree Plot                                                                 Alternative Plot using Cumulative ratios

      

After PCA, we use 20 components.

***Random Forest Model***

Classification Report - PCA
 
              precision    recall  f1-score   support
 
EMERGENCY       0.58      0.04      0.07       941
INPATIENT       0.64      0.13      0.22      2643
OUTPATIENT       0.78      0.95      0.86     38794
RESIDENTIAL       0.66      0.55      0.60      8851
SUPPORT       0.82      0.30      0.44      5732
 
accuracy                           0.77     56961
macro avg       0.70      0.39      0.44     56961
weighted avg  0.76      0.77      0.73     56961
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=====================================
9. Naive Random Over Sampling
=====================================
# Create an instance of RandomOverSampler
ros = RandomOverSampler(random_state=1234)
X_rs, y_rs = ros.fit_resample(Xn, y)
Xp_rs, yp_rs = ros.fit_resample(Xp, y)
 
X_rs.shape
y_rs.shape
Xp_rs.shape
yp_rs.shape
print(f'Over-sampled data: {np.unique(y_rs, return_counts=1)}')

Output:
Over-sampled data: (array([0, 1, 2, 3, 4]), array([129314, 129314, 129314, 129314, 129314]))

====================================================================
Split the data into training and testing subsets for Original, Oversampled and PCA with 
Oversampled data 
====================================================================
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =.3,
                                                    random_state=1234, stratify=y)
 
X_rs_train, X_rs_test, y_rs_train, y_rs_test = train_test_split(X_rs,y_rs,test_size =.3,
                                                    random_state=1234,stratify=y_rs)
 
Xp_rs_train, Xp_rs_test, yp_rs_train, yp_rs_test = train_test_split(Xp_rs,yp_rs,test_size =.3,
                                                    random_state=1234,stratify=yp_rs)

======================================
10. Random Forest Classification Model 
======================================
'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
rfc_start = time.time()
 
rfc = RandomForestClassifier().fit(X_train, y_train)
rfc_rs = RandomForestClassifier().fit(X_rs_train, y_rs_train)
rfc_rs_pca = RandomForestClassifier().fit(Xp_rs_train, yp_rs_train)
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# Predict the target values using the test data.
y_pred_rf = rfc.predict(X_test)
y_rs_pred_rf = rfc_rs.predict(X_test)
yp_rs_pred_rf = rfc_rs_pca.predict(Xp_test)
 
# Generate the Classification report
print('*** Random Forest Classification Model ***\n')
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_rf, target_names=class_names))
 
print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_rf, target_names=class_names))
 
print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_rf, target_names=class_names))
 
rfc_end = time.time()
print(f'Random Forest Classification Model Execution time is {(rfc_end - rfc_start):.2f} 
seconds')

Output:

*** Random Forest Classification Model ***
 
Classification Report - Original Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.71      0.09      0.16       941
INPATIENT      0.82      0.29      0.43      2643
OUTPATIENT       0.83      0.95      0.88     38794
RESIDENTIAL       0.71      0.70      0.71      8851
SUPPORT       0.85      0.41      0.56      5732
 
accuracy                           0.81     56961
macro avg       0.79      0.49      0.55     56961
weighted avg  0.81      0.81      0.79     56961
 
 
Classification Report - Oversampled Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.87      0.52      0.65       941
INPATIENT       0.44     0.69      0.54     2643
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OUTPATIENT       0.90      0.89      0.90     38794
RESIDENTIAL       0.64      0.85      0.73      8851
SUPPORT       0.92      0.37      0.52      5732
 
accuracy                           0.82     56961
macro avg      0.75      0.66      0.67     56961
weighted avg  0.84      0.82      0.81     56961
 
 
Classification Report - Oversampled PCA Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.92      1.00      0.96       941
INPATIENT       0.95      1.00      0.98      2643
OUTPATIENT       1.00      0.96      0.98     38794
RESIDENTIAL       0.90      0.99      0.94      8851
SUPPORT       0.97      1.00      0.98      5732
 
accuracy                           0.97     56961
macro avg       0.95      0.99      0.97     56961
weighted avg  0.98      0.97      0.97     56961

Random Forest Classification Model Execution time is 215.25 seconds

# Regularization and hyperparameters
rfc_clf = RandomForestClassifier(n_estimators = 100,
                                bootstrap = True,
                                max_samples = None, # int, float
                                oob_score = True,
                                criterion = "gini",
                                #splitter = "best", not available here, performs best
                                max_depth = 1,#decision stumps
                                min_samples_split = 2, 
                                min_samples_leaf = 1,
                                min_weight_fraction_leaf = 0,
                                max_features = None,
                                max_leaf_nodes = None,
                                random_state = None,
                                min_impurity_decrease = 0.0,
                                class_weight = None,
                                ccp_alpha = 0.0,
                                n_jobs = -1,
                                verbose=1
                               )
rfc_clf.fit(Xp_rs_train, yp_rs_train)
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print("Test score:",rfc_clf.score(Xp_rs_train, yp_rs_train))
print("OOB score:",rfc_clf.oob_score_)

Output:

Test score: 0.29713099963911943
OOB score: 0.2970433572201887

=======================================
11. Decision Tree Classification Model 
=======================================
'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
dtc_start = time.time()
 
dtc = DecisionTreeClassifier().fit(X_train, y_train)
dtc_rs = DecisionTreeClassifier().fit(X_rs_train, y_rs_train)
dtc_rs_pca = DecisionTreeClassifier().fit(Xp_rs_train, yp_rs_train)
 
# Predict the target values using the test data
y_pred_dt = dtc.predict(X_test)
y_rs_pred_dt = dtc_rs.predict(X_test)
yp_rs_pred_dt = dtc_rs_pca.predict(Xp_test)
 
# Generate the Classification report
print('*** Decision Tree Classification Model ***\n')
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_dt,target_names=class_names))
 
print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_dt,target_names=class_names))
 
print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_dt, target_names=class_names))
 
dtc_end = time.time()
print(f'Decision Tree Classification Model Execution time is {(dtc_end - dtc_start):.2f} seconds')

Output:
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*** Decision Tree Classification Model ***
 
Classification Report - Original Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.14      0.15      0.14       941
INPATIENT       0.33      0.36      0.34      2643
OUTPATIENT       0.83      0.82      0.82     38794
RESIDENTIAL       0.58      0.59      0.58      8851
SUPPORT       0.45      0.48      0.47      5732
 
accuracy                           0.71     56961
macro avg      0.47      0.48      0.47     56961
weighted avg  0.72      0.71      0.72     56961

Classification Report - Oversampled Data

              precision    recall  f1-score   support

EMERGENCY       0.80      1.00      0.89       941
INPATIENT       0.85      1.00      0.92      2643
OUTPATIENT       1.00      0.94      0.97     38794
RESIDENTIAL       0.92      0.99      0.95      8851
SUPPORT       0.89      1.00      0.94      5732

accuracy                           0.96     56961
macro avg       0.89      0.99      0.93     56961
weighted avg  0.96      0.96      0.96     56961

Classification Report - Oversampled PCA Data
              precision    recall  f1-score   support

EMERGENCY       0.74      1.00      0.85       941
INPATIENT       0.81      1.00      0.90      2643
OUTPATIENT       1.00      0.92      0.95     38794
RESIDENTIAL       0.87      0.99      0.92      8851
SUPPORT       0.84      1.00      0.91      5732

accuracy                           0.94     56961
macro avg       0.85      0.98      0.91     56961
weighted avg   0.95      0.94      0.94     56961

Decision Tree Classification Model Execution time is 22.84 seconds
# Hyperparameter Tuning
param_grid = {
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    'criterion': ['gini', 'entropy'],
    'max_depth': [25, 30, 35],
    'min_samples_split': [2,3],
    'min_samples_leaf': [2,3],
    'max_features': ['auto', 'sqrt', 'log2', None],
    'class_weight': ['balanced', None]
}

# Create a decision tree classifier object
dt = DecisionTreeClassifier(random_state=42)

# Create a GridSearchCV object with 10-fold cross-validation
gscv = GridSearchCV(dt, param_grid, cv=2, scoring='accuracy', verbose=1)
gscv_precision = GridSearchCV(dt, param_grid, cv=2, scoring='precision_macro', verbose=1)
gscv_recall = GridSearchCV(dt, param_grid, cv=2, scoring='recall_macro', verbose=1)

# Fit the GridSearchCV object on the training data
gscv.fit(Xp_rs_train, yp_rs_train)

# Print the best parameters and the best score
print('Best parameters:', gscv.best_params_)
print('Best score:', gscv.best_score_)

Output:

Best parameters: {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 30, 
'max_features': None, 'min_samples_leaf': 2, 'min_samples_split': 2}
Best score: 0.9070603701603341

===========================================
12. Gradient Boosting Classification Model
===========================================
'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
gbc_start = time.time()
 
gbc = GradientBoostingClassifier().fit(X_train, y_train)
gbc_rs = GradientBoostingClassifier().fit(X_rs_train, y_rs_train)
gbc_rs_pca = GradientBoostingClassifier().fit(Xp_rs_train, yp_rs_train)
 
# Predict the target values using the test data
y_pred_gb = gbc.predict(X_test)
y_rs_pred_gb = gbc_rs.predict(X_test)
yp_rs_pred_gb = gbc_rs_pca.predict(Xp_test)
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# Show the Classification Report
print('*** Gradient Boosting Classification Model ***\n')
 
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_gb, target_names=class_names))
 
print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_gb, target_names=class_names))
 
print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_gb, target_names=class_names))
 
gbc_end = time.time()
print(f'Gradient Boosting Classification Model Execution time is {(gbc_end - gbc_start):.2f} 
seconds')

Output:

*** Gradient Boosting Classification Model ***
 
Classification Report - Original Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.63      0.06      0.11       941
INPATIENT       0.76      0.24      0.37      2643
OUTPATIENT       0.81      0.94      0.87     38794
RESIDENTIAL       0.67      0.62      0.64      8851
SUPPORT       0.77      0.37      0.50      5732
 
accuracy                           0.79     56961
macro avg       0.73      0.45      0.50     56961
weighted avg  0.78      0.79      0.76     56961
 
 
Classification Report - Oversampled Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.08      0.50      0.14       941
INPATIENT               0.16      0.64      0.25      2643
OUTPATIENT      0.91      0.58      0.71     38794
RESIDENTIAL       0.51      0.69      0.59      8851
SUPOORT      0.59      0.33      0.42      5732
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accuracy                           0.57     56961
macro avg       0.45      0.55      0.42     56961
weighted avg  0.77      0.57      0.63     56961
 
 
Classification Report - Oversampled PCA Data
 
              precision    recall  f1-score   support
 
EMERGENCY 0.07      0.49      0.13       941
INPATIENT            0.19      0.46      0.27      2643
OUTPATIENT       0.90      0.57      0.70     38794
RESIDENTIAL       0.48      0.76      0.59      8851
SUPPORT       0.38      0.40      0.39      5732
 
accuracy                           0.57     56961
macro avg       0.41      0.54      0.42     56961
weighted avg  0.74      0.57      0.62     56961

Gradient Boosting Classification Model Execution time is 2322.39 seconds

==================================
13. Logistic Regression Model
==================================
'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
clr_start = time.time()
 
clr = LogisticRegression().fit(X_train, y_train)
clr_rs = LogisticRegression().fit(X_rs_train, y_rs_train)
clr_rs_pca = LogisticRegression().fit(Xp_rs_train, yp_rs_train)
 
# Predict the target values using the test data
y_pred_lr = clr.predict(X_test)
y_rs_pred_lr = clr_rs.predict(X_test)
yp_rs_pred_lr = clr_rs_pca.predict(Xp_test)
 
# Show the Classification Report
print('*** Logistic Regression Model ***\n')
 
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_lr, target_names=class_names, 
zero_division=0))
 
print('\nClassification Report - Oversampled Data\n')
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print(metrics.classification_report(y_test,y_rs_pred_lr, target_names=class_names, 
zero_division=0))
 
print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_lr, target_names=class_names, 
zero_division=0))
 
clr_end = time.time()
print(f'Logistic Regression Model Execution time is {(clr_end - clr_start):.2f} seconds')

Output:

*** Logistic Regression Model ***
 
Classification Report - Original Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.00      0.00      0.00       941
INPATIENT       0.00      0.00      0.00      2643
OUTPATIENT       0.68      1.00      0.81     38794
RESIDENTIAL       0.00      0.00      0.00      8851
SUPPORT       0.00      0.00      0.00      5732
 
accuracy                           0.68     56961
macro avg       0.14      0.20      0.16     56961
weighted avg       0.46      0.68      0.55     56961

Classification Report - Oversampled Data

precision    recall  f1-score   support
 
EMERGENCY       0.07      0.17      0.10       941
INPATIENT       0.31      0.12      0.17      2643
OUTPATIENT       0.91      0.02      0.03     38794
RESIDENTIAL       0.17      0.99      0.29      8851
SUPPORT       0.65      0.04      0.07      5732
 
accuracy                           0.18     56961
macro avg       0.42      0.27      0.13     56961
weighted avg       0.73      0.18      0.08     56961

Classification Report - Oversampled PCA Data
 
              precision    recall  f1-score   support
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EMERGENCY       0.05      0.39      0.09       941
INPATIENT       0.16      0.35      0.22      2643
OUTPATIENT       0.88      0.53      0.66     38794
RESIDENTIAL       0.46      0.69      0.55      8851
SUPPORT       0.27      0.33      0.30      5732
 
accuracy                           0.52     56961
macro avg       0.36     0.46      0.36     56961
weighted avg       0.71      0.52      0.58     56961

Logistic Regression Model Execution time is 126.15 seconds

# Hyperparameter tuning using GridSearchCV
clr_grid_start = time.time()
 
params_clr = {"penalty":["l2"],"C":[0.1,1,10]}, 
clr_grid = 
GridSearchCV(estimator=LogisticRegression(max_iter=1000),param_grid=params_clr, 
                        scoring = ["accuracy","roc_auc_ovr_weighted","f1_macro"], 
                        refit="roc_auc_ovr_weighted", #True 
                        cv = 3,  #If our estimator is classifier automatically do stratified CV 
                        n_jobs=-1,  #Num CPUs to use for calculation, -1 means all 
                        verbose = 1,  #Output status updates, higher number-> more messages 
                        return_train_score=True    #if false our results won't contain training scores 
                        )
clr_grid.fit(Xn, y)
 
clr_grid_end = time.time()
 
print('\n\n **Report**')
print(f'The best estimator: {clr_grid.best_estimator_}')
print(f'The best parameters:\n {clr_grid.best_params_}')
print(f'The best score: {clr_grid.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(clr_grid_end - clr_grid_start):.2f} seconds')

Output:
Fitting 3 folds for each of 3 candidates, totalling 9 fits
**Report**
The best estimator: LogisticRegression(C=0.1, max_iter=1000)
The best parameters: {'C': 0.1, 'penalty': 'l2'}
The best score: 0.8271
Total run time for GridSearchCV: 200.87 seconds

=========================================
14. Naive Bayesian Classification Model
=========================================
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'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
gnb_start = time.time()
 
gnb = GaussianNB().fit(X_train, y_train)
gnb_rs = GaussianNB().fit(X_rs_train, y_rs_train)
gnb_rs_pca = GaussianNB().fit(Xp_rs_train, yp_rs_train)
 
# Calculate the posteriori probabilities
p = gnb.predict_proba(X_test)
p_rs = gnb_rs.predict_proba(X_test)
p_rs_pca = gnb_rs_pca.predict_proba(Xp_test)
 
# Predict the target values using the test data
y_pred_gnb = gnb.predict(X_test)
y_rs_pred_gnb = gnb_rs.predict(X_test)
yp_rs_pred_gnb = gnb_rs_pca.predict(Xp_test)
 
# Show the Classification Report
print('*** Naive Bayesian Classification Model ***\n')
 
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_gnb,zero_division=0))
 
print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_gnb,zero_division=0))
 
print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_gnb,zero_division=0))
 
gnb_end = time.time()
print(f'Gaussian Naive Bayesian Model Execution time is {(gnb_end - gnb_start):.2f} seconds')

Output:

*** Naive Bayesian Classification Model ***
 
Classification Report - Original Data
 
              precision    recall  f1-score   support

EMERGENCY       0.00      0.00      0.00       941
INPATIENT       0.00      0.00      0.00      2643
OUTPATIENT       0.68      1.00      0.81     38794
RESIDENTIAL       0.00      0.00      0.00      8851
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SUPPORT       0.00      0.00      0.00      5732
 
accuracy                           0.68     56961
macro avg       0.14      0.20      0.16     56961
weighted avg       0.46      0.68      0.55     56961
 
 
Classification Report - Oversampled Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.02      0.29      0.03       941
INPATIENT       0.20      0.11      0.15      2643
OUTPATIENT       0.69      0.68      0.68     38794
RESIDENTIAL       0.07      0.01      0.01      8851
SUPPORT       0.67      0.03      0.06      5732
 
accuracy                           0.48     56961
macro avg       0.33      0.23      0.19     56961
weighted avg       0.55      0.48      0.48     56961
 
 
Classification Report - Oversampled PCA Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.04      0.33      0.07       941
INPATIENT       0.13      0.45      0.21      2643
OUTPATIENT       0.88      0.52      0.66     38794
RESIDENTIAL       0.41      0.64      0.50      8851
SUPPORT       0.35      0.22      0.27      5732
 
accuracy                           0.50     56961
macro avg       0.36      0.43      0.34     56961
weighted avg       0.71      0.50      0.56     56961

Gaussian Naive Bayesian Model Execution time is 2.43 seconds

# Hyperparameter tuning using GridSearchCV 
gnb_grid_start = time.time()
 
param_gnb = {'priors': [[0.2, 0.2, 0.2, 0.2, 0.2], [0.1, 0.15, 0.25, 0.3, 0.2]],  
             'var_smoothing': [1e-50, 1e-40]} 
 
 
# Create a Naive Bayesian classifier object 
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gnb_grid = GaussianNB(priors = None,  # class priors, if defined priors won't be set from data 
                    var_smoothing = 1e-9)  # added this time maximum feature variance 

          onto variance for smoothing 
             
# Create a GridSearchCV object with 10-fold cross-validation 
gscv = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='accuracy', verbose=1) 
gscv_precision = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='precision_macro', 
verbose=1) 
gscv_recall = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='recall_macro', verbose=1) 
 
# Fit the GridSearchCV object on the training data 
gscv.fit(Xp_rs_train, yp_rs_train) 
 
gnb_grid_end = time.time()
 
print('\n\n **Report**')
print(f'The best estimator: {gscv.best_estimator_}')
print(f'The best parameters:\n {gscv.best_params_}')
print(f'The best score: {gscv.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(gnb_grid_end - gnb_grid_start):.2f} seconds')

Output:
Fitting 10 folds for each of 4 candidates, totalling 40 fits
**Report**
The best estimator: GaussianNB(priors=[0.2, 0.2, 0.2, 0.2, 0.2], var_smoothing=1e-50)
The best parameters:{'priors': [0.2, 0.2, 0.2, 0.2, 0.2], 'var_smoothing': 1e-50}
The best score: 0.4340
Total run time for GridSearchCV: 4.51 seconds
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===================================
15. Neural Network Classification Model
===================================
 
# Hyperparameter tuning using RandomizedSearchCV
 
nnm_rand = MLPClassifier()
 
params_rand = {
    'hidden_layer_sizes': [(160,), (180,), (200,), (220,), (160, 160), (180, 180), (200, 200), (220, 
220)],
    'activation': ['logistic', 'tanh', 'relu'],
    'learning_rate': ['adaptive', 'constant'],
    'learning_rate_init': [0.001, 0.01, 0.1],
    'max_iter': [200, 500, 1000, 2000]
    } 
   
start_rand = time.time()
 
rand_src = RandomizedSearchCV(estimator= nnm_rand, param_distributions = 
params_rand,n_iter=10, random_state=1234, scoring='accuracy')
rand_src.fit(Xn,y)
 
end_rand = time.time()
print('\n\n **Report**')
print(f'The best estimator: {rand_src.best_estimator_}')
print(f'The best parameters:\n {rand_src.best_params_}')
print(f'The best score: {rand_src.best_score_:.4f}')
print(f'Total run time for RandomizedSearchCV: {(end_rand - start_rand):.2f} seconds')

Output:
The best estimator: MLPClassifier(hidden_layer_sizes=(200, 200), learning_rate_init=0.01, 
max_iter=1000)
The best parameters: {'max_iter': 1000, 'learning_rate_init': 0.01, 'learning_rate': 'constant', 
'hidden_layer_sizes': (200, 200), 'activation': 'relu'}
The best score: 0.7576
Total run time for RandomizedSearchCV: 36189.82 seconds
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# Hyperparameter tuning using GridSearchCV
 
nnm = MLPClassifier()
params_grid = {'hidden_layer_sizes':[(20), (30)], 'activation':['logistic','relu','tanh'],

 'max_iter': [4000,5000]}
 
start_grid = time.time()
 
grid_src = GridSearchCV(estimator= nnm, param_grid= params_grid)
grid_src.fit(Xn, y)
 
end_grid = time.time()
print('\n\n **Report**')
print(f'The best estimator: {grid_src.best_estimator_}')
print(f'The best parameters:\n {grid_src.best_params_}')
print(f'The best score: {grid_src.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(end_grid - start_grid):.2f} seconds')

Output:
The best estimator: MLPClassifier(hidden_layer_sizes=30, max_iter=5000)
The best parameters: {'activation': 'relu', 'hidden_layer_sizes': 30, 'max_iter': 5000}
The best score: 0.7665
Total run time for GridSearchCV: 13483.00 seconds

 
nnm_start = time.time()
 
'''Create three models: first using the Original data, second using the Oversampled data 
and the third using the Oversampled transformed data'''
 
nnm = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
                        max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant', 

random_state=1234)
nnm_rs = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
                        max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant', 

random_state=1234)
nnm_rs_pca = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
                        max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant', 

random_state=1234)
 
nnm.fit(X_train, y_train)
nnm_rs.fit(X_rs_train, y_rs_train)
nnm_rs_pca.fit(Xp_rs_train, yp_rs_train)
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# Predict the target values using the test data
y_pred_nnm = nnm.predict(X_test)
y_rs_pred_nnm = nnm_rs.predict(X_test)
yp_rs_pred_nnm = nnm_rs_pca.predict(Xp_test)
 
# Show the Classification Report
print('*** Neural Networks Classification Model ***\n')
 
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_nnm,target_names=class_names))
 
print('Classification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_nnm,target_names=class_names))
 
print('Classification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_nnm,target_names=class_names))
 
nnm_end = time.time()
print(f'Neural Networks Classification Model Execution time is {(nnm_end - nnm_start):.2f} 
seconds')
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Output:
*** Neural Networks Classification Model ***

Classification Report - Original Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.49      0.04      0.07       941
INPATIENT       0.52      0.08      0.14      2643
OUTPATIENT       0.69      0.99      0.82     38794
RESIDENTIAL       0.59      0.01      0.02      8851
SUPPORT       0.68      0.08      0.15      5732
 
accuracy                           0.69     56961
macro avg       0.60      0.24      0.24     56961
weighted avg       0.66      0.69      0.58     56961
 
Classification Report - Oversampled Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.13      0.12      0.13       941
INPATIENT       0.32      0.11      0.16      2643
OUTPATIENT       0.69      0.95      0.80     38794
RESIDENTIAL       0.11      0.02      0.03      8851
SUPPORT       0.54      0.06      0.11      5732
 
accuracy                           0.66     56961
macro avg       0.36      0.25      0.24     56961
weighted avg       0.56      0.66      0.57     56961
 
Classification Report - Oversampled PCA Data
 
              precision    recall  f1-score   support
 
EMERGENCY       0.36      0.96      0.53       941
INPATIENT       0.40      0.82      0.54      2643
OUTPATIENT       0.93      0.62      0.74     38794
RESIDENTIAL       0.52      0.85      0.64      8851
SUPPORT       0.43      0.65      0.52      5732
 
accuracy                           0.67     56961
macro avg       0.53      0.78      0.59     56961
weighted avg       0.78      0.67      0.69     56961

Neural Networks Classification Model Execution time is 1485.34 seconds.
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================================================
16. K-Fold Cross Validation for Classification – Neural Network
================================================
nnm_kf_start = time.time()
 
# Use Cross_val_score
nnm_mean_score = np.mean(cross_val_score(nnm,Xn,y,cv=5))
nnm_rs_mean_score = np.mean(cross_val_score(nnm_rs,X_rs,y_rs,cv=5))
nnm_rs_pca_mean_score = np.mean(cross_val_score(nnm_rs_pca,Xp_rs,yp_rs,cv=5))
 
# Print the scores
print('** Mean Scores (Accuracies) **')
print(f'Mean Score for Neural Network - Original Data: {nnm_mean_score:.4f}')
print(f'Mean Score for Neural Network - Oversampled Data: {nnm_rs_mean_score:.4f}')
print(f'Mean Score for Neural Network - Oversampled PCA Data: 
{nnm_rs_pca_mean_score:.4f}')
 
nnm_kf_end = time.time()
print(f'Neural Network Model with K-Fold Cross Validation Execution time is {(nnm_kf_end - 
nnm_kf_start):.2f} seconds')

Output:
** Mean Scores (Accuracies) **
Mean Score for Neural Network - Original Data: 0.7574
Mean Score for Neural Network - Oversampled Data: 0.7100
Mean Score for Neural Network - Oversampled PCA Data: 0.7612
Neural Network Model with K-Fold Cross Validation Execution time is 10170.29 seconds

==============================
17.Support Vector Machines
==============================
 
# Hyperparameter tuning using RandomizedSearchCV
 
params_SVM = {'C': (5, 10, 50),  # Regularization parameter
    'kernel': ['linear', 'rbf', 'poly'],  # Kernel type
    'penalty': ["l1", "l2"],  # The norm used in the penalization 
    'dual': [True, False],  # Whether to use the dual or primal formulation 
    'max_iter': [100000],  # The maximum number of iterations 
    'tol': (1e-8, 1e-10, 1e-15)}
     
# Create an instance of LinearSVC 
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svm = LinearSVC()
rand_svm = RandomizedSearchCV(estimator= svm, param_distributions = params_SVM,
                              n_iter=10,cv=2, verbose=0, n_jobs=-1,random_state=42)
rand_svm.fit(Xn,y)
  
print('\n\n **Report**')
print(f'The best estimator: {rand_svm.best_estimator_}')
print(f'The best parameters:\n {rand_svm.best_params_}')
print(f'The best score: {rand_svm.best_score_:.4f}')

Output:
The best estimator: LinearSVC(C=50, dual=False, max_iter=100000, tol=1e-10)
The best parameters:{'tol': 1e-10, 'max_iter': 100000, 'dual': False, 'C': 50}
The best score: 0.7478

linear_svm_start = time.time() 
  
# Specific linear SVC implementation that scales better to larger number of data 
lin_svc_clf = LinearSVC(penalty="l2", 
                       loss="squared_hinge", 
                       tol=1e-4, 
                       C = 1, 
                       max_iter=10000, 
                       verbose=True)  #ovr multiclass implementation 
 
lin_svc_clf.fit(Xp_train, yp_train) 
lin_svc_clf.coef_, lin_svc_clf.classes_   #weights for each feature 
y_pred_svc = lin_svc_clf.predict(Xp_test) 
 
print('*** Support Vector Machines Classification Model ***\n') 
 
lin_svc_cm = confusion_matrix(yp_test, y_pred_svc)  
print('Confusion Matrix\n')
print(lin_svc_cm) 
print(f'Accuracy from training data: {lin_svc_clf.score(Xp_train, yp_train):.2f}') 
print(f'Accuracy from testing data: {lin_svc_clf.score(Xp_test, yp_test):.2f}') 

linear_svm_end = time.time() 
print(f"Linear SVM RUN time: {(linear_svm_end - linear_svm_start):.2f} seconds")

Output:
*** Support Vector Machines Classification Model ***
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Confusion Matrix
[[    0     0    856       75        10     ]
 [    0     0    2070     317      256   ]
 [    0     0    36663   2028    103   ]
 [    0     0    4875     3931    45     ]
 [    0     0    3801     642      1289 ]]

Accuracy from training data: 0.73
Accuracy from testing data: 0.74
Linear SVM RUN time: 228.10 seconds

==============================
18. K-means
==============================

#scaled and handled outliers
clf=ECOD()
clf.fit(X)
outliers=clf.predict(X)
X["outliers"]=outliers
#Data without outliers
X_org_no_outlier=X[X"outliers"]==0]
X_org_no_outlier=X_org_no_outlier.drop(["outliers"],axis=1)
#Data with outliers
X_org_with_outlier=X.copy()
X_org_with_outlier=X_org_with_outlier.drop(["outliers"],axis=1)
 

# Initialize the list for inertia values (sum of squared distances)
inertia_list=[]
#Calculate the inertia for the number of clusters
for i in range(2,50):
    km=KMeans(n_clusters=i,random_state=1234)
    km.fit(X_org_no_outlier)
    inertia_list.append(km.inertia_)
 #draw plot to find elbow
plt.plot(range(2,50),inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
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#Silhoutte for each cluster
def make_Silhouette_plot(X, n_clusters):
    plt.xlim([-0.1, 1])
    plt.ylim([0, len(X) + (n_clusters + 1) * 10])
    clusterer = KMeans(n_clusters=n_clusters, max_iter = 1000, n_init = 10, init = 'k-means++', 
random_state=10)
    cluster_labels = clusterer.fit_predict(X)
    silhouette_avg = silhouette_score(X, cluster_labels)
    print(
        "For n_clusters =", n_clusters,
        "The average silhouette_score is :", silhouette_avg,
    )
    
# Compute the silhouette scores for each sample
    sample_silhouette_values = silhouette_samples(X, cluster_labels)
    y_lower = 10
    for i in range(n_clusters):
        ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
        ith_cluster_silhouette_values.sort()
        size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i
        color = cm.nipy_spectral(float(i) / n_clusters)
        plt.fill_betweenx(
            np.arange(y_lower, y_upper),
            0,



Page 63 of 64

            ith_cluster_silhouette_values,
            facecolor=color,
            edgecolor=color,
            alpha=0.7,
        )
        plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
        y_lower = y_upper + 10
        plt.title(f"The Silhouette Plot for n_cluster = {n_clusters}", fontsize=26)
        plt.xlabel("The silhouette coefficient values", fontsize=24)
        plt.ylabel("Cluster label", fontsize=24)
        plt.axvline(x=silhouette_avg, color="red", linestyle="--")
        plt.yticks([])  
        plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])
 
range_n_clusters = list(range(2,8))
 
for n_clusters in range_n_clusters:
    print(f"N cluster: {n_clusters}")
    make_Silhouette_plot(X_org_no_outlier, n_clusters)   
    plt.savefig('Silhouette_plot_{}.png'.format(n_clusters))
    plt.close()

km=KMeans(n_clusters=5,
         init='k-means++',
         n_init=10,
         max_iter=100,
         random_state=42)
 
cluster_predict=km.fit_predict(X_org_no_outlier) #build a model
kmlabels=km.labels_  #Show the cluster number and assign them to a variable

N cluster: 2
For n_clusters = 2 The average silhouette_score is : 0.7169587649563056
N cluster: 3
For n_clusters = 3 The average silhouette_score is : 0.8131721901490682
N cluster: 4
For n_clusters = 4 The average silhouette_score is : 0.7565695122730917
N cluster: 5
For n_clusters = 5 The average silhouette_score is : 0.7070526338709167
N cluster: 6
For n_clusters = 6 The average silhouette_score is : 0.7134284713947161
N cluster: 7
For n_clusters = 7 The average silhouette_score is : 0.7271153883236817
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km.inertia_
km.n_clusters
X_org_no_outlier_cluster=np.column_stack((kmlabels,X_org_no_outlier))   #Add the cluster 
numbers to the original data 

#For further analysis, creating pandas dataframes
colnames=['cluster_no']+X_org_no_outlier.columns.tolist()
df=pd.DataFrame(data=X_org_no_outlier, columns=colnames)
df.info()
 
#Create dataframes for each cluster
df_org_outlier_cluster_0= df.loc[df.cluster_no==0]
df_org_outlier_cluster_1= df.loc[df.cluster_no==1]
df_org_outlier_cluster_2= df.loc[df.cluster_no==2]
df_org_outlier_cluster_3= df.loc[df.cluster_no==3]
df_org_outlier_cluster_4= df.loc[df.cluster_no==4]
print(f"Davies bouldin score: {davies_bouldin_score(X_org_no_outlier,cluster_predict)}")
print(f"Calinski Score: {calinski_harabasz_score(X_org_no_outlier,cluster_predict)}")
print(f"Silhouette Score: {silhouette_score(X_org_no_outlier,cluster_predict)}")

#Finding summary analysis for the k means cluster for Numerical cols
cols_num=['cluster_no','population','Unique Hospital Count','Unique Park Count']
df[cols_num].groupby('cluster_no').agg([min,max,q1,pd.Series.median,q3])

Davies bouldin score: 0.3957692977093926
Calinski Score: 3708851.9147377876
Silhouette Score: 0.7070526338709167


