
Page 1 of 64

__

Patient Characteristics to
Predict the Type of
Healthcare Service

Rabiya Fatima | Srilakshmi Mallipudi | Gautam Reddy | Barkha Sharma

December 2023
BUAN 5510 01- Capstone Project in Business Analytics

https://seattleu.instructure.com/courses/1610262

Page 2 of 64

Table of Contents

Abstract…... 4
Introduction.. 5
 Background Information ... 5
 Contributions .. 5
 Problem Statement... 6
Dataset Description ... 6
 Patient Characteristics Survey (PCS) 2019 Dataset... 6
 County population listed by zip code .. 7
 New York Hospitals listed by zip code .. 7
 New York Parks listed by latitude and longitude (converted to zip code) 7
 Median Household Income by zip code .. 7
Data Exploration ... 8
 Exploring Healthcare Service Utilization Patterns .. 8
Literature Review .. 13
 Machine Learning for Developing a Prediction Model of Hospital Admission of
 Emergency (Melhem et al. 2021) .. 14

Department Patients: Hype or Hope? (de Hond et al., 2021) ….................................... 14
Predicting hospital admission at emergency department triage using machine
learning (Hong et al., 2018) ... 15
Predicting hospital admissions to reduce emergency department boarding
(Golmohammadi, 2016)….. 16
Diabetes-Related Inpatient Stays, 2018 (Fingar & Reid, 2018) 16
Hospitalizations Related to Diabetes in Pregnancy (Wier et al., 2008) 17
Reducing Health Care Disparities: Where Are We Now? (Gold, 2014) 18
Implicit Bias and Racial Disparities in Health Care (Bridges) 19

Data Pre-processing... 23
Data Integration .. 24

 Processing Null Values ... 23
 Correlation Analysis .. 26
 Converting Nominal/Ordinal data to Numerical ... 27

Normalization ... 27
 Feature Selection using Random Forest Model.. 28
 Primary Component Analysis (PCA) ... 30
Data Mining Models and Evaluations .. 31
 Hyperparameter Tuning.. 32
 Models and Evaluations.. 32
 Clustering ... 37
 Selection of three top performing models ... 38
Discussion .. 39
 Domain Knowledge... 39
 Methodological Contributions ... 39
Conclusion ... 41
 Summary.. 41

Page 3 of 64

 Limitations .. 41
 Future Projects ... 43

Recommendations .. 43
References ... 44
Appendices ... 46

Data Dictionary .. 41
 Python Code .. 41

Page 4 of 64

Abstract

The study aims to assess a patient dataset from the New York region to predict the required
healthcare services for individuals. Accurate anticipation of healthcare service needs is vital for
aligning hospital resources with the demands of the population. In addition to patient data, various
alternative data, including population statistics, park availability, and income distribution, were
incorporated. Employing machine learning and data mining techniques, we have identified few
patient attributes, insurance details, and socio-economic factors that serve as robust predictors for
healthcare service prediction. The paper specifically concentrates on predicting the demand for
four services: Inpatient, Outpatient, Emergency Care, and Residential. This predictive analysis
facilitates proactive planning and efficient resource allocation within healthcare facilities,
significantly influencing patient well-being and associated costs.
We focused on identifying an individual's genuine requirement for healthcare services. Hence, we
are considering recall, which identified positive cases of services. Our top models are Random
Forest, Gradient Boosting, and Decision Tree models, which use recall numbers to identify the
majority of positive cases for outpatient and inpatient service categories. Outcome of feature
selection had 20 features out of all which contribute to define the prediction.

Introduction

The US healthcare system is a complex and diverse mix of public and private, for-profit and
nonprofit insurers and health care providers. It does not have a system of universal healthcare, and
many people lack health insurance or face high costs of care. The US spends more on healthcare
than any other country but does not have better health outcomes. Therefore, there is a need for
more comprehensive and coordinated reforms to improve the value and quality of health care in
the US. By analyzing patient data, their medical history, insurance coverage, household income,
education and many more, we are trying to identify trends and patterns of healthcare service
choices to be opted for by patients.
Our research uses predictive models to anticipate patients' healthcare services needed based on
their profiles, streamlining care plans across inpatient, outpatient, residential, and emergency
services. This proactive approach can enhance care quality, efficient resource allocation, and may
curtail unnecessary hospitalizations and costs. By engaging patients in personalized care and
informed decision-making, we aim for better health outcomes, improved care quality, and reduced
expenses, aligning with healthcare's triple aim while ensuring fair access and enriched patient
experiences.

Problem Statement

In analyzing the correlation between patient demographics, socio-economic factors, medical
conditions, and healthcare service utilization, our study predicts that certain demographic and
socio-economic characteristics, along with specific medical conditions, significantly influence the
type of healthcare service utilized. Factors such as age, income level, insurance status, chronic
illnesses, and severity of medical conditions are pivotal in determining whether patients are more
inclined towards inpatient, outpatient, residential, or emergency healthcare services.

Page 5 of 64

Background information

The US healthcare system is a complex and diverse mix of public and private, for-profit, and
nonprofit insurers and health care providers. It does not have a system of universal healthcare, and
many people lack health insurance or face high costs of care. The US spends more on healthcare
than any other country but does not have better health outcomes. The US healthcare system has
been the subject of ongoing debate and reform efforts, especially in the areas of cost, coverage,
and quality.
The US healthcare system is not very effective in delivering cost-effective and quality service
compared to other high-income countries. According to a report by the Commonwealth Fund, the
US ranks last among 11 countries on measures of access, equity, quality, efficiency, and health
outcomes, despite spending the most on health care. The US also has the highest rate of preventable
deaths, the lowest life expectancy, and the lowest patient satisfaction among the countries studied.
Some of the factors that contribute to the poor performance of the US healthcare system are the
lack of universal coverage, the fragmentation and complexity of the system, the high
administrative costs, the low investment in primary care and prevention, and the misalignment of
incentives and quality. Therefore, there is a need for more comprehensive and coordinated reforms
to improve the value and quality of health care in the US.

Description of Datasets

Patient Characteristics Survey (PCS) 2019 Dataset
This dataset was chosen for the capstone project because it provides a rich and diverse collection
of information about patients and their interactions with the healthcare system. By analyzing this
data, we can gain insights into how different factors, such as age, medical conditions, and insurance
coverage, influence the type of healthcare services patients use. This knowledge can help improve
resource allocation and patient care, making healthcare more efficient and effective.
Data Size: Records: 196K | Attributes: 76 | file size: 102 MB
Data Overview: This data set is a comprehensive collection of healthcare-related information,
encompassing a diverse range of attributes related to patients and their interactions with the
healthcare system. The data are organized by OMH Region‐specific (Region of Provider).
County population listed by zip code
Data Overview: This dataset is a comprehensive collection of population and density in US
counties, by zip code
Data Size: Records: 33K | Attributes: 18 | file size: 6 MB

New York Hospitals listed by zip code
Data Overview: This data set lists the Hospital on New York State Department of Health Hospital
Profile website and includes demographic, inspection, complaint summary, and enforcement fine
data for hospitals in New York State.
Data Size: Records: 225 | Attributes: 10 | file size: 60 KB

New York Parks listed by latitude and longitude (converted to zipcode)
State_Park_Facilities_Points_Map.csv
Data Overview: This dataset lists the Parks in New York State.
Data Size: Parks in NY: 255 | Attributes: 17 | file size: 38 KB

Page 6 of 64

Mean income by Zip code (Income aggregated by zip code) income.csv
Data Overview: The Statistics of Income (SOI) Division’s ZIP code data is tabulated using
individual income tax returns.
Data Size: AGI: 255 | Attributes: 152 | file size: 199.7MB

Page 7 of 64

Data Exploration
Exploring Healthcare Service Utilization Patterns

Our analysis of 196,102 patient records reveals intriguing trends in healthcare service utilization.
Outpatient care emerges as the predominant choice, with approximately 68% of patients favoring
this service. Interestingly, adults constitute around 78% of the patient population, with children
displaying a higher preference for outpatient services, possibly indicating a leaning towards
preventive and routine care. Conversely, adults show a greater inclination towards residential care,
suggesting a propensity for self-care.
Gender plays a nuanced role in healthcare utilization, with men exhibiting higher rates across
categories except for Outpatient care. Women tend to favor Outpatient services, potentially
indicating a preference for routine care over intensive inpatient services.
The analysis also unveils regional disparities; for instance, the Hudson River region displays lower
outpatient but higher inpatient proportions, hinting at underlying health, insurance, and
demographic factors influencing this pattern.
Transgender individuals, constituting less than 5% of the population, exhibit similar healthcare
service patterns to non-transgender individuals. However, understanding and addressing
disparities among this group are crucial for equitable healthcare access and outcomes.
Ethnicity appears to influence healthcare utilization, with Hispanic individuals showing higher
outpatient service usage, while Black individuals favor residential services, reflecting distinct
healthcare preferences.

Page 8 of 64

Insurance type significantly impacts healthcare choices, with patients under private insurance
preferring outpatient services, while those with no insurance lean towards inpatient and support
services.
Regarding disease distribution, high blood pressure is predominant among outpatients, followed
by issues such as obesity and chronic conditions. Mental health disorders, particularly serious
mental illness, constitute a significant portion among outpatients. Physical impairments like visual
and mobility disorders are prevalent, with outpatient care being a more frequent choice across all
categories.
Understanding these utilization patterns across demographics, regions, and disease categories is
pivotal for devising strategies to ensure equitable access and improved healthcare outcomes for
diverse populations.

Literature Review
In the realm of healthcare management, the decision of whether a patient should receive inpatient,
outpatient, residential, or emergency care is a critical one. It not only influences the allocation of
valuable resources within healthcare facilities but also profoundly impacts patient well-being and
the associated costs. Accurate prediction of the type of healthcare service a patient is likely to
require is essential. It enables hospitals to efficiently manage their bed capacity, staffing levels,
and medical supplies, ultimately alleviating the financial strain on healthcare systems while
ensuring that patients receive precisely the level of care they need when they need it. This
predictive capability hinges on the art of predictive modeling, where patient characteristics are
harnessed to make informed decisions. While predictive modeling is at the heart of this endeavor,
it also explores the critical need to understand the web of factors influencing health care access
disparities and mitigate these disparities. In this literature review, we delve into the wealth of
research pertaining inpatient and outpatient patterns based on patient characteristics and factors
for healthcare access disparities.

Department Patients: Hype or Hope?
In a bid to harness the capability of Machine Learning for predicting models to improvise
healthcare systems, the research paper by Hond et al. 2021 contributes to the ongoing discussion
about the utility of machine learning in healthcare. It acknowledges the persistent challenges
associated with ED overcrowding and its detrimental effects on patient outcomes, emphasizing the
importance of accurate prediction models for early identification of patients requiring
hospitalization to expedite the admission process and potentially improve patient satisfaction and
outcomes. The study highlights the potential advantages of using machine learning (ML) models
in predicting hospital admissions, including their ability to handle complex data patterns and large
datasets and the growing availability of electronic health records. The study emphasizes the need
for prediction models that can provide real-time guidance to medical professionals, thereby
facilitating swift decision-making within the ED, which ultimately has the potential to impact
patient care positively.

Machine Learning for Developing a Prediction Model of Hospital Admission of Emergency
Another comprehensive study presented in the paper by Melhem et al. 2021 addresses a critical
issue in the healthcare sector. It discusses the challenges doctors and specialists face in determining
whether patients should receive inpatient or outpatient care, emphasizing the time-consuming
nature of this decision-making process and the potential for human errors that can impact patient

Page 9 of 64

safety. To tackle this problem, the study utilizes Electronic Health Record (EHR) data from a
private hospital in Indonesia and employs four machine learning models, including Support Vector
Machine, Decision Tree, Random Forest, and K-Nearest Neighbors, to predict the appropriate type
of care based on patient conditions and laboratory test results. The authors then evaluate these
models based on various performance metrics. The results indicate that the Random Forest model
achieved the highest accuracy, sensitivity, and precision, making it a promising approach to
enhance patient care classification. The paper underscores the potential of machine learning to
enhance healthcare services, reduce medical errors, and improve patient outcomes. Additionally,
it highlights the potential benefits of integrating machine learning into healthcare decision-making
processes and the importance of selecting the appropriate model for specific healthcare
applications.

Predicting hospital admission at emergency department triage using machine learning
Inpatient and hospitalization prediction from Emergency Department triage is an actively
researched area for predicting inpatient patterns. To this, Hong et al. (2018) focuses on the use of
machine learning to predict hospital admission from emergency department data, aimed at
improving the triage process and optimizing resource allocation by identifying patients who are
likely to be admitted or discharged. Using data from three Emergency Rooms in a single hospital
system, and including 972 variables from various categories, the study trained and tested three
algorithms (logistic regression, gradient boosting, and deep neural networks) on three types of
datasets (triage only, history only, and full). The paper proposes a low-dimensional model with
the intent of facilitating implementation into an EHR system. The study also emphasizes the usage
of the addition of historical information along with Trigae information resulting in significantly
improved predictive performance.

Predicting hospital admissions to reduce emergency department boarding.
Contemporary study by Golmohammadi (2016) reviews the causes and consequences of delay in
transferring patients from the emergency department to inpatient units within the hospital, such as
lack of inpatient beds, inefficient diagnostic services, and poor communication between units. It
proposes a prediction model to estimate the likelihood of admission of each ED patient to the
hospital, based on their demographic and clinical information. The paper claims that this model
can help improve hospital operational efficiency and reduce ED boarding, by providing better
estimation of required resources and preparedness for inpatient care.
Diabetes-Related Inpatient Stays, 2018
Another researched patient characteristic contributing to increase in inpatient patterns was
published by Fingar et al. 2018. The study sheds light on the significant contribution of diabetes
to inpatient hospitalizations in the United States. The findings indicate that in 2018, there were
over 8 million hospital stays related to type 1 or type 2 diabetes, with type 2 diabetes accounting
for a substantial 95 percent of these stays. The research also highlights age disparities, with type 1
diabetes being more prevalent among patients aged 18–34 years, while type 2 diabetes
predominantly affected those aged 65–84 years. According to study the leading principal diagnosis
for stays involving type 1 diabetes was diabetes itself, accounting for half of all stays with this
diagnosis. Conversely, septicemia was the leading principal diagnosis for stays involving type 2
diabetes, making up 10 percent of all stays with a type 2 diabetes diagnosis. These findings
emphasize the impact of diabetes on hospitalization reasons. This research demonstrated the
significant burden of diabetes-related hospitalizations in the United States, with type 2 diabetes

Page 10 of 64

being particularly prevalent among older adults. It also highlights the disparities in in-hospital
mortality rates and the leading reasons for hospitalization in patients with diabetes. Diabetes
remains a major contributor to inpatient hospital stays and healthcare costs.

Hospitalizations Related to Diabetes in Pregnancy
On the same front, research by Wier et al. 2008 highlights that diabetes-related maternal stays
accounted for about 6.5 percent of all maternal stays in 2008, with 5.4 percent involving gestational
diabetes and 1.1 percent involving pre-existing diabetes complicating pregnancy. Notably, women
with pre-existing diabetes were more prone to hospitalizations for diabetes-related complications
during pregnancy, as one-third of hospital stays with pre-existing diabetes complicating pregnancy
involved no delivery, primarily aimed at treating maternal complications. The article also mentions
that from 1997 to 2007, there was a significant increase in hospitalizations for deliveries involving
gestational diabetes and pre-existing diabetes complicating pregnancy, highlighting the increased
risk for these patients. Finally, it is noted that the mean length of stay, and mean costs were higher
for diabetes-related stays resulting in delivery, indicating the increased burden of hospitalization
for diabetic patients during pregnancy.

Reducing Health Care Disparities: Where Are We Now?
Alternative research areas for us would be exploring factors affecting healthcare access disparity.
The study by Gold et al. 2014, from Mathematica Policy Research, provides an overview of the
evolution and status of efforts to reduce racial and ethnic disparities in healthcare. The article
highlights the ongoing disparities in healthcare outcomes despite improvements in overall quality.
It references the 2003 Institute of Medicine (IOM) report "Unequal Treatment," which raised
awareness of disparities in healthcare quality. The U.S. Department of Health and Human Services
(HHS) released its 10th annual report on healthcare disparities in 2013, emphasizing suboptimal
quality and access, particularly for minority and low-income groups. The article also discusses
Health and Human Services (HHS) goals for achieving health equity, ensuring access to quality
care for vulnerable populations, and improving data collection by race, ethnicity, and other
demographic factors. It notes the release of HHS's Action Plan to Reduce Racial and Ethnic Health
Disparities in 2011, aiming for a nation free of disparities in health and healthcare. The article
highlights the development of tools for measuring disparities and cultural competency, as well as
efforts to enhance data collection. Furthermore, the article addresses the involvement of various
stakeholders, including hospitals, physicians, and health plans, in initiatives to collect race,
ethnicity, and language data. It emphasizes the importance of data collection to assess gaps in care
and monitor progress in reducing disparities.

Implicit Bias and Racial Disparities in Health Care
Another contemporary research by Bridges in the paper “Implicit Bias and Racial Disparities in
Health Care” explores the question of why black individuals tend to experience poorer health
outcomes and earlier mortality compared to other racial groups. Bridges discusses the role of
healthcare providers and the quality of care received by black patients as a significant factor
contributing to these disparities. She cites the Institute of Medicine's report, which found that even
when factors like insurance status, income, age, and severity of conditions are comparable, racial
and ethnic minorities receive lower-quality healthcare than white individuals. The article delves
into studies demonstrating that healthcare providers are less likely to offer effective treatments to
people of color, even after controlling for various factors. These disparities are not solely attributed

Page 11 of 64

to explicit racial biases among physicians but are proposed to involve implicit biases—
unconscious negative attitudes about racial groups that affect medical decision-making. Bridges
argues that implicit biases can explain the observed disparities in healthcare outcomes for racial
minorities. The author highlights experiments indicating that physicians with pro-white implicit
biases were more likely to prescribe certain treatments to white patients than to black patients.
This evidence supports the idea that implicit biases among healthcare providers contribute to racial
disparities in health.

Data Pre-Processing

Data Integration
We integrated four alternative datasets with our original patient dataset by a crucial common
attribute across all the datasets: Zip code. To ensure seamless integration across diverse sources,
we implemented a uniform preprocessing step involving the extraction of the first three digits of
zip codes. Furthermore, to maintain consistency, we renamed this attribute in alignment with our
original dataset. Subsequently, we leveraged these first three-digit zip codes and standardized the
data to the context of New York State; we enhanced our original dataset with additional layers of
information on demographic and environmental factors, namely population count, unique hospital
count, park count, and median household income data by three-digit zip code.
By tailoring the data to the geographical scope of New York State, we ensured consistency and
introduced valuable insights into the dynamics of hospital resources, recreational spaces, and the
economic landscape within the region. The overall objective of this data integration process was
to create a more comprehensive data set that encompasses a broader spectrum of external factors.
By doing so, we aimed to uncover deeper insights and enhance our understanding of the intricate
interplay between healthcare dynamics and socio-economic and environmental determinants.

Removal of Obviously Irrelevant Data/Columns
In the initial phase of data preprocessing, we streamlined the dataset by excluding columns that
were deemed irrelevant to our analysis. The "Survey Year" column, bearing a constant value
("2019") for all records, was excluded as it did not contribute any discriminatory information to
our analysis. Additionally, the "Number of Hours Worked Each Week" column, loaded with
approximately 85% "Not Applicable" and "Unknown" entries, was omitted due to its limited utility
and potential skewing effects on our analysis. Instead, we considered the "Employment Status"
column, which promised more relevance and could offer valuable insights into the relationship
between employment status and patient care utilization.

Processing Null Values
Addressing missing or unknown values is critical for reliable analysis. Various strategies were
employed:

 Removing Rows with Unknown Values: For attributes like "Age Group," "Sex," and
"Hispanic Ethnicity," where unknown values were infrequent, we opted to eliminate rows
with such instances. This approach ensures data quality and mitigates potential noise.

 Creating a New Label: Attributes like ‘Transgender’ and ‘Religious Preference’ with
unknown or unprovided values were assigned a new label, "Not Shared," to accurately
represent the available information while respecting individual preferences.

Page 12 of 64

 Replacing Unknown Values: Attributes such as "Sexual Orientation," "Race," and "Living
Situation" with unknown values were replaced with the label "Other" to maintain data
integrity while handling the ambiguity introduced by unknown values.

 Numerical Imputation: Filled the null values in numerical columns (Population, Unique
Hospital Count, Unique Park Count, Median Household Income) with zeros.

Dropping Rows, Categorical Standardization by replacing variations of categorical values with
standardized labels, Categorical Replacement by replacing unknown values with another category,
Numerical Imputation by filling null values in numerical columns with zeros collectively ensure
that the dataset is cleansed of null values and is ready for subsequent analysis.

Correlation Analysis
To identify and address multicollinearity, a correlation analysis using Cramer’s V values was
conducted on the cleaned dataset. Cramer's V, a measure of association for nominal attributes,
aided in pinpointing highly correlated variables (correlation > 0.7). Columns exhibiting strong
correlations were removed to mitigate redundancy and potential noise:

 Unknown Chronic Med Condition
 No Chronic Med Conditions
 Unknown Insurance Coverage
 Medicare Insurance
 Other Chronic Med Condition
 Veterans Cash Assistance

Converting nominal/ordinal values to numerical values

In the process of preparing our dataset for analysis, we undertook the transformation of nominal
and ordinal values into a numerical format. We adopted systematic mapping to convert these
ordinal values into a numeric scale for the "Education Status" column, initially containing ordinal
values representing various education levels. The transformation involved assigning numerical
values to each education level. Consequently, "Pre-K to fifth grade" was mapped to 1, "Middle
school to High school" to 2, "Some College" to 3, and "College or Graduate Degree" to 4.
Additionally, we introduced a numerical value, 5, to represent the "Unknown Education" category,
indicating instances where the education level is unknown or missing.
In the "Hispanic Ethnicity" column, we simplified the representation by replacing the original
values "Yes, Hispanic/Latino" and "No, Not Hispanic/Latino" with binary values, where "Yes"
now indicates Hispanic ethnicity, while "No" indicates non-Hispanic ethnicity.
Moreover, to effectively handle nominal attributes, except for "Program Category" (which is our
target variable) and "Education Status," we employed a technique known as one-hot encoding,
which converts nominal categorical data into a binary format. By incorporating these
transformations, our dataset is now structured and compatible with machine learning algorithms,
allowing for more meaningful and compelling analysis of the underlying patterns and relationships
within the data.

Page 13 of 64

Normalization

Our data preprocessing methodology employed a data transformation technique known as z-score
normalization. This process standardizes the scale of numerical features within the dataset by
subtracting the mean of each feature and dividing it by its standard deviation. This step is crucial
in ensuring that the numerical features are on a comparable scale, preventing any particular feature
from influencing the learning process during model training. We applied normalization to the data
except for dummy variables. By excluding the dummy variables from this normalization, we
preserve their binary nature and the inherent information they provide, striking a balance between
standardization and feature preservation in our predictive model for healthcare service utilization.

Feature Selection using Feature Importance’s using the Random Forest Model

Our analysis employed a feature selection technique based on the importance of features to identify
critical factors influencing patient care outcomes. Initially, the original dataset was partitioned into
training (70%) and testing (30%) subsets, with a Random Forest classifier being trained on the
training data. Subsequent predictions on the test data yielded an overall accuracy of 0.81, a
precision of 0.81, and a recall of 0.81. Next, we leveraged the Random Forest classifier to compute
their importance values to determine the significance of individual features and eliminate
redundant features providing less information. We sorted the importance values to identify the top
20 features. Subsequently, we built a feature selection model by establishing a threshold based on
the minimum importance value among these top features. This approach resulted in selecting a
reduced set of features that retained predictive efficacy. The resulting Random Forest model,
trained on this reduced feature set, exhibited noteworthy performance on the test data with an
overall accuracy of 0.77, a precision of 0.74, and a recall of 0.77

Page 14 of 64

Primary Component Analysis (PCA)

After performing the feature selection technique, we opted for PCA to capture the linear
combination of features. Principal Component Analysis (PCA) is a statistical method for
dimensionality reduction. It helps simplify the complexity of high-dimensional data while
retaining underlying trends and patterns. Our original dataset comprised 208 features, including
dummy variables generated through one-hot encoding. In our study, we applied PCA to the
original dataset and developed a scree plot to identify an elbow or inflection point to determine the
optimal number of components. Following a thorough analysis of the plot, we selected 20
components as the optimal choice. Further analysis, including an alternative plot using cumulative
ratios, revealed that these 20 features accounted for approximately 70% of the cumulative
explained variance.

Scree Plot Alternative Plot using Cumulative ratio

Subsequently, we partitioned the original and PCA-transformed data into training (70%) and
testing (30%) subsets. The next step involved employing the Random Forest classifier to compare
the performance of models built on the original and PCA-transformed datasets. Surprisingly, the
PCA-transformed data model exhibited slightly lower performance metrics than the original
despite a substantial reduction of almost 90% in features. The overall accuracy of the PCA-
transformed model was 0.77, with a precision of 0.76 and a recall of 0.77. In contrast, the original
data model demonstrated slightly superior metrics, with an overall accuracy of 0.81, a precision of
0.81, and a recall of 0.81.

Dataset Experimentation for Data Mining Models

Page 15 of 64

In our study, we employed a diverse set of datasets to comprehensively understand and address
the challenges present in the original data. These datasets served as crucial inputs for training and
evaluating machine learning models. The three primary datasets used in our analysis are:

Original Dataset: This is our baseline dataset, encompassing the original healthcare survey data
collected for the analysis. This dataset serves as our starting point, providing a comprehensive
view of the data landscape before any modifications or enhancements.

Oversampled Dataset: To address the imbalanced class distribution present in our baseline dataset,
we implemented the Naïve Random oversampling technique. This technique involves artificially
increasing instances of the minority class, contributing to a more balanced dataset.

Oversampled PCA Dataset: Recognizing the importance of dimensionality reduction, we
performed Primary Component Analysis (PCA) and applied the oversampling technique (Naïve
Random Over Sampler) on the PCA dataset. This process reduces the number of features while
retaining critical information and addresses the class imbalance, potentially enhancing model
efficiency and performance.

Rationale for Dataset Experimentation:
Our strategy involves leveraging diverse datasets to address specific challenges in healthcare
services data analysis. The oversampled dataset directly mitigates class imbalance, ensuring fair
representation of target classes for improved model accuracy. Additionally, the oversampled PCA
dataset combines dimensionality reduction through Principal Component Analysis (PCA) with
augmented representation of the minority class. This hybrid approach optimizes the feature space,
enhancing predictive capabilities while overcoming challenges associated with high-dimensional
datasets. Together, these datasets aim to facilitate model generalization to unseen data, making our
predictive models more robust and applicable to real-world scenarios.

Data Mining Models and Evaluations

To predict the type of healthcare service a patient might use based on their characteristics and
medical history, we have undertaken a thorough analysis employing various data mining models,
including Random Forest, Decision tree, Gradient Boosting, Neural networks, Logistic
Regression, and Naive Bayesian. Adopting a standardized approach, we trained these models on
three distinct datasets.
To establish a fair evaluation framework, we partitioned each dataset into 30% for testing and
allocated the remaining 70% for training. Ensuring the equitable distribution of the target variable
in both training and testing sets was vital, especially given the presence of imbalanced classes. The
use of stratified sampling maintained the ratio of target classes in both subsets, guaranteeing a
representative split of the dataset's class distribution. Subsequently, we stored the training and
testing subsets for all three datasets—Original, Oversampled, and Oversampled with PCA—ready
for deployment in the training and evaluation of machine learning models.
We trained individual models for each dataset, evaluating their performance using test sets without
oversampling. This approach allowed us to scrutinize the influence of oversampling and

Page 16 of 64

dimensionality reduction on the models' predictive capabilities within a balanced and high-
dimensional feature space.
Based on the use case of predicting the type of patient service, the top three models are selected
employ the following criteria:

 Accuracy: The ratio of correct predictions to the total number of predictions. Accuracy
measures how often the model predicts correctly.

 Precision: The ratio of true positives to the sum of true positives and false positives.
Precision measures how accurate the model is when it predicts a positive class.

 Recall: The ratio of true positives to the sum of true positives and false negatives. It
measures how complete the model is when it identifies a positive class.

 F1 score: The harmonic means of precision and recall. It balances both accuracy and
completeness of the model.

We considered Recall as one of our major evaluation metrics for all models, as in healthcare
services, identifying all patients who require specific services is critical for delivering appropriate
care. Hence, while predicting healthcare services for patients, striking a balance between precision
and recall is crucial, as both minimizing unnecessary services and ensuring no service is
overlooked are vital considerations in the healthcare domain. While the F1 score is a relevant
metric for assessing overall model performance, the specific emphasis varies based on the
healthcare service's priorities, including associated costs and consequences for a patient.

Table: Top Performing Models Evaluation metrics

Classification Model Precision Recall Accuracy Computation
Time (in sec)

Random Forest 0.98 0.97 0.97 215.25
Decision Tree 0.96 0.96 0.96 22.84
Gradient Boosting 0.78 0.79 0.79 2322.39

Domain contributions:

Many hospitals are facing economic challenges. With the changing demographics across the
country, the demand patterns for their services are changing, while their costs are increasing.
Many rural hospitals have shut down in the last few years, despite receiving some COVID-19
funding. Another problem that affects hospital quality is the shortage of nurses and increasing
personnel costs.
Our study offers a tool for hospital administrators to plan their services according to the changing
population characteristics around their hospital. We use the demographic data and patient
characteristics to estimate the number of different types of services that will be needed, such as
Outpatient, Residential, Support, Inpatient, and emergency. Each service has different
requirements for staff, skills, and costs. Outpatient care is the most utilized and the most cost and

Page 17 of 64

resource-efficient for acute conditions. Inpatient care also addresses acute conditions but is
significantly more resourceful and cost intensive. Residential services are most appropriate for
chronic conditions that the patient needs long-term help with. Emergency services use a
disproportionate number of resources but are critical to saving the lives of patients.
Our model identifies the need for these different services and assists in the appropriate allocation
of resources, staffing levels, skills, and cost structures for successful patient care. This can help to
optimize the use of resources in the hospital.
Government administrators can also use our tool to identify the service demand and the cost
structures for maintaining services. They can support the hospitals that serve the rural populations
with more significant needs and reduce the services of hospitals with low utilization. They can
also approve new hospitals and services in areas where the population is growing.
By optimizing the patient care services to meet the needs of the population, the right staffing needs
can be allocated to the hospitals that serve populations with greater needs.

Methodological Contributions

Throughout the course of our diverse analyses, we made several key observations. We observed
that Classification models exhibited optimal performance after normalizing the numeric and non-
binary features.
Prior to executing models on the dataset, we tried PCA to reduce dimensionality, capturing the
most important features, and employed oversampling to address imbalances in the dataset. We
experimented with performing oversampling on PCA data and performing PCA on oversampled
data. Oversampling on PCA data was computationally efficient as dimensionality reduction was
before oversampling, and then oversampling was focused on principal components. In the case of
PCA on the oversampled dataset, PCA was performed on the expanded dataset, which retained all
information present in the oversampled data. While evaluating the model performance, we got
better results and computational performance for Oversampling on the PCA dataset. Later, we
tried model execution on PCA data and applied oversampling post train-validate-test split to
preserve the test data integrity. This approach ensured model evaluation on completely unseen data
without leakage to test data.
A key step in our model creation and testing involved careful separation of the data into training
and a distinct unbiased testing dataset, ensuring that the final model was evaluated with data whose
patterns were not utilized to fine-tune model parameters. Additionally, we implemented Train-
Validate-Test splits to create three distinct sets of data: one for training the model, a second for
evaluating model performance and tuning, and a third for assessing the final generalization error.
This methodology guaranteed the separation of test data from both the training process and
performance evaluations until the final step. This approach ensured that the model is evaluated
against completely unseen data, enhancing the reliability and generalizability of our results.
Stratification played a critical role in maintaining a consistent representation of target classes
across test and train subsets for all the datasets. Addressing imbalances in the dataset, particularly
concerning the minority class, was achieved through oversampling. Importantly, the oversampling
technique was performed post Train-Validate-Test split to preserve the integrity of the test data.
This approach prevents knowledge leakage from oversampled test data into the training set,
preserving the distinctiveness of the two sets and preventing potential impacts on results with
unseen data. Furthermore, to predict the target values using the test data, a deliberate decision was

Page 18 of 64

made to generate predictions using the original test data and PCA test data for the Oversampled
model and Oversampled PCA model, respectively. This approach, as opposed to using the
respective test datasets, ensured that the test data remained unseen and unaltered by the
oversampling technique.
Moreover, cross-validation technique proved valuable for evaluating performance and variance,
providing mean and variance scores to estimate variations in the training procedure, and achieving
consistency in the model's performance with unseen data. The adjustment of hyperparameters also
played a crucial role in fine-tuning our model's behavior for enhanced performance.
Simultaneously, the strategic application of regularization techniques played a pivotal role in
shaping the learning process of our algorithm. Through careful adjustments to hyperparameters
and the incorporation of regularization, we ensured the model's adaptability, effectively preventing
overfitting, maintaining the balanced importance of components, and optimizing the learning
process.
In this analysis, we applied the k-means clustering algorithm to the preprocessed dataset after
scaling the original data and handling outliers. The objective was to identify patterns and group
similar data points into clusters for further exploration. Descriptive statistics for each cluster were
obtained, considering numerical features such as population, unique hospital count, and unique
park count. However, the results showed that the clusters appeared loosely connected, indicating
that the algorithm may not effectively capture distinct groupings in the data. Despite these efforts,
the lack of well-defined clusters led us to explore alternative methodologies for extracting
meaningful insights from the dataset.

Conclusions
Summary:

The primary objective of our research was to investigate the feasibility of utilizing machine
learning methodologies for accurately predicting the type of healthcare service a patient might
require. Our findings suggest that we have successfully demonstrated the potential for achieving
this goal, regardless of the availability of a written review from a healthcare professional.
Throughout our study, we have shed light on the strengths and limitations of various machine
learning models. Notably, Random Forest, Decision Tree, Gradient Boosting and Neural Network
models exhibited strong predictive capabilities for outpatient and non-emergency services.
However, accurately predicting emergency services remained challenging due to their
unpredictable nature. Despite the limitations detailed below, our models hold promise for
outpatient services, requiring further refinements for emergency service predictions and broader
data validation to enhance real-world applicability.
Limitations:

While our study presents promising results in forecasting healthcare service utilization based on
diverse patient attributes, it is vital to acknowledge inherent limitations. Our model encounters
challenges in accurately predicting Emergency class, attributed to the unpredictable and urgent
nature of such cases, compromising optimal performance in scenarios where precise prediction of
emergency healthcare services is essential.
A significant temporal limitation arises from the model's reliance on 2019 data, needing more
consideration for post-2019 temporal changes in patient characteristics and healthcare service

Page 19 of 64

utilization trends. Furthermore, our reliance solely on New York healthcare data raises concerns
about the model's generalizability to a broader population. Another critical limitation is the need
for more access to an external dataset for testing our model's performance on real-world data.
Additionally, the income information in our dataset is aggregated by zip codes, lacking individual
patient income details. This constraint hinders the granularity of our analysis, as variations in
income at the personal level within a specific zip code are not accounted for. Consequently, our
study may not capture the full spectrum of individual income disparities that could influence
healthcare service utilization.
Finally, computational challenges are tied to the size of our dataset, particularly with implementing
the Support Vector Model. Our SVM model could not execute and generate results on the original
and oversampled datasets due to its resource limitations, underscoring the necessity of exploring
alternative modeling approaches for large datasets in future research endeavors. Addressing these
limitations collectively will refine our predictive model, ensuring its reliability and effectiveness
in the dynamic landscape of healthcare service utilization.

Recommendations

Innovative predictive models like Random Forest, Decision Trees, and Gradient Boosting
revolutionize healthcare resource allocation. By forecasting patient needs, these models enable
precise distribution of staff, facilities, and equipment. This proactive approach ensures resources
are optimally available, curbing unnecessary spending and enhancing timely deployment where
most critical. Efficient allocation directly translates to heightened operational efficiency and
reduced financial strains.
These models also empower proactive healthcare interventions. By foreseeing patient needs,
healthcare providers can customize treatment plans and identify at-risk individuals early. This
intervention-centric approach prevents complications, curtails chronic conditions, and
significantly cuts healthcare costs. It champions a preventive healthcare strategy, prioritizing
patient wellness and cost-effective care delivery.
Moreover, leveraging data insights for personalized care plans enriches the patient's experience.
Tailoring care based on individual preferences fosters patient engagement, trust, and satisfaction.
This engagement encourages active participation in treatment decisions, strengthening adherence
and yielding improved health outcomes. Collectively, these strategies reshape healthcare delivery,
making it more patient-centric and tailored to individual needs.

Future projects

To ensure the continued relevance and broad applicability of our predictive model, future research
endeavors should prioritize updating the dataset to capture the latest trends in patient
characteristics and healthcare service utilization. Given that our study is solely based on healthcare
data from New York, it becomes imperative to conduct external validation to assess the model's
generalizability beyond the limitations of our current dataset. It is advisable to expand the model's
testing scope to include data from diverse U.S. states and advanced economies within the European
Union (EU), recognizing the significant impact of variations in healthcare systems, cultural factors,
and socioeconomic conditions on healthcare service utilization patterns. It aids in exploring
healthcare disparities among demographic groups and identifying regions with limited access to
healthcare services.

Page 20 of 64

For future studies, a collaborative approach with healthcare institutions across various U.S. states
and EU countries should be pursued to facilitate the collection of region-specific data. This
collaboration will contribute to a more comprehensive understanding of healthcare service
utilization and enhance the model's robustness and applicability on a broader scale.
Additionally, a nuanced approach could involve developing separate models to predict different
care needs, allowing for tailored accuracy tuning with each distinct care category. This approach
acknowledges the inherent variability in healthcare services and aims to create specialized models
that cater to specific care requirements, further refining the predictive capabilities of our model in
diverse healthcare settings.

Appendix

Data Dictionary

Field Name and Description Valid Domain Values Type Length Data
Type

Null
Ratio

Survey Year: The year in
which the survey was
conducted. Dates are between
10/21/2019 and 10/27/2019.

 2019 Number 4 Year 0.00

Target:

Program Category: The
category or type of healthcare
program the patient is
enrolled in.

 Outpatient
 Inpatient
 Emergency
 Residential
 Support

Text 11 Nominal 0.00

Region Served: Represents
region where the patients
received healthcare services.

 New York City Region
 Western Region
 Hudson River Region
 Central NY Region
 Long Island Region

Text 20 Nominal 0.00

Age Group: The age group
of the patient.

 Adult
 Child
 Unknown

Text 7 Nominal 0.00

Sex: Gender of the patient.
 Female
 Male
 Unknown

Text 7 Binary 0.00

Transgender: Indicates
whether the patient identifies
as transgender.

 No, Not Transgender
 Yes, Transgender
 Client didn’t answer
 Unknown

Text 20 Boolean 0.08

Page 21 of 64

Sexual Orientation: The
patient's sexual orientation.

 Straight or Heterosexual
 Bisexual
 Lesbian or Gay
 Other
 Client didn’t answer
 Unknown

Text 24 Nominal 0.18

Hispanic Ethnicity:
Indicates whether the patient
identifies as Hispanic or
Latino.

 Yes, Hispanic/Latino
 No, Not Hispanic/Latino
 Unknown

Text 23 Boolean 0.03

Race: The patient's racial
background.

 White only
 Black only
 Multi-Racial
 Other
 Unknown Race

Text 12 Nominal 0.04

Living Situation: The
patient's current living
situation or housing status.

 Private Residence
 Other Living Situation
 Institutional Setting
 Unknown

Text 22 Nominal 0.05

Household Composition:
Describes the patient's
household composition.

 Cohabitates with Others
 Lives Alone
 Not Applicable
 Unknown

Text 23 Nominal 0.23

Preferred Language: The
patient's preferred language
for communication.

 English
 Spanish
 Indo-European
 Asian and Pacific Island
 Afro-Asiatic
 All other languages
 Unknown

Text 24 Nominal 0.02

Religious Preference: The
patient's religious preference.

 I belong to a formal
religious group

 I do not have a formal
religion, nor am I a
spiritual person

 I consider myself
spiritual, but not religious

 Data not available

Text 60 Nominal 0.29

Veteran Status: Indicates
whether the patient is a
military veteran.

 Yes
 No
 Unknown

Text 7 Boolean 0.04

Page 22 of 64

Employment Status: The
patient's current employment
status.

 Employed
 Unemployed, looking for

work
 Non-paid/Volunteer
 Not in Labor Force:

Unemployed and not
looking for work

 Unknown Employment
Status

Text 54 Nominal 0.06

Number Of Hours Worked
Each Week: The number of
hours the patient works each
week.

 01 – 14 Hours
 15 – 34 Hours
 35 Hours or more
 Unknown
 Not Applicable

Text 24 Ordinal 0.84

Education Status: The
patient's education status.

 Pre-K to Fifth grade
 Middle School to High

School
 Some College
 College or Graduate

Degree
 No Formal Education
 Other
 Unknown

28 Ordinal 0.11

Special Education Services:
Indicates if the patient
receives special education
services.

 Yes
 No
 Not Applicable

Text 14 Boolean 0.80

Mental Illness: Indicates if
the patient has a mental
illness.

 Yes
 No
 Unknown

Text 7 Boolean 0.01

Intellectual Disability:
Indicates if the patient has an
intellectual disability.

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Autism Spectrum: Indicates
if the patient is on the autism
spectrum.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Other Developmental
Disability: Indicates if the
patient has other
developmental disabilities.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Page 23 of 64

Alcohol Related Disorder:
Indicates if the patient has an
alcohol-related disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.06

Drug Substance Disorder:
Indicates if the patient has a
drug substance disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.06

Opioid Related Disorder:
Indicates if the patient has an
opioid-related disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Mobility Impairment
Disorder: Indicates if the
patient has a mobility
impairment disorder.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Hearing Impairment:
Indicates if the patient has a
hearing impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Visual Impairment:
Indicates if the patient has a
visual impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Speech Impairment:
Indicates if the patient has a
speech impairment.

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Hyperlipidemia: Indicates if
the patient has
hyperlipidemia.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

High Blood Pressure:
Indicates if the patient has
high blood pressure.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Diabetes: Indicates if the
patient has diabetes.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Obesity: Indicates if the
patient has obesity.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Heart Attack: Indicates if
the patient has had a heart
attack.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Page 24 of 64

Stroke: Indicates if the
patient has had a stroke.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Other Cardiac: Indicates if
the patient has other cardiac
conditions.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Pulmonary Asthma:
Indicates if the patient has
pulmonary asthma.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Alzheimer or Dementia:
Indicates if the patient has
Alzheimer's disease or
dementia.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Kidney Disease: Indicates if
the patient has kidney
disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Liver Disease: Indicates if
the patient has liver disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Endocrine Condition:
Indicates if the patient has an
endocrine condition.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Neurological Condition:
Indicates if the patient has a
neurological condition.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Traumatic Brain Injury:
Indicates if the patient has
had a traumatic brain injury.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Joint Disease: Indicates if
the patient has joint disease.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Cancer: Indicates if the
patient has been diagnosed
with cancer.

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Other Chronic Med
Condition: Indicates if the
patient has other chronic
medical conditions

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Page 25 of 64

No Chronic Med Condition:
Indicates if the patient has no
chronic medical conditions

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Unknown Chronic Med
Condition: Indicates if the
patient's chronic medical
condition is unknown

 False
 True Text 5 Boolean 0.00

Cannabis Recreational Use:
Indicates if the patient uses
cannabis recreationally

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Cannabis Medicinal Use:
Indicates if the patient uses
cannabis for medicinal
purposes

 Yes
 No
 Unknown

Text 7 Boolean 0.12

Smokes: Indicates if the
patient smokes

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Received Smoking
Medication: Indicates if the
patient has received smoking
cessation medication

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Received Smoking
Counseling: Indicates if the
patient has received smoking
counseling

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Serious Mental Illness:
Indicates if the patient has a
serious mental illness

 Yes
 No
 Unknown

Text 7 Boolean 0.01

Alcohol 12m Service:
Indicates if the patient
received alcohol-related
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Opioid 12m Service:
Indicates if the patient
received opioid-related
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Drug/Substance 12m
Service: Indicates if the
patient received
drug/substance-related
services in the past 12 months

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Page 26 of 64

Principal Diagnosis Class:
The principal diagnosis class
of the patient

 Mental illness
 Not MI – Organic Mental

Disorder
 Not MI – Developmental

Disorders
 Not MI – Other
 Substance-Related and

Addictive Disorders
 Unknown

Text 41 Nominal 0.04

Additional Diagnosis Class:
Additional diagnosis class of
the patient

 Mental illness
 Not MI – Organic Mental

Disorder
 Not MI – Developmental

Disorders
 Not MI – Other
 Substance-Related and

Addictive Disorders
 No Additional Diagnosis
 Unknown

Text 41 Nominal 0.19

SSI Cash Assistance:
Indicates if the patient
receives Supplemental
Security Income (SSI)

 Yes
 No
 Unknown

Text 7 Boolean 0.14

SSDI Cash Assistance:
Indicates if the patient
receives Social Security
Disability Insurance (SSDI)

 Yes
 No
 Unknown

Text 7 Boolean 0.14

Veterans Disability
Benefits: Indicates if the
patient receives veterans'
disability benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Veterans Cash Assistance:
Indicates if the patient
receives veterans' cash
assistance

 Yes
 No
 Unknown

Text 7 Boolean 0.11

Public Assistance Cash
Program: Indicates if the
patient receives public
assistance cash benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.15

Other Cash Benefits:
Indicates if the patient
receives other cash benefits

 Yes
 No
 Unknown

Text 7 Boolean 0.14

Page 27 of 64

Medicaid and Medicare
Insurance: Indicates if the
patient has both Medicaid and
Medicare insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

No Insurance: Indicates if
the patient has no insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.03

Unknown Insurance
Coverage: Indicates if the
patient's insurance coverage
is unknown

 False
 True Text 5 Boolean 0.00

Medicaid Insurance:
Indicates if the patient has
Medicaid insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.04

Medicaid Managed
Insurance: Indicates if the
patient has managed
Medicaid insurance

 Yes
 No
 Not Applicable
 Unknown

Text 14 Boolean 0.40

Medicare Insurance:
Indicates if the patient has
Medicare insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Private Insurance: Indicates
if the patient has private
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.07

Child Health Plus
Insurance: Indicates if the
patient has Child Health Plus
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Other Insurance: Indicates
if the patient has other
insurance

 Yes
 No
 Unknown

Text 7 Boolean 0.08

Criminal Justice Status:
Indicates the criminal justice
status of the patient

 Yes
 No
 Unknown

Text 7 Boolean 0.09

Three Digit Residence Zip
Code: Three-digit residence
zip code of the patient

 100 – 149
 777 - Indicates the patient

lived in another state in
US or another country.

 888 - Indicates the patient
was homeless at the time
of the survey.

Number 3 Nominal 0.00

Page 28 of 64

 999 - Indicates the
residential zip code is
unknown

Population: Aggregate
population in the 3-digit zip

Simplemaps.com:
https://simplemaps.com/data
/us-zips

 Numeric Number 7 Number 0.10

Hospital Count: Number of
hospitals in the 3-digit zip

HealthData.gov:
healthdata.gov/State/Hospital
-Profile/gw4x-xyhe

 Numeric Number 2 Number 0.10

Parks Count: Number of
parks in the 3-digit zip

Data.ny.gov:
data.ny.gov/Recreation/State-
Park-Facilities-Points-
Map/97ur-5r4b

 Numeric Number 2 Number 0.20

Income: Aggregate Mean
Income by Zipcodes

IRS.gov :
https://www.irs.gov/statistic
s/soi-tax-stats-individual-
income-tax-statistics-2019-
zip-code-data-soi

 Numeric Number 7 Number 0.10

https://simplemaps.com/data/us-zips
https://simplemaps.com/data/us-zips
https://healthdata.gov/State/Hospital-Profile/gw4x-xyhe
https://healthdata.gov/State/Hospital-Profile/gw4x-xyhe
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://data.ny.gov/Recreation/State-Park-Facilities-Points-Map/97ur-5r4b
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi
https://www.irs.gov/statistics/soi-tax-stats-individual-income-tax-statistics-2019-zip-code-data-soi

Page 29 of 64

References:
de Hond, A., Raven, W., Schinkelshoek, L., Gaakeer, M. I., Ter Avest, E., Sir, O., Lameijer, H.,
Hessels, R. A., Reijnen, R., De Jonge, E., Steyerberg, E. W., Nickel, C. H., & De Groot, B. (2021).
Machine Learning for Developing a Prediction Model of Hospital Admission of Emergency
Department Patients: Hype or Hope? International Journal of Medical Informatics, 152, 104496.
https://doi.org/10.1016/j.ijmedinf.2021.104496

Shatha Melhem, Ahmad Al-Aiad, Muhammad Saleh Al-Ayyad. (2021). Patient care classification
using machine learning techniques. In 2021 12th International Conference on Information and
Communication Systems (ICICS) (pp. 1-5).
https://www.researchgate.net/publication/352806341_Patient_care_classification_using_machine
_learning_techniques

Hong, W. S., Haimovich, A. D., & Taylor, R. A. (2018, July 20). Predicting hospital admission at
emergency department triage using machine learning.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201016/

Golmohammadi, D. (2016). Predicting hospital admissions to reduce emergency department
boarding. https://www.sciencedirect.com/science/article/abs/pii/S0925527316302523/

Lo-Ciganic, W.-H., Donohue, J. M., Jones, B. L., Perera, S., Thorpe, J. M., Thorpe, C. T., Marcum,
Z. A., & Gellad, W. F. (2016). Trajectories of Diabetes Medication Adherence and Hospitalization
Risk: A Retrospective Cohort Study in a Large State Medicaid Program. Journal of General
Internal Medicine, 31, 1052–1060. https://link.springer.com/article/10.1007/s11606-016-3747-6

Fingar, K.R., & Reid, L.D. (2018). Diabetes-Related Inpatient Stays, 2018. https://hcup-
us.ahrq.gov/reports/statbriefs/sb279-Diabetes-Inpatient-Stays-2018.pdf

Wier, L. M., Witt, E., Burgess, J., & Elixhauser, A. (2008). Hospitalizations Related to Diabetes
in Pregnancy. https://hcup-us.ahrq.gov/reports/statbriefs/sb102.pdf

https://doi.org/10.1016/j.ijmedinf.2021.104496
https://www.researchgate.net/publication/352806341_Patient_care_classification_using_machine_learning_techniques
https://www.researchgate.net/publication/352806341_Patient_care_classification_using_machine_learning_techniques
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201016/
https://www.sciencedirect.com/science/article/abs/pii/S0925527316302523/
https://link.springer.com/article/10.1007/s11606-016-3747-6
https://hcup-us.ahrq.gov/reports/statbriefs/sb279-Diabetes-Inpatient-Stays-2018.pdf
https://hcup-us.ahrq.gov/reports/statbriefs/sb279-Diabetes-Inpatient-Stays-2018.pdf
https://hcup-us.ahrq.gov/reports/statbriefs/sb102.pdf

Page 30 of 64

Python Code:

====================================
Importing the relevant libaries
====================================
import pandas as pd, numpy as np
from scipy.stats import chi2_contingency
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn import metrics
from imblearn.over_sampling import RandomOverSampler
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
import time
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score, confusion_matrix
from sklearn.svm import LinearSVC

==
Loading the PCS 2019 dataset into a pandas DataFrame
==
df_pcs = pd.read_csv('Patient_Characteristics_Survey__PCS___2019.csv')
print(df_pcs.shape)
print(df_pcs.info()) # Get the null count & data type of each attribute
print(df_pcs.nunique()) # Get the number of unique values in each attribute

==
1. Identify other datasets and Merge the files into one dataset
==
Merging the population variable using zip code
df_pop = pd.read_csv('uszips.csv')
df_pop.info()

Page 31 of 64

Extracting first 3 digits of zip code
df_pop['Three Digit Residence Zip Code'] = df_pop['zip'] // 100

Filtering New York data
df_pop = df_pop[(df_pop['state_id'] == 'NY') & (df_pop['Three Digit Residence Zip Code'] >
99)]

Selecting only zip code and Population columns from the dataset
df_pop = df_pop[['Three Digit Residence Zip Code', 'population']].groupby('Three Digit
Residence Zip Code').sum()

df1_merged = pd.merge(df_pcs, df_pop, on='Three Digit Residence Zip Code', how='left')

Merging the hospital count per zip code variable
df_hsptl = pd.read_csv('Entity_Hospitals_Q1_2023.csv')
df_hsptl.info()

Extracting first 3 digits of zip code
df_hsptl['Three Digit Residence Zip Code'] = df_hsptl['Zipcode'] // 100

Calculate the unique hospital count per zip code
hsptl_count = df_hsptl.groupby(['Three Digit Residence Zip
Code'])['Name'].nunique().reset_index()

Renaming the column Name to Unique hospital Count
hsptl_count.rename(columns={'Name': 'Unique Hospital Count'}, inplace=True)

Selecting only zip code and Hospital count columns from the dataset
hsptl_count = hsptl_count[['Three Digit Residence Zip Code', 'Unique Hospital Count']]

df2_merged = pd.merge(df1_merged, hsptl_count, on='Three Digit Residence Zip Code',
how='left')

Merging the Park dataset using zipcode
df_park = pd.read_csv('park_zip.csv', encoding='ISO-8859-1')
df_park.info()

Extracting first 3 digits of zip code
df_park['Three Digit Residence Zip Code'] = df_park['Zipcode'] // 100

Calculate the unique park count per zip code
park_count = df_park.groupby(['Three Digit Residence Zip
Code'])['Name'].nunique().reset_index()

Renaming the column Name to Unique Park Count
park_count.rename(columns={'Name': 'Unique Park Count'}, inplace=True)

Page 32 of 64

Selecting only zip code and Park count columns from the dataset
park_count = park_count[['Three Digit Residence Zip Code', 'Unique Park Count']]

df3_merged = pd.merge(df2_merged, park_count, on='Three Digit Residence Zip Code',
how='left')

Merging the Income dataset using Zip code
df_income = pd.read_csv('Income.csv')
df_income.info()

Extracting first 3 digits of zip code
df_income['Three Digit Residence Zip Code'] = df_income['ZIPCODE'] // 100

Filtering New York data
df_income = df_income[(df_income['STATE'] == 'NY') & (df_income['Three Digit Residence
Zip Code'] != 999)]

Calculate the median household income per zip code
median_income = df_income.groupby(['Three Digit Residence Zip
Code'])['A00100'].median().reset_index()

Renaming the column Name to Median Household Income
median_income.rename(columns={'A00100': 'Median Household Income'}, inplace=True)

Selecting only zip code and Median Household Income columns from the dataset
median_income = median_income[['Three Digit Residence Zip Code', 'Median Household
Income']]

df_merged = pd.merge(df3_merged, median_income, on='Three Digit Residence Zip Code',
how='left')

df_merged.to_csv('PCSdata_merged.csv', index=False)

===
2. Show the number of distinct values and frequency of each nominal and ordinal values
===
print('Distinct values and their frequencies of each nominal and ordinal value\n')

for col in df_merged.columns:
 print(f"Column Name: {col}")

 max_length = df_merged[col].astype(str).str.len().max()
 print(f"Max Length: {max_length}")

Page 33 of 64

 distinct_count = df_merged[col].nunique()
 print(f"Distinct Count: {distinct_count}")

 value_counts = df_merged[col].value_counts()
 print(f"Frequencies:\n{value_counts}")

 print("\n")

===
3. Removal of obviously irrelevant data/columns
===
print('Irrelevant Columns:\n 1) Survey Year\n 2) Three Digit Residence Zip Code\n 3) Number
Of Hours Worked Each Week \n')

df_merged.drop(columns=['Survey Year', 'Number Of Hours Worked Each Week','Three Digit
Residence Zip Code'], inplace=True)

=========================
4. Processing Null Values
=========================
print('Processing null values \n')
df_merged = df_merged[df_merged['Age Group'] != "UNKNOWN"] #dropping 80 rows with
that are neither Adult nor child
df_merged = df_merged[df_merged.Sex != "UNKNOWN"] #droping 395 rows with that are
neither Male nor Female
df_merged = df_merged[df_merged['Hispanic Ethnicity'] != "UNKNOWN"] #dropping 5,965
rows with unknown hispanic ethnicity

#Replacing the text with yes or no
df_merged['Transgender'] = df_merged['Transgender'].replace({'YES, TRANSGENDER':

'YES', 'NO, NOT TRANSGENDER': 'NO',\
 "CLIENT DIDN'T ANSWER": 'NOT SHARED',\
 'UNKNOWN':'NOT SHARED'})

#Replacing Unknown and Client did not answer with OTHER
df_merged['Sexual Orientation'] = df_merged['Sexual Orientation'].replace({'UNKNOWN':

'OTHER',"CLIENT DID NOT ANSWER": 'OTHER'})

#Replacing the Unknown Race with OTHER
df_merged['Race'] = df_merged['Race'].replace({'UNKNOWN RACE':'OTHER'})

#Replacing Unknown living condition with OTHER
df_merged['Living Situation'] = df_merged['Living Situation'].replace({'UNKNOWN': 'OTHER

 LIVING SITUATION'})

Page 34 of 64

Replace "unknown" with "cohabitates with other" where "Living situation" is "private
#residence"
df_merged.loc[(df_merged['Living Situation'] == 'PRIVATE RESIDENCE') & \
 (df_merged['Household Composition'] == 'UNKNOWN'),\
 'Household Composition'] = 'COHABITATES WITH OTHERS'

Replace the remaining "unknown" with "not applicable"
df_merged.loc[df_pcs['Household Composition'] == 'UNKNOWN', 'Household Composition'] =
'NOT APPLICABLE'

#Replacing Unknown Prefered language with OTHER
df_merged['Preferred Language'] = df_merged['Preferred Language'].replace({'UNKNOWN':
'ALL OTHER LANGUAGES'})

#Replacing Data not available with Religion nt shared
df_merged['Religious Preference'] = df_merged['Religious Preference'].replace({'DATA NOT
AVAILABLE': 'RELIGION NOT SHARED'})

#Replacing Unknown veteran satus with NO
df_merged['Veteran Status'] = df_merged['Veteran Status'].replace({'UNKNOWN': 'NO'})

#Replacing Unemployed-looking for work and not looking for work with Unemployed & Non-
#paid/Volunteer with unknown employment status
df_merged['Employment Status'] = df_merged['Employment Status'].replace({'UNEMPLOYED,

LOOKING FOR WORK':'UNEMPLOYED',\
 'NOT IN LABOR FORCE:UNEMPLOYED AND NOT

LOOKING FOR WORK':'UNEMPLOYED',\
 'NON-PAID/VOLUNTEER': 'UNKNOWN
EMPLOYMENT STATUS'})

#Replacing No formal education, other & unknown status with Unknown education
df_merged['Education Status'] = df_merged['Education Status'].replace({'NO FORMAL

EDUCATION': 'UNKNOWN EDUCATION',\
 'OTHER': 'UNKNOWN EDUCATION',\
 'UNKNOWN': 'UNKNOWN EDUCATION'})

#Replacing Unknown status with NO
df_merged['Special Education Services'] = df_merged['Special Education
Services'].replace({'NOT APPLICABLE': 'NO', 'UNKNOWN': 'NO'})

#Replacing Unknown status with NOT MI - Other
df_merged['Principal Diagnosis Class'] = df_merged['Principal Diagnosis
Class'].replace({'UNKNOWN': 'NOT MI - OTHER'})

#Replacing Unknown status with NOT MI - Other

Page 35 of 64

df_merged['Additional Diagnosis Class'] = df_merged['Additional Diagnosis
Class'].replace({'UNKNOWN': 'NOT MI - OTHER'})

#Replacing Not Applicable status with NO
df_merged['Medicaid Managed Insurance'] = df_merged['Medicaid Managed
Insurance'].replace({'NOT APPLICABLE': 'NO'})

#Replacing Null values with 0 in 'Population', 'Hospital Count', 'Park Count', and 'Median
Income' columns
df_merged['population'] = df_merged['population'].fillna(0)
df_merged['Unique Hospital Count'] = df_merged['Unique Hospital Count'].fillna(0)
df_merged['Unique Park Count'] = df_merged['Unique Park Count'].fillna(0)
df_merged['Median Household Income'] = df_merged['Median Household Income'].fillna(0)

==
5. Correlation Analysis for nominal data using Cramer's V and chi-square values
==
print('Correlation Analysis \n')

This function generates the Cramer's V value
def cramer_v(x, y):
 n = len(x)
 ct = pd.crosstab(x, y) # crosstab
 chi2 = chi2_contingency(ct)[0]
 v = np.sqrt(chi2 / (n * (np.min(ct.shape) - 1)))
 return v

This function returns a dataframe with Cramer's V values.
def cramer_values (df):
 '''Parameters:DataFrame; Returns: DataFrame
 Takes a DataFrame with nominal attributes and returns a DataFrame with
 Cramer's V values between all pairs of those attributes
 Required libraries:
 import pandas as pd, numpy as np
 from scipy.stats import chi2_contingency'''

 cramer_table = pd.DataFrame(columns=['col1','col2','Cramers V'])
 for i in df.columns:
 for j in df.columns:
 if i != j:
 v = cramer_v(df[i],df[j])
 row = pd.DataFrame({'col1':[i],'col2':[j],'Cramers V':[v]})
 cramer_table = pd.concat([cramer_table, row], ignore_index=True)
 return cramer_table.sort_values(by=['Cramers V'],ascending=False)

Page 36 of 64

cramer_values
pd.options.display.float_format = '{:.2f}'.format
c_results = cramer_values(df_merged)
c_results.to_csv('Cramer_Values.csv', index=False)

Dropping highly correlated variables considering Cramer's value
df_merged.drop(columns=['Unknown Chronic Med Condition','No Chronic Med Condition',\
 'Unknown Insurance Coverage','Medicare Insurance',\
 'Other Chronic Med Condition', 'Veterans Cash Assistance'], inplace=True)

==
6. Converting nominal/ordinal values to numerical values
==
Ordinal to numeric values
df_merged = df_merged.replace({'Education Status':{'PRE-K TO FIFTH GRADE':1,'MIDDLE
SCHOOL TO HIGH SCHOOL':2,\
 'SOME COLLEGE':3,'COLLEGE OR GRADUATE
DEGREE':4,'UNKNOWN EDUCATION':5}})

Replacing the text with Yes or No
df_merged['Hispanic Ethnicity'] = df_merged['Hispanic Ethnicity'].replace({'YES,
HISPANIC/LATINO': 'YES',\
 'NO, NOT HISPANIC/LATINO': 'NO'})

Converting Nominal attribute to multiple binary attributes
cols_to_exclude = ['Program Category','Education Status','population','Unique Hospital
Count','Unique Park Count','Median Household Income']
df_merged = pd.get_dummies(df_merged, columns=[col for col in df_merged.columns if col not
in cols_to_exclude])

Coverting categorical target variable to numerical values
le = LabelEncoder()
df_merged['Program Category'] = le.fit_transform(df_merged['Program Category'])
df_merged.to_csv('PCS_converted.csv', index=False)

Get the mapping of class names to numerical values
class_names = list(le.classes_)

Generating correlation matrix for numerical data
corr_matrix = df_merged.corr()

==
7. Feature Selection using Feature Importances using the Random Forest Model
==

Page 37 of 64

Assigning target and feature variables
X = df_merged.iloc[:, 1:]
y = df_merged.iloc[:, 0]
print(f'\nShape of the original feature data: {X.shape}')

fn = X.columns[0:]
print(f'Originally, we have {len(fn)} features.')

Split the data into training and testing subsets
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =.3,stratify=y)

Create an instance (object) for classification and build a model.
rfcm = RandomForestClassifier().fit(X_train, y_train)

Make predictions using the test data
y_pred = rfcm.predict(X_test)

Show the Classification Report.
print('***Random Forest Model***')
print('\nClassification Report - Original data\n')
print(metrics.classification_report(y_test,y_pred, target_names=class_names))

Find out the significant features for determining the Patient Care
importances = rfcm.feature_importances_
np.sum(importances)

Draw a bar chart to see the sorted importance values with feature names.
df_importances = pd.DataFrame(data=importances, index=fn,
 columns=['importance_value'])
df_importances.sort_values(by = 'importance_value', ascending=False,
 inplace=True)
top_20_features = df_importances.head(20)

plt.barh(top_20_features.index,top_20_features.importance_value)
plt.xlabel('Importance Value')
plt.title(‘Top 20 Feature Importances using Random Forest Classifier')
plt.show()

Set the threshold to the min importance value among the top 20 features
threshold = top_20_features['importance_value'].min()

Build a model with a threshold based on the importance values of the top 20 features
selector = SelectFromModel(estimator=RandomForestClassifier(),threshold=threshold)
X_reduced = selector.fit_transform(X,y)
selected_TF = selector.get_support()

Page 38 of 64

print(f'\nBy setting the threshold to be the min imporatnce of the top 20 features,
{selected_TF.sum()} features are selected from the original feature data.')

Show the first five names of those selected features.
selected_features = []
for i,j in zip(selected_TF, fn):
 if i:
 selected_features.append(j)
print(f'The first five names of selected features are: \n{selected_features[:5]}')

Build a model using those reduced number of features.
X_reduced_train, X_reduced_test, y_reduced_train, y_reduced_test \
 = train_test_split(X_reduced,y,test_size =.3, stratify=y)

rfcm2 = RandomForestClassifier().fit(X_reduced_train, y_reduced_train)
y_reduced_pred = rfcm2.predict(X_reduced_test)
print('\nClassification Report - Reduced set of data\n')
print(metrics.classification_report(y_reduced_test,y_reduced_pred,target_names=class_names))

Output:

Shape of the original feature data: (189870, 208)

Originally, we have 208 features.

Random Forest Model

Classification Report - Original data

Page 39 of 64

 precision recall f1-score support

EMERGENCY 0.74 0.09 0.16 941
INPATIENT 0.80 0.30 0.43 2643
OUTPATIENT 0.83 0.95 0.88 38794
RESIDENTIAL 0.71 0.70 0.70 8851
SUPPORT 0.87 0.41 0.56 5732

accuracy 0.81 56961
macro avg 0.79 0.49 0.55 56961
weighted avg 0.81 0.81 0.79 56961

By setting the threshold to be the min importance of the top 20 features, 20 features are
selected from the original feature data.

The first five names of selected features are:
['Education Status', 'population', 'Unique Hospital Count', 'Unique Park Count', 'Median
Household Income']

Classification Report - Reduced set of data

 precision recall f1-score support

EMERGENCY 0.29 0.05 0.09 941
INPATIENT 0.57 0.21 0.31 2643
OUTPATIENT 0.81 0.92 0.86 38794
RESIDENTIAL 0.61 0.59 0.60 8851
SUPPORT 0.67 0.39 0.49 5732

accuracy 0.77 56961
macro avg 0.59 0.43 0.47 56961
weighted avg 0.74 0.77 0.74 56961

Page 40 of 64

=====================================
8. PCA (Primary Component Analysis)
=====================================
z_score normalize the data except the dummy variables
scaler = StandardScaler()
Xn = np.c_[scaler.fit_transform(X.iloc[:,:5].values), X.iloc[:, 5:].values]

Create an instance PCA and build the model using Xn
pca_prep = PCA().fit(Xn)

pca_prep.explained_variance_ #Eigen Values
pca_prep.explained_variance_ratio_

Generating a scree plot to find an elbow or an inflection point on the plot
plt.plot(pca_prep.explained_variance_ratio_)
plt.xlabel('k number of components')
plt.ylabel('Explained variance')
plt.grid(True)
plt.show()

Alternative plot using cumulative ratios
plt.plot(np.cumsum(pca_prep.explained_variance_ratio_))
plt.xlabel('k number of components')
plt.ylabel('cumulative explained variance')
plt.grid(True)
plt.show()

From scree plot, we choose 30 components
n_pc = 20
pca = PCA(n_components= n_pc).fit(Xn)

X_pca has now 30 columns of primary components.
Xp = pca.transform(Xn)
print(f'After PCA, we use {pca.n_components_} components.\n')

Split the data into training and testing subsets for PCA data
Xp_train, Xp_test, yp_train, yp_test = train_test_split(Xp,y,test_size =.3,
 random_state=1234,stratify=y)

Create random forest model using the transformed data.
rfcm_pca = RandomForestClassifier().fit(Xp_train, yp_train)

Predict the target values using the test data.
y_pred_pca = rfcm_pca.predict(Xp_test)

Generate the Classification report

Page 41 of 64

print('Classification Report - PCA\n')
print(metrics.classification_report(yp_test,y_pred_pca, target_names=class_names))

Output:

Scree Plot Alternative Plot using Cumulative ratios

After PCA, we use 20 components.

Random Forest Model

Classification Report - PCA

 precision recall f1-score support

EMERGENCY 0.58 0.04 0.07 941
INPATIENT 0.64 0.13 0.22 2643
OUTPATIENT 0.78 0.95 0.86 38794
RESIDENTIAL 0.66 0.55 0.60 8851
SUPPORT 0.82 0.30 0.44 5732

accuracy 0.77 56961
macro avg 0.70 0.39 0.44 56961
weighted avg 0.76 0.77 0.73 56961

Page 42 of 64

=====================================
9. Naive Random Over Sampling
=====================================
Create an instance of RandomOverSampler
ros = RandomOverSampler(random_state=1234)
X_rs, y_rs = ros.fit_resample(Xn, y)
Xp_rs, yp_rs = ros.fit_resample(Xp, y)

X_rs.shape
y_rs.shape
Xp_rs.shape
yp_rs.shape
print(f'Over-sampled data: {np.unique(y_rs, return_counts=1)}')

Output:
Over-sampled data: (array([0, 1, 2, 3, 4]), array([129314, 129314, 129314, 129314, 129314]))

==
Split the data into training and testing subsets for Original, Oversampled and PCA with
Oversampled data
==
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size =.3,
 random_state=1234, stratify=y)

X_rs_train, X_rs_test, y_rs_train, y_rs_test = train_test_split(X_rs,y_rs,test_size =.3,
 random_state=1234,stratify=y_rs)

Xp_rs_train, Xp_rs_test, yp_rs_train, yp_rs_test = train_test_split(Xp_rs,yp_rs,test_size =.3,
 random_state=1234,stratify=yp_rs)

======================================
10. Random Forest Classification Model
======================================
'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

rfc_start = time.time()

rfc = RandomForestClassifier().fit(X_train, y_train)
rfc_rs = RandomForestClassifier().fit(X_rs_train, y_rs_train)
rfc_rs_pca = RandomForestClassifier().fit(Xp_rs_train, yp_rs_train)

Page 43 of 64

Predict the target values using the test data.
y_pred_rf = rfc.predict(X_test)
y_rs_pred_rf = rfc_rs.predict(X_test)
yp_rs_pred_rf = rfc_rs_pca.predict(Xp_test)

Generate the Classification report
print('*** Random Forest Classification Model ***\n')
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_rf, target_names=class_names))

print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_rf, target_names=class_names))

print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_rf, target_names=class_names))

rfc_end = time.time()
print(f'Random Forest Classification Model Execution time is {(rfc_end - rfc_start):.2f}
seconds')

Output:

*** Random Forest Classification Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.71 0.09 0.16 941
INPATIENT 0.82 0.29 0.43 2643
OUTPATIENT 0.83 0.95 0.88 38794
RESIDENTIAL 0.71 0.70 0.71 8851
SUPPORT 0.85 0.41 0.56 5732

accuracy 0.81 56961
macro avg 0.79 0.49 0.55 56961
weighted avg 0.81 0.81 0.79 56961

Classification Report - Oversampled Data

 precision recall f1-score support

EMERGENCY 0.87 0.52 0.65 941
INPATIENT 0.44 0.69 0.54 2643

Page 44 of 64

OUTPATIENT 0.90 0.89 0.90 38794
RESIDENTIAL 0.64 0.85 0.73 8851
SUPPORT 0.92 0.37 0.52 5732

accuracy 0.82 56961
macro avg 0.75 0.66 0.67 56961
weighted avg 0.84 0.82 0.81 56961

Classification Report - Oversampled PCA Data

 precision recall f1-score support

EMERGENCY 0.92 1.00 0.96 941
INPATIENT 0.95 1.00 0.98 2643
OUTPATIENT 1.00 0.96 0.98 38794
RESIDENTIAL 0.90 0.99 0.94 8851
SUPPORT 0.97 1.00 0.98 5732

accuracy 0.97 56961
macro avg 0.95 0.99 0.97 56961
weighted avg 0.98 0.97 0.97 56961

Random Forest Classification Model Execution time is 215.25 seconds

Regularization and hyperparameters
rfc_clf = RandomForestClassifier(n_estimators = 100,
 bootstrap = True,
 max_samples = None, # int, float
 oob_score = True,
 criterion = "gini",
 #splitter = "best", not available here, performs best
 max_depth = 1,#decision stumps
 min_samples_split = 2,
 min_samples_leaf = 1,
 min_weight_fraction_leaf = 0,
 max_features = None,
 max_leaf_nodes = None,
 random_state = None,
 min_impurity_decrease = 0.0,
 class_weight = None,
 ccp_alpha = 0.0,
 n_jobs = -1,
 verbose=1
)
rfc_clf.fit(Xp_rs_train, yp_rs_train)

Page 45 of 64

print("Test score:",rfc_clf.score(Xp_rs_train, yp_rs_train))
print("OOB score:",rfc_clf.oob_score_)

Output:

Test score: 0.29713099963911943
OOB score: 0.2970433572201887

=======================================
11. Decision Tree Classification Model
=======================================
'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

dtc_start = time.time()

dtc = DecisionTreeClassifier().fit(X_train, y_train)
dtc_rs = DecisionTreeClassifier().fit(X_rs_train, y_rs_train)
dtc_rs_pca = DecisionTreeClassifier().fit(Xp_rs_train, yp_rs_train)

Predict the target values using the test data
y_pred_dt = dtc.predict(X_test)
y_rs_pred_dt = dtc_rs.predict(X_test)
yp_rs_pred_dt = dtc_rs_pca.predict(Xp_test)

Generate the Classification report
print('*** Decision Tree Classification Model ***\n')
print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_dt,target_names=class_names))

print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_dt,target_names=class_names))

print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_dt, target_names=class_names))

dtc_end = time.time()
print(f'Decision Tree Classification Model Execution time is {(dtc_end - dtc_start):.2f} seconds')

Output:

Page 46 of 64

*** Decision Tree Classification Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.14 0.15 0.14 941
INPATIENT 0.33 0.36 0.34 2643
OUTPATIENT 0.83 0.82 0.82 38794
RESIDENTIAL 0.58 0.59 0.58 8851
SUPPORT 0.45 0.48 0.47 5732

accuracy 0.71 56961
macro avg 0.47 0.48 0.47 56961
weighted avg 0.72 0.71 0.72 56961

Classification Report - Oversampled Data

 precision recall f1-score support

EMERGENCY 0.80 1.00 0.89 941
INPATIENT 0.85 1.00 0.92 2643
OUTPATIENT 1.00 0.94 0.97 38794
RESIDENTIAL 0.92 0.99 0.95 8851
SUPPORT 0.89 1.00 0.94 5732

accuracy 0.96 56961
macro avg 0.89 0.99 0.93 56961
weighted avg 0.96 0.96 0.96 56961

Classification Report - Oversampled PCA Data
 precision recall f1-score support

EMERGENCY 0.74 1.00 0.85 941
INPATIENT 0.81 1.00 0.90 2643
OUTPATIENT 1.00 0.92 0.95 38794
RESIDENTIAL 0.87 0.99 0.92 8851
SUPPORT 0.84 1.00 0.91 5732

accuracy 0.94 56961
macro avg 0.85 0.98 0.91 56961
weighted avg 0.95 0.94 0.94 56961

Decision Tree Classification Model Execution time is 22.84 seconds
Hyperparameter Tuning
param_grid = {

Page 47 of 64

 'criterion': ['gini', 'entropy'],
 'max_depth': [25, 30, 35],
 'min_samples_split': [2,3],
 'min_samples_leaf': [2,3],
 'max_features': ['auto', 'sqrt', 'log2', None],
 'class_weight': ['balanced', None]
}

Create a decision tree classifier object
dt = DecisionTreeClassifier(random_state=42)

Create a GridSearchCV object with 10-fold cross-validation
gscv = GridSearchCV(dt, param_grid, cv=2, scoring='accuracy', verbose=1)
gscv_precision = GridSearchCV(dt, param_grid, cv=2, scoring='precision_macro', verbose=1)
gscv_recall = GridSearchCV(dt, param_grid, cv=2, scoring='recall_macro', verbose=1)

Fit the GridSearchCV object on the training data
gscv.fit(Xp_rs_train, yp_rs_train)

Print the best parameters and the best score
print('Best parameters:', gscv.best_params_)
print('Best score:', gscv.best_score_)

Output:

Best parameters: {'class_weight': 'balanced', 'criterion': 'entropy', 'max_depth': 30,
'max_features': None, 'min_samples_leaf': 2, 'min_samples_split': 2}
Best score: 0.9070603701603341

===
12. Gradient Boosting Classification Model
===
'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

gbc_start = time.time()

gbc = GradientBoostingClassifier().fit(X_train, y_train)
gbc_rs = GradientBoostingClassifier().fit(X_rs_train, y_rs_train)
gbc_rs_pca = GradientBoostingClassifier().fit(Xp_rs_train, yp_rs_train)

Predict the target values using the test data
y_pred_gb = gbc.predict(X_test)
y_rs_pred_gb = gbc_rs.predict(X_test)
yp_rs_pred_gb = gbc_rs_pca.predict(Xp_test)

Page 48 of 64

Show the Classification Report
print('*** Gradient Boosting Classification Model ***\n')

print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_gb, target_names=class_names))

print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_gb, target_names=class_names))

print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_gb, target_names=class_names))

gbc_end = time.time()
print(f'Gradient Boosting Classification Model Execution time is {(gbc_end - gbc_start):.2f}
seconds')

Output:

*** Gradient Boosting Classification Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.63 0.06 0.11 941
INPATIENT 0.76 0.24 0.37 2643
OUTPATIENT 0.81 0.94 0.87 38794
RESIDENTIAL 0.67 0.62 0.64 8851
SUPPORT 0.77 0.37 0.50 5732

accuracy 0.79 56961
macro avg 0.73 0.45 0.50 56961
weighted avg 0.78 0.79 0.76 56961

Classification Report - Oversampled Data

 precision recall f1-score support

EMERGENCY 0.08 0.50 0.14 941
INPATIENT 0.16 0.64 0.25 2643
OUTPATIENT 0.91 0.58 0.71 38794
RESIDENTIAL 0.51 0.69 0.59 8851
SUPOORT 0.59 0.33 0.42 5732

Page 49 of 64

accuracy 0.57 56961
macro avg 0.45 0.55 0.42 56961
weighted avg 0.77 0.57 0.63 56961

Classification Report - Oversampled PCA Data

 precision recall f1-score support

EMERGENCY 0.07 0.49 0.13 941
INPATIENT 0.19 0.46 0.27 2643
OUTPATIENT 0.90 0.57 0.70 38794
RESIDENTIAL 0.48 0.76 0.59 8851
SUPPORT 0.38 0.40 0.39 5732

accuracy 0.57 56961
macro avg 0.41 0.54 0.42 56961
weighted avg 0.74 0.57 0.62 56961

Gradient Boosting Classification Model Execution time is 2322.39 seconds

==================================
13. Logistic Regression Model
==================================
'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

clr_start = time.time()

clr = LogisticRegression().fit(X_train, y_train)
clr_rs = LogisticRegression().fit(X_rs_train, y_rs_train)
clr_rs_pca = LogisticRegression().fit(Xp_rs_train, yp_rs_train)

Predict the target values using the test data
y_pred_lr = clr.predict(X_test)
y_rs_pred_lr = clr_rs.predict(X_test)
yp_rs_pred_lr = clr_rs_pca.predict(Xp_test)

Show the Classification Report
print('*** Logistic Regression Model ***\n')

print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_lr, target_names=class_names,
zero_division=0))

print('\nClassification Report - Oversampled Data\n')

Page 50 of 64

print(metrics.classification_report(y_test,y_rs_pred_lr, target_names=class_names,
zero_division=0))

print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_lr, target_names=class_names,
zero_division=0))

clr_end = time.time()
print(f'Logistic Regression Model Execution time is {(clr_end - clr_start):.2f} seconds')

Output:

*** Logistic Regression Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.00 0.00 0.00 941
INPATIENT 0.00 0.00 0.00 2643
OUTPATIENT 0.68 1.00 0.81 38794
RESIDENTIAL 0.00 0.00 0.00 8851
SUPPORT 0.00 0.00 0.00 5732

accuracy 0.68 56961
macro avg 0.14 0.20 0.16 56961
weighted avg 0.46 0.68 0.55 56961

Classification Report - Oversampled Data

precision recall f1-score support

EMERGENCY 0.07 0.17 0.10 941
INPATIENT 0.31 0.12 0.17 2643
OUTPATIENT 0.91 0.02 0.03 38794
RESIDENTIAL 0.17 0.99 0.29 8851
SUPPORT 0.65 0.04 0.07 5732

accuracy 0.18 56961
macro avg 0.42 0.27 0.13 56961
weighted avg 0.73 0.18 0.08 56961

Classification Report - Oversampled PCA Data

 precision recall f1-score support

Page 51 of 64

EMERGENCY 0.05 0.39 0.09 941
INPATIENT 0.16 0.35 0.22 2643
OUTPATIENT 0.88 0.53 0.66 38794
RESIDENTIAL 0.46 0.69 0.55 8851
SUPPORT 0.27 0.33 0.30 5732

accuracy 0.52 56961
macro avg 0.36 0.46 0.36 56961
weighted avg 0.71 0.52 0.58 56961

Logistic Regression Model Execution time is 126.15 seconds

Hyperparameter tuning using GridSearchCV
clr_grid_start = time.time()

params_clr = {"penalty":["l2"],"C":[0.1,1,10]},
clr_grid =
GridSearchCV(estimator=LogisticRegression(max_iter=1000),param_grid=params_clr,
 scoring = ["accuracy","roc_auc_ovr_weighted","f1_macro"],
 refit="roc_auc_ovr_weighted", #True
 cv = 3, #If our estimator is classifier automatically do stratified CV
 n_jobs=-1, #Num CPUs to use for calculation, -1 means all
 verbose = 1, #Output status updates, higher number-> more messages
 return_train_score=True #if false our results won't contain training scores
)
clr_grid.fit(Xn, y)

clr_grid_end = time.time()

print('\n\n **Report**')
print(f'The best estimator: {clr_grid.best_estimator_}')
print(f'The best parameters:\n {clr_grid.best_params_}')
print(f'The best score: {clr_grid.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(clr_grid_end - clr_grid_start):.2f} seconds')

Output:
Fitting 3 folds for each of 3 candidates, totalling 9 fits
Report
The best estimator: LogisticRegression(C=0.1, max_iter=1000)
The best parameters: {'C': 0.1, 'penalty': 'l2'}
The best score: 0.8271
Total run time for GridSearchCV: 200.87 seconds

===
14. Naive Bayesian Classification Model
===

Page 52 of 64

'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

gnb_start = time.time()

gnb = GaussianNB().fit(X_train, y_train)
gnb_rs = GaussianNB().fit(X_rs_train, y_rs_train)
gnb_rs_pca = GaussianNB().fit(Xp_rs_train, yp_rs_train)

Calculate the posteriori probabilities
p = gnb.predict_proba(X_test)
p_rs = gnb_rs.predict_proba(X_test)
p_rs_pca = gnb_rs_pca.predict_proba(Xp_test)

Predict the target values using the test data
y_pred_gnb = gnb.predict(X_test)
y_rs_pred_gnb = gnb_rs.predict(X_test)
yp_rs_pred_gnb = gnb_rs_pca.predict(Xp_test)

Show the Classification Report
print('*** Naive Bayesian Classification Model ***\n')

print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_gnb,zero_division=0))

print('\nClassification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_gnb,zero_division=0))

print('\nClassification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_gnb,zero_division=0))

gnb_end = time.time()
print(f'Gaussian Naive Bayesian Model Execution time is {(gnb_end - gnb_start):.2f} seconds')

Output:

*** Naive Bayesian Classification Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.00 0.00 0.00 941
INPATIENT 0.00 0.00 0.00 2643
OUTPATIENT 0.68 1.00 0.81 38794
RESIDENTIAL 0.00 0.00 0.00 8851

Page 53 of 64

SUPPORT 0.00 0.00 0.00 5732

accuracy 0.68 56961
macro avg 0.14 0.20 0.16 56961
weighted avg 0.46 0.68 0.55 56961

Classification Report - Oversampled Data

 precision recall f1-score support

EMERGENCY 0.02 0.29 0.03 941
INPATIENT 0.20 0.11 0.15 2643
OUTPATIENT 0.69 0.68 0.68 38794
RESIDENTIAL 0.07 0.01 0.01 8851
SUPPORT 0.67 0.03 0.06 5732

accuracy 0.48 56961
macro avg 0.33 0.23 0.19 56961
weighted avg 0.55 0.48 0.48 56961

Classification Report - Oversampled PCA Data

 precision recall f1-score support

EMERGENCY 0.04 0.33 0.07 941
INPATIENT 0.13 0.45 0.21 2643
OUTPATIENT 0.88 0.52 0.66 38794
RESIDENTIAL 0.41 0.64 0.50 8851
SUPPORT 0.35 0.22 0.27 5732

accuracy 0.50 56961
macro avg 0.36 0.43 0.34 56961
weighted avg 0.71 0.50 0.56 56961

Gaussian Naive Bayesian Model Execution time is 2.43 seconds

Hyperparameter tuning using GridSearchCV
gnb_grid_start = time.time()

param_gnb = {'priors': [[0.2, 0.2, 0.2, 0.2, 0.2], [0.1, 0.15, 0.25, 0.3, 0.2]],
 'var_smoothing': [1e-50, 1e-40]}

Create a Naive Bayesian classifier object

Page 54 of 64

gnb_grid = GaussianNB(priors = None, # class priors, if defined priors won't be set from data
 var_smoothing = 1e-9) # added this time maximum feature variance

 onto variance for smoothing

Create a GridSearchCV object with 10-fold cross-validation
gscv = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='accuracy', verbose=1)
gscv_precision = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='precision_macro',
verbose=1)
gscv_recall = GridSearchCV(gnb_grid, param_gnb, cv=10, scoring='recall_macro', verbose=1)

Fit the GridSearchCV object on the training data
gscv.fit(Xp_rs_train, yp_rs_train)

gnb_grid_end = time.time()

print('\n\n **Report**')
print(f'The best estimator: {gscv.best_estimator_}')
print(f'The best parameters:\n {gscv.best_params_}')
print(f'The best score: {gscv.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(gnb_grid_end - gnb_grid_start):.2f} seconds')

Output:
Fitting 10 folds for each of 4 candidates, totalling 40 fits
Report
The best estimator: GaussianNB(priors=[0.2, 0.2, 0.2, 0.2, 0.2], var_smoothing=1e-50)
The best parameters:{'priors': [0.2, 0.2, 0.2, 0.2, 0.2], 'var_smoothing': 1e-50}
The best score: 0.4340
Total run time for GridSearchCV: 4.51 seconds

Page 55 of 64

===================================
15. Neural Network Classification Model
===================================

Hyperparameter tuning using RandomizedSearchCV

nnm_rand = MLPClassifier()

params_rand = {
 'hidden_layer_sizes': [(160,), (180,), (200,), (220,), (160, 160), (180, 180), (200, 200), (220,
220)],
 'activation': ['logistic', 'tanh', 'relu'],
 'learning_rate': ['adaptive', 'constant'],
 'learning_rate_init': [0.001, 0.01, 0.1],
 'max_iter': [200, 500, 1000, 2000]
 }

start_rand = time.time()

rand_src = RandomizedSearchCV(estimator= nnm_rand, param_distributions =
params_rand,n_iter=10, random_state=1234, scoring='accuracy')
rand_src.fit(Xn,y)

end_rand = time.time()
print('\n\n **Report**')
print(f'The best estimator: {rand_src.best_estimator_}')
print(f'The best parameters:\n {rand_src.best_params_}')
print(f'The best score: {rand_src.best_score_:.4f}')
print(f'Total run time for RandomizedSearchCV: {(end_rand - start_rand):.2f} seconds')

Output:
The best estimator: MLPClassifier(hidden_layer_sizes=(200, 200), learning_rate_init=0.01,
max_iter=1000)
The best parameters: {'max_iter': 1000, 'learning_rate_init': 0.01, 'learning_rate': 'constant',
'hidden_layer_sizes': (200, 200), 'activation': 'relu'}
The best score: 0.7576
Total run time for RandomizedSearchCV: 36189.82 seconds

Page 56 of 64

Hyperparameter tuning using GridSearchCV

nnm = MLPClassifier()
params_grid = {'hidden_layer_sizes':[(20), (30)], 'activation':['logistic','relu','tanh'],

 'max_iter': [4000,5000]}

start_grid = time.time()

grid_src = GridSearchCV(estimator= nnm, param_grid= params_grid)
grid_src.fit(Xn, y)

end_grid = time.time()
print('\n\n **Report**')
print(f'The best estimator: {grid_src.best_estimator_}')
print(f'The best parameters:\n {grid_src.best_params_}')
print(f'The best score: {grid_src.best_score_:.4f}')
print(f'Total run time for GridSearchCV: {(end_grid - start_grid):.2f} seconds')

Output:
The best estimator: MLPClassifier(hidden_layer_sizes=30, max_iter=5000)
The best parameters: {'activation': 'relu', 'hidden_layer_sizes': 30, 'max_iter': 5000}
The best score: 0.7665
Total run time for GridSearchCV: 13483.00 seconds

nnm_start = time.time()

'''Create three models: first using the Original data, second using the Oversampled data
and the third using the Oversampled transformed data'''

nnm = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
 max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant',

random_state=1234)
nnm_rs = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
 max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant',

random_state=1234)
nnm_rs_pca = MLPClassifier(hidden_layer_sizes=(200, 200), activation='relu',
 max_iter=1000, learning_rate_init = 0.01, learning_rate = 'constant',

random_state=1234)

nnm.fit(X_train, y_train)
nnm_rs.fit(X_rs_train, y_rs_train)
nnm_rs_pca.fit(Xp_rs_train, yp_rs_train)

Page 57 of 64

Predict the target values using the test data
y_pred_nnm = nnm.predict(X_test)
y_rs_pred_nnm = nnm_rs.predict(X_test)
yp_rs_pred_nnm = nnm_rs_pca.predict(Xp_test)

Show the Classification Report
print('*** Neural Networks Classification Model ***\n')

print('Classification Report - Original Data\n')
print(metrics.classification_report(y_test,y_pred_nnm,target_names=class_names))

print('Classification Report - Oversampled Data\n')
print(metrics.classification_report(y_test,y_rs_pred_nnm,target_names=class_names))

print('Classification Report - Oversampled PCA Data\n')
print(metrics.classification_report(yp_test,yp_rs_pred_nnm,target_names=class_names))

nnm_end = time.time()
print(f'Neural Networks Classification Model Execution time is {(nnm_end - nnm_start):.2f}
seconds')

Page 58 of 64

Output:
*** Neural Networks Classification Model ***

Classification Report - Original Data

 precision recall f1-score support

EMERGENCY 0.49 0.04 0.07 941
INPATIENT 0.52 0.08 0.14 2643
OUTPATIENT 0.69 0.99 0.82 38794
RESIDENTIAL 0.59 0.01 0.02 8851
SUPPORT 0.68 0.08 0.15 5732

accuracy 0.69 56961
macro avg 0.60 0.24 0.24 56961
weighted avg 0.66 0.69 0.58 56961

Classification Report - Oversampled Data

 precision recall f1-score support

EMERGENCY 0.13 0.12 0.13 941
INPATIENT 0.32 0.11 0.16 2643
OUTPATIENT 0.69 0.95 0.80 38794
RESIDENTIAL 0.11 0.02 0.03 8851
SUPPORT 0.54 0.06 0.11 5732

accuracy 0.66 56961
macro avg 0.36 0.25 0.24 56961
weighted avg 0.56 0.66 0.57 56961

Classification Report - Oversampled PCA Data

 precision recall f1-score support

EMERGENCY 0.36 0.96 0.53 941
INPATIENT 0.40 0.82 0.54 2643
OUTPATIENT 0.93 0.62 0.74 38794
RESIDENTIAL 0.52 0.85 0.64 8851
SUPPORT 0.43 0.65 0.52 5732

accuracy 0.67 56961
macro avg 0.53 0.78 0.59 56961
weighted avg 0.78 0.67 0.69 56961

Neural Networks Classification Model Execution time is 1485.34 seconds.

Page 59 of 64

==
16. K-Fold Cross Validation for Classification – Neural Network
==
nnm_kf_start = time.time()

Use Cross_val_score
nnm_mean_score = np.mean(cross_val_score(nnm,Xn,y,cv=5))
nnm_rs_mean_score = np.mean(cross_val_score(nnm_rs,X_rs,y_rs,cv=5))
nnm_rs_pca_mean_score = np.mean(cross_val_score(nnm_rs_pca,Xp_rs,yp_rs,cv=5))

Print the scores
print('** Mean Scores (Accuracies) **')
print(f'Mean Score for Neural Network - Original Data: {nnm_mean_score:.4f}')
print(f'Mean Score for Neural Network - Oversampled Data: {nnm_rs_mean_score:.4f}')
print(f'Mean Score for Neural Network - Oversampled PCA Data:
{nnm_rs_pca_mean_score:.4f}')

nnm_kf_end = time.time()
print(f'Neural Network Model with K-Fold Cross Validation Execution time is {(nnm_kf_end -
nnm_kf_start):.2f} seconds')

Output:
** Mean Scores (Accuracies) **
Mean Score for Neural Network - Original Data: 0.7574
Mean Score for Neural Network - Oversampled Data: 0.7100
Mean Score for Neural Network - Oversampled PCA Data: 0.7612
Neural Network Model with K-Fold Cross Validation Execution time is 10170.29 seconds

==============================
17.Support Vector Machines
==============================

Hyperparameter tuning using RandomizedSearchCV

params_SVM = {'C': (5, 10, 50), # Regularization parameter
 'kernel': ['linear', 'rbf', 'poly'], # Kernel type
 'penalty': ["l1", "l2"], # The norm used in the penalization
 'dual': [True, False], # Whether to use the dual or primal formulation
 'max_iter': [100000], # The maximum number of iterations
 'tol': (1e-8, 1e-10, 1e-15)}

Create an instance of LinearSVC

Page 60 of 64

svm = LinearSVC()
rand_svm = RandomizedSearchCV(estimator= svm, param_distributions = params_SVM,
 n_iter=10,cv=2, verbose=0, n_jobs=-1,random_state=42)
rand_svm.fit(Xn,y)

print('\n\n **Report**')
print(f'The best estimator: {rand_svm.best_estimator_}')
print(f'The best parameters:\n {rand_svm.best_params_}')
print(f'The best score: {rand_svm.best_score_:.4f}')

Output:
The best estimator: LinearSVC(C=50, dual=False, max_iter=100000, tol=1e-10)
The best parameters:{'tol': 1e-10, 'max_iter': 100000, 'dual': False, 'C': 50}
The best score: 0.7478

linear_svm_start = time.time()

Specific linear SVC implementation that scales better to larger number of data
lin_svc_clf = LinearSVC(penalty="l2",
 loss="squared_hinge",
 tol=1e-4,
 C = 1,
 max_iter=10000,
 verbose=True) #ovr multiclass implementation

lin_svc_clf.fit(Xp_train, yp_train)
lin_svc_clf.coef_, lin_svc_clf.classes_ #weights for each feature
y_pred_svc = lin_svc_clf.predict(Xp_test)

print('*** Support Vector Machines Classification Model ***\n')

lin_svc_cm = confusion_matrix(yp_test, y_pred_svc)
print('Confusion Matrix\n')
print(lin_svc_cm)
print(f'Accuracy from training data: {lin_svc_clf.score(Xp_train, yp_train):.2f}')
print(f'Accuracy from testing data: {lin_svc_clf.score(Xp_test, yp_test):.2f}')

linear_svm_end = time.time()
print(f"Linear SVM RUN time: {(linear_svm_end - linear_svm_start):.2f} seconds")

Output:
*** Support Vector Machines Classification Model ***

Page 61 of 64

Confusion Matrix
[[0 0 856 75 10]
 [0 0 2070 317 256]
 [0 0 36663 2028 103]
 [0 0 4875 3931 45]
 [0 0 3801 642 1289]]

Accuracy from training data: 0.73
Accuracy from testing data: 0.74
Linear SVM RUN time: 228.10 seconds

==============================
18. K-means
==============================

#scaled and handled outliers
clf=ECOD()
clf.fit(X)
outliers=clf.predict(X)
X["outliers"]=outliers
#Data without outliers
X_org_no_outlier=X[X"outliers"]==0]
X_org_no_outlier=X_org_no_outlier.drop(["outliers"],axis=1)
#Data with outliers
X_org_with_outlier=X.copy()
X_org_with_outlier=X_org_with_outlier.drop(["outliers"],axis=1)

Initialize the list for inertia values (sum of squared distances)
inertia_list=[]
#Calculate the inertia for the number of clusters
for i in range(2,50):
 km=KMeans(n_clusters=i,random_state=1234)
 km.fit(X_org_no_outlier)
 inertia_list.append(km.inertia_)
 #draw plot to find elbow
plt.plot(range(2,50),inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()

Page 62 of 64

#Silhoutte for each cluster
def make_Silhouette_plot(X, n_clusters):
 plt.xlim([-0.1, 1])
 plt.ylim([0, len(X) + (n_clusters + 1) * 10])
 clusterer = KMeans(n_clusters=n_clusters, max_iter = 1000, n_init = 10, init = 'k-means++',
random_state=10)
 cluster_labels = clusterer.fit_predict(X)
 silhouette_avg = silhouette_score(X, cluster_labels)
 print(
 "For n_clusters =", n_clusters,
 "The average silhouette_score is :", silhouette_avg,
)

Compute the silhouette scores for each sample
 sample_silhouette_values = silhouette_samples(X, cluster_labels)
 y_lower = 10
 for i in range(n_clusters):
 ith_cluster_silhouette_values = sample_silhouette_values[cluster_labels == i]
 ith_cluster_silhouette_values.sort()
 size_cluster_i = ith_cluster_silhouette_values.shape[0]
 y_upper = y_lower + size_cluster_i
 color = cm.nipy_spectral(float(i) / n_clusters)
 plt.fill_betweenx(
 np.arange(y_lower, y_upper),
 0,

Page 63 of 64

 ith_cluster_silhouette_values,
 facecolor=color,
 edgecolor=color,
 alpha=0.7,
)
 plt.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
 y_lower = y_upper + 10
 plt.title(f"The Silhouette Plot for n_cluster = {n_clusters}", fontsize=26)
 plt.xlabel("The silhouette coefficient values", fontsize=24)
 plt.ylabel("Cluster label", fontsize=24)
 plt.axvline(x=silhouette_avg, color="red", linestyle="--")
 plt.yticks([])
 plt.xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

range_n_clusters = list(range(2,8))

for n_clusters in range_n_clusters:
 print(f"N cluster: {n_clusters}")
 make_Silhouette_plot(X_org_no_outlier, n_clusters)
 plt.savefig('Silhouette_plot_{}.png'.format(n_clusters))
 plt.close()

km=KMeans(n_clusters=5,
 init='k-means++',
 n_init=10,
 max_iter=100,
 random_state=42)

cluster_predict=km.fit_predict(X_org_no_outlier) #build a model
kmlabels=km.labels_ #Show the cluster number and assign them to a variable

N cluster: 2
For n_clusters = 2 The average silhouette_score is : 0.7169587649563056
N cluster: 3
For n_clusters = 3 The average silhouette_score is : 0.8131721901490682
N cluster: 4
For n_clusters = 4 The average silhouette_score is : 0.7565695122730917
N cluster: 5
For n_clusters = 5 The average silhouette_score is : 0.7070526338709167
N cluster: 6
For n_clusters = 6 The average silhouette_score is : 0.7134284713947161
N cluster: 7
For n_clusters = 7 The average silhouette_score is : 0.7271153883236817

Page 64 of 64

km.inertia_
km.n_clusters
X_org_no_outlier_cluster=np.column_stack((kmlabels,X_org_no_outlier)) #Add the cluster
numbers to the original data

#For further analysis, creating pandas dataframes
colnames=['cluster_no']+X_org_no_outlier.columns.tolist()
df=pd.DataFrame(data=X_org_no_outlier, columns=colnames)
df.info()

#Create dataframes for each cluster
df_org_outlier_cluster_0= df.loc[df.cluster_no==0]
df_org_outlier_cluster_1= df.loc[df.cluster_no==1]
df_org_outlier_cluster_2= df.loc[df.cluster_no==2]
df_org_outlier_cluster_3= df.loc[df.cluster_no==3]
df_org_outlier_cluster_4= df.loc[df.cluster_no==4]
print(f"Davies bouldin score: {davies_bouldin_score(X_org_no_outlier,cluster_predict)}")
print(f"Calinski Score: {calinski_harabasz_score(X_org_no_outlier,cluster_predict)}")
print(f"Silhouette Score: {silhouette_score(X_org_no_outlier,cluster_predict)}")

#Finding summary analysis for the k means cluster for Numerical cols
cols_num=['cluster_no','population','Unique Hospital Count','Unique Park Count']
df[cols_num].groupby('cluster_no').agg([min,max,q1,pd.Series.median,q3])

Davies bouldin score: 0.3957692977093926
Calinski Score: 3708851.9147377876
Silhouette Score: 0.7070526338709167

