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Abstract

Binary-Compatibility with Linux Application for a Unikernel Written in Rust

Author: Laurent Pool
Supervisor: Dr. Pierre Olivier

This project was shared with Christopher Densham

The aim of this project is to adapt a unikernel written in Rust, RustyHermit, to be binary
compatible with Linux applications. Unikernels are specialised lightweight virtual machines
running a single application. They are lightweight as they only provide the bare minimum op-
erating system functionality and resources required to run the application. It is for this reason,
as well as their security benefits, that they are good contenders for use in cloud and edge com-
puting. However, their widespread use has been limited due the effort required to port existing
applications in order to run them as unikernels. A solution to this previously explored is a new
model for unikernels, binary compatible unikernels, which significantly reduces the porting
effort for the application.
This project explores combining the binary compatibility model, with another model of uniker-
nels which boasts memory safety through the use of memory safe programming languages, in
an effort to combine the best of these two approaches. At the end of the project we show that
binary-compatibility can be achieved on a memory safe unikernel, RustyHermit, by running a
“Hello World!” application and some more assembly applications, all compiled for Linux.
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Chapter 1

Introduction

INTRODUCTION Unikernels are lightweight, fast in terms of execution and deployment time,
secure internally and between other unikernels. All these benefits tick most of the boxes of
many virtualisation application domains: namely HPC [20], cloud and edge deployed resources
[1, 18, 3] and IoT [21]. They are also a unique way of exploring operating systems on a smaller
scale which I have found out over the development of this project. However, they have so far
mostly remained as niched projects and not strong contenders when it comes to choosing be-
tween different virtual machine implementations in these domains [3, 16]. One of the mains
reasons for this is due to the large amount of effort required or sometimes impossibility in port-
ing an existing application to use this approach.

There have been two main design approaches to unikernels in the past [8]. Legacy uniker-
nels, aimed at supporting legacy applications by emulating the interfaces of other OS’s and
usually written in C and C++ [20, 17, 2, 22]. These languages are however not memory safe,
allowing unchecked memory accesses causing common errors such as null pointer dereferenc-
ing and different types of memory leaks [24, 12]. Memory safety aside, one of these legacy
unikernels, namely Hermitux [16], takes a unique approach in reducing the porting effort, and
even at times eliminating it, by being binary compatible, being able to run binaries natively
compiled for Linux. It does all of this whilst maintaining the unikernel principles.

The other design approach to unikernels is a clean slate approach [8, 10, 19], and contrary
to legacy unikernels does not emulate any OS interface but instead emulates the necessary
application interface providing support applications written in the same high level language of
its library operating system kernel. These high level languages provide the benefits of memory
safety [10, 2]. Unfortunately, these unikernels still require a large amount of effort in porting
the application to use these interfaces.

Both of these design approaches to unikernels, clean slate and more specifically binary com-
patible unikernels within legacy ones, both have their benefits and downsides and interestingly,
the benefits of each one seems to overcome the weakness of the other. And so a combination
of the two approaches leave us with a unikernel which is binary compatible, overcoming the
porting effort, and provides memory safety which is lacking in legacy unikernels. This is an
attractive solution and one that we have developed using RustyHermit as a base [19].

RustyHermit would be considered as a clean slate unikernel, it is written in the Rust pro-
gramming language, which is memory safe. The way in which Rust provides its memory
safety is through a unique memory management method it calls “ownership” and this allows
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Rust code to run faster as compared to other high-level programming languages [13, 9], which
is attractive both when it comes to kernel development and in the domain of unikernels.

Binary compatibility is achieved by developing a binary loader to load the kernel and the
application binary into the virtual memory address space. In addition to this, a system call
handler and a set of 19 system calls were developed to support the application at runtime whilst
running as a unikernel. The unikernel we end up with is binary compatibility, being able to run
assembly application binaries compiled for Linux with no porting required. We demonstrate
its results that the project is able to succeed in running a set of assembly applications whilst
maintaining unikernel principles. However, due to issues in the development of the project
relating, we are not able to support C applications.

This report, describes the design of this new unikernel hybrid, describes the development
process of implementing this unikernel. We also evaluate if this unikernel we end up with
actually solves the two issues of porting the application and memory safety and suggest further
modifications to it for the future.
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Chapter 2

Background & Related Works

2.1 Unikernels
Unikernels are customised, single address space virtual machine images constructed with an
application and a library operating system providing the bare minimum kernel-functionality in
order for the application to run as required. They can be executed as virtualized guests on top
of a hypervisor. An application can be run as a unikernel by compiling it statically against the
kernel of the library operating system.

The minimalist approach of unikernels makes their memory footprint small since it leaves
out all the unnecessary and unused functionality which are required for a general-purpose op-
erating systems to perform and run a wide variety of functions and applications. This is not
the case of unikernels which aim to run a single application. The resulting small code size of
the unikernel which provides these few necessary functionality has the advantage of creating a
reduced attack surface making it more secure.

Since unikernels only run one application at a time there is only a single address space
which allows the kernel and application to share. This has the benefit of removing the need
for memory protection between applications since there is only one, which allows the applica-
tion to run at the same highest level privilege as the kernel code, removing the need for costly
switching between privilege levels when performing system calls.

This leads us to another advantage of unikernel, which is its speed. System calls can be
performed as normal function calls since we do not have to change between privilege levels
as mentioned before, and because there is no need to initialise virtual devices and services not
needed by the application this makes their boot times very fast.

Another advantage which we briefly mentioned before is the security that it provides. By
only having the functionality required by the application running as a unikernel there are sim-
ply less things attackers can exploit, for example there is no Shell which are commonly used
by attackers to deliver malicious payloads.

Going back to its security advantages, when we have several unikernels running different
applications they are inherently strongly isolated from each other due to their separate virtual
address spaces managed by the hypervisor and so cannot access each other’s resources.
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All these benefits make unikernels attractive in the space of cloud and edge computing
[1, 18, 3], high performance computing (HPC) [20], in the Internet of Things (IoT) domain
[21].

2.1.1 Two models of unikernels
Unikernels can follow either one of two models [8, 10].

Clean-slate Unikernel

A clean slate approach, which does not try to emulate the interfaces of other operating systems
running legacy applications but instead they are written in a single high-level language and
only provide the necessary interfaces for applications in that language. This has the advantages
of a high-level programming languages which has a strong memory model and typed system
and able to avoid typical issues such as dangling pointers which occurs in operating systems
written in C [9, 19, 10].

Legacy Unikernel

The second approach or model of unikernels are legacy unikernels. These provide support to
subsets of POSIX compliant applications which would allow very little to no change to legacy
applications or software for them to be run as unikernels. An advantage of such a unikernel
for example one that supports Linux applications is that it is able to take advantage of battle-
tested Linux software, from a highly active community which maintains Linux and fixes bugs
[20, 17, 2, 22].

2.1.2 Problem of porting application
Despite all the benefits of unikernels mentioned before, they have not yet achieved mainstream
adoption by the mainstream industry [3, 16]. One of the main reasons for this is that it is quite
difficult to port an existing application to use the library operating system services required to
be run as a unikernel. This requires extensive knowledge of the library operating system and
also the application itself and is a tall ask for either of the library operating system developer or
the application developer [10, 14, 3, 17]. In some circumstances it may even be impossible to
port the application. For proprietary applications, only the binary executable of it is available
and not the source code [16]. For large complex applications, lack of documentation and even
complex build infrastructures makes it close to impossible to port them.

2.1.3 Binary Compatibility
A possible solution to reduce the effort in porting the application is binary compatibility. This
solution was proposed and developed in a previous unikernel project Hermitux [16], written
in C. It provides binary compatibility to Linux binaries which significantly reduces and some-
times eliminates the porting cost.

It is achieved through following the conventions of Linux’s ABI [11]. The Linux ABI
describes the binary interface between the compiled application and the OS. Hermitux uses
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these conventions to emulate how Linux interfaces with the application binary without having
to recompile it. These conventions can be split into two groups and how they are use to achieve
binary compatibility is described below:

Load-time Binary Compatibility

These conventions are followed when the kernel and application is loaded into the virtual mem-
ory address space by the hypervisor. The kernel is loaded at a location which will not overlap
with the subsequently loaded binary application which is in ELF format. Only specific loadable
segments of the binary are loaded into memory, and these segments and their final location is
specified in the ELF headers of the binary. The next step is setting up the stack and the heap and
is done when the kernel initialises, this is required by the C runtime to initialise the application
before it is executed alongside the kernel, on top of the hypervisor.

Runtime Binary Compatibility

These conventions support the application at runtime when it invokes system calls. System
calls are high privilege functions which the application asks the kernel OS to perform and in
this case it will be the kernel of the library OS. To catch these system calls from the application
a system call handler is installed during the initialisation of the kernel, when a system call is
invoked the system call handler redirects the system call to those implemented within the kernel
of the library OS.

These conventions achieve binary compatibility and Hermitux shows that it is feasible to
do this whilst still maintaining the unikernel principles.

2.1.4 Problem of Memory Unsafety
Although Hermitux boasts binary compatibility which significantly reduces the porting cost for
the application, it is still a legacy unikernel written in a memory unsafe language, C. Because
of this it is susceptible to many bugs which comes with unchecked memory accesses, such as,
access error, uninitialised variables and memory leaks [24]. Clean-slate unikernels are usually
written in high-level programming languages which have many memory safety checks [10],
but like we mentioned before they require large amounts of effort to port the application.

2.2 Rust & RustyHermit

2.2.1 Rust
”Rust is language is a multiple-paradigm programming language designed for performance and
safety. . . ” [28].
It was originally designed by Graydon Hoare. The Rust programming language uses a unique
method of ensuring memory safety which it calls “ownership” based on the borrowing of
pointer which allows memory to be managed by a set of rules checked at compile time re-
moving the need of a garbage collector which slows down other memory safe programming
languages such java [13]. This memory management approach contributes to the performance
of Rust code which enables it to compete against other languages like C and C++ which are
known for their performance and commonly used for OS kernel development [20, 12].
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2.2.2 RustyHermit
RustyHermit is a unikernel project completely written in the Rust programming language and
runs applications written in the same language as unikernels [19]. It is therefore a clean slate
unikernel. Instead of using the stable version of Rust, RustyHermit uses the unstable version
Nightly Rust. This provides extensions to support low-level programming which is inherent
when it comes to OS development, low-level programming is used to handle interrupts, edit the
stack, manipulate registers and accessing explicit memory addresses, all these are not supported
by the stable version of Rust.
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Chapter 3

Motivation

3.1 Solution
A unikernel written in a high-level programming language providing memory safety being
binary compatible brings together the best of a clean-slate unikernel and a binary compatible
unikernel, whilst solving the main issues the two faced individually. This project explores this
type of unikernel and explores whether this is feasible.

3.2 Why RustyHermit?
The RustyHermit unikernel is an attractive base to implement this unikernel. The main reason
it was chosen over other clean-slate unikernels is that it is written in Rust. A memory safe pro-
gramming is what is needed for this project, that being said, performance of a language is one
of the main reasons why they are chosen for OS development, and it is the performance of Rust
which makes it stand out amongst other memory safe programming languages. RustyHermit,
being written in Rust, makes it the clear winner.
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Chapter 4

Aims & Objectives

This Chapter explicitly states our aims and objectives for this project.

4.1 Aims
The aim of this project is to demonstrate the feasibility of the unikernel we mention in the mo-
tivation section. This is done by extending the RustyHermit unikernel to be binary compatible
with Linux binaries whilst taking advantage of the memory safety features and performance
benefits of the language it is written in, Rust.

4.2 Objectives

4.2.1 Objectives for Binary Compatibility
To achieve binary compatibility the main objectives includes:

• Developing a loader within RustyHermit to load and execute the an application according
to Linux’s Application Binary Interface

• Developing a system call handler within RustyHermit to catch system calls made by the
running application at runtime

• Implementing a set of system calls within RustyHermit to support a targeted set of simple
applications

• Validating the system calls work as expected by explicitly testing specific use cases

4.2.2 Applications we want to support
However, achieving full binary compatibility is a very large task which requires almost the full
re-implementation of Linux. This would of course require more time than that provided for the
project and is ultimately not our goal, and so described below is the order and extent to which
we wanted to provide binary compatibility through providing support to be able to run the for
the following applications:

• A statically compiled Hello world application written in assembly
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• A statically compiled Hello world application written in C

• A small subset of statically compiled benchmark applications written in C

The benchmarks mentioned above are compute/memory intensive HPC benchmarks with
few demands in terms of OS functionality. These play a role in evaluating our final product,
not only helping us in determining if this solution is possible, but also if it’s worth it.

This project was available to two students, Christopher Densham and myself, and as such
the work was split up such that Christopher worked on the load-time binary compatible con-
ventions which involves developing the loader. The runtime binary compatibility convention
was done by myself, and involves development of the system call handler and the system calls.
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Chapter 5

Planning

This section describes the plan developed to complete this project.

5.1 How the work was split up
As mentioned before, the project was split up between Christopher and myself. The job of
supporting the load-time binary compatible conventions was given to Christopher and support-
ing the runtime binary compatible conventions was given to me. We can see from the chart in
figure (5.1) that these two tasks are almost completely independent of each other enabling us
to work independently for a large duration of the project.

This report will only provide brief descriptions of Christopher’s parts of the project and
I would refer the reader to his report for a more comprehensive description of what his part
entails and how it was implemented.

It remains to be said that the chart in figure (5.1) was made at the very beginning of the
project, and so does not represent well the amount of work required and time spent on each
part.

Figure 5.1: Initial Gantt chart which was used as a very rough guide before the submission
dates of the project changed.

15



5.2 System call Handling
The first task for myself, was to enable system call support at boot time by developing and
installing a system call handler. After developing the system call handler, the order and specific
system calls implemented were guided by the order of the applications we wanted to support,
mentioned in the Aims and Objectives section. The order of these applications are such that
the system calls they use are generally increasing in complexity to implement.
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Chapter 6

Design

This section describes the design of the whole project as a whole, then describes the design of
its different major elements.

6.1 System Overview
Currently, the project is only able to run binaries of x86 64 assembly code which is not linked
to a C library and as such is inherently static. More on this in the Implementation section.

Figure 6.1: Design of the overall system of our RustyHermit.

As shown in the figure (6.1), RustyHermit runs on top of the minimal hypervisor called
Uhyve which in turn runs on top of our host OS, Linux. Before running the application as a
unikernel, the hypervisor must request memory for the unikernel. The virtual address space of
the kernel, Libhermit-rs, and application will be mapped to this memory. The kernel is then
loaded into the address space by the developed binary loader. The application binary is then
loaded into this address space and is done by the binary loader. At this point we begin to exe-
cute the kernel code which initialises all the facilities required to run the process, this includes
registering the system call handler developed. After the completion of the initialisation of the
kernel we jump to the beginning of the application and it begins its execution as a unikernel
while the kernel emulates Linux services by catching system calls and running our own im-
plementations of them to achieve the same behaviour from the application whilst providing
unikernel benefits.
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6.2 Binary Loader
After the hypervisor has obtained memory from the host which will be the address space, the
kernel is then loaded into it such that it will not overlap with the application, this is shown in
figure (6.2). It is then followed by the binary application which is in ELF format [5]. Not all
of the application is loaded into the address space, only the loadable segments of this binary
file which is specified by the ELF metadata and is loaded at another address also specified by
the Linux ABI [4, 11]. This next step involves creating the stack and initialising it with values
that are required by the C runtime to initialise the virtual address space for the application, also
shown in figure (6.2). Finally, we jump to the entry point of the application so it can now be
executed as a unikernel. The binary loader was developed by Christopher.

Figure 6.2: The virtual address space containing both the kernel and the application.

6.3 System Call Handler and System Calls
During the initialisation of the kernel, system calls are enabled and the our newly developed
system call handler is registered. In a traditional unikernel, system calls are performed as
normal function calls while maintaining the highest privilege as the kernel code. However,
to be binary compatible, our implementation is different. When system calls are invoked by
the application they are trapped by the system call handler, shown by [1] in figure (6.3). The
system call handler saves the state of the registers then identifies the system call and redirects
to the corresponding system calls. After their execution, the state of the registers are restored
and execution returns to the application code where the system call was made shown by [2] in
figure (6.3). The privilege level of the execution of the application and kernel remains the same
during this new method of invoking system calls.

To be able to support the applications we want to run as unikernels, we need to provide
implementations for the system calls they invoke. Some of these system calls were already
partially implemented previously and these, including the new ones we implemented, would
have to be called from the system call handler. Some of these system calls also need to interact
with the host OS files and thus have to be forwarded from the kernel to the hypervisor and
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Figure 6.3: Execution of then system calls are invoked.

finally to be executed by the host’s original corresponding system call. The system call handler
and system calls were developed by me.
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Chapter 7

Implementation (System Call Handling)

This part of the report goes over the development and implementation of the system call han-
dler and specific system calls, and will not cover the development of the binary loader by
Christopher, I would refer the reader to his report for the implementation details.

7.1 Enabling and Installing System Call Handler
Linux applications uses the “syscall” x86 64 instruction for system calls, and initially the
Libhermit-rs, the kernel of the LibOS, does enable system calls during the initialisation phase
of the kernel and the next step would be to install the system handler according to [7]. This is
done by setting the model specific register, MSR LSTAR, to the address of the entry point of the
system call handler. When a syscall instruction is invoked from the application code, the next
address loaded into the instruction pointer register comes from this MSR LSTAR. By placing the
address of the entry point of the handler within this register we are turning the invocation of
the syscall instruction to a call to our system call handler enabling us to catch every system call
made by the application at runtime. Two other registers need to be changed, namely MSR STAR
and MSR SYSCALL MASK.

7.2 System call Handler
Before a syscall instruction is invoked from the user code, the registers have some state and
may hold arguments for the system call or values which may be required after the system call
is executed on behalf of the kernel when returning to the user code. In addition to this, when
a syscall instruction is invoked, the execution flags and the user code address to return to after,
are also stored in registers. Because of these, we need to make sure that we preserve the state
of the registers during the execution of the system calls.

Preserving the state of registers constitutes the first part of the system call handler, here
called isyscall written entirely in assembly, the first half of is shown in figure (7.1). This
function is also the entry point to the system call handler and thus the first thing executed
when a syscall is invoked. The register values are pushed onto the stack and will remain there
during the execution of the system call, by doing this we create a copy of their values which
is stored on the stack. Now we do not have to worry about losing the register values when we
execute the system call since we can later restore them from the copies placed on the stack. In
addition to this, interrupts are disabled before we push the registers and enabled again before we
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jump to the second part of the system call handler. This is to prevent other possible interrupts
from preempting the register saving process which could potentially cause register values to
be changed and lost. The register values are pushed onto the stack in such a way that we can
access the initial specific register values from the second part of the system call handler.

Figure 7.1: Entry point of the system call handler, showing register values being pushed onto
the stack in order to save their initial values. Second part of system call handler is called on
line 23.

After saving the state of the registers we jump to the second part of the system call handler
shown in the (7.1) on line 23. This part of the handler, partly shown in figure (7.2), is a large
case statement on the RAX register which is amongst the registers we pushed onto the stack
earlier. Linux ABI identifies the RAX register as the register used by the application code to
specify the system call which it wants executed. The value representing this is loaded into this
register before the syscall command is invoked along with arguments which may be required
by the specific system calls and these are loaded the exact order of the following registers; RDI,
RSI, RDX, R10, R8 and R9.

The initial value of the RAX register stored on the stack value is accessed on line 33 of
figure (7.2) through the “State” struct shown in the signature of the function on line 31 of the
same figure. Subsequently, the system call number is matched to its corresponding system
call implementation within the match statement. We then call the function implementing this
system call providing its corresponding arguments which are also accessed from the “State”
struct.
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Figure 7.2: Second part of system call handler which calls the specific system call implemen-
tation with the correct set of arguments.

When system calls are executed, they usually return a value, this value may represent the
status of the execution of the system call, and it must be returned to the application within the
RAX register. One instance, on the figure (7.2), where this is done is on line 35, where the rax
variable of the “State” struct is changed to the value returned by the function representing the
system call implementation. Doing this will change the value which is stored on the stack,
however the RAX register is one of the registers whose values are not preserved during the
execution of a system call, since it will contain the return value of the system call when we
return to the application code.

After this we return to the second part of isyscall, in figure (7.3) , where the state of the
registers are restored to their initial value, except for the RAX register, and jump back to the user
code to continue the execution of the application.

7.3 System call development
Like we mentioned in the planning section, the system calls we implemented and their order
was determined by the applications we wanted to support. The first application we chose was
unsurprisingly a “Hello World” application written in assembly. This contains the write and
exit system calls, which brings us to the set of system calls which was implemented. The table
(7.1) shows all the system calls we supported or partially supported which would allow us to
run our chosen applications.

7.3.1 Supporting Hello World in Assembly
The “Hello World” application in assembly calls the write and exit system calls, shown on
figure (7.4) on lines 11 and 16. Write can be considered a file management system call as it can
be used to write to files, including the standard output. Many applications may interact with
each other or the host OS through files, and so file management system calls were the first set
of system calls implemented to support or at least partially support a large set of applications,
including our “Hello world” application.
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Figure 7.3: Second half of isyscall from figure (7.1), showing saved register values being
restored into their respective register then jumping back to the application code which invoked
the system call.

Implemented System Calls
File Management Memory Management
0. Read** 9. Mmap
1. Write** 10. Mprotect*
2. Open** 11. Munmap
3. Close** 12. Brk
4. Stat** Miscellaneous
5. Fstat** 16. Ioctl*
8. Lseek** 60. Exit
19. Readv 63. Uname*
20. Writev 96. Gettimeofday
89. Readlink** 158. Archprctl

Table 7.1: System calls supported. * represents system calls which were faked, ** represents
system calls which were forwarded and executed by the host OS.
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Figure 7.4: Hello world application in assembly.

Initially the kernel of RustyHermit, Libhermit-rs, had already implemented some system
calls and these included read, write, open, close, exit and other ones including more file man-
agement ones. However, in the original RustyHermit, these system calls are called more di-
rectly.

Like we mentioned before, file management system calls interacts with the filesystem of
the host OS. Since system calls on the unikernel are executed from the kernel of the guest
machine running on top the hypervisor these files are out of reach and cannot be accessed.
The way in which the original RustyHermit deals with this is to forward these system calls to
the hypervisor from the kernel, and then executed using a library called Libc, which under the
hood calls the corresponding system call within the kernel of the host OS. An example of this
is shown in figure (7.5), which shows the code of the hypervisor, Uhyve, redirecting the open
system call to the host using Libc on line 446.

When it comes to making RustyHermit binary compatible, system calls have to be called
from the handler we developed before. Instead of reimplementing new system calls, we chose
to reuse those file management ones we mentioned before by calling them from the handler
with the proper arguments that had been placed on the stack previously and pass the return
value from the system call implementation back.

So now we have implemented several namely read, write, open, close, lseek, and exit. Write
and exit required by our “Hello world” application in pure assembly.
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Figure 7.5: Code in hypervisor, Uhyve, showing open system call being forwarded to host
OS’s implementation, after previously being forwarded to the hypervisor itself from kernel of
RustyHermit.

7.3.2 Supporting Hello World in C
After supporting the application in assembly, the next step would be to support the same appli-
cation but in C. In figure (7.6) we show the code for a “Hello world” application written in C. It
is evident that the code does not explicitly invoke system calls with the syscall instruction. This
is because C is a higher level programming language and provides a higher level of abstraction
compared to assembly. However, we can determine the system calls made by this application
by using the tool “strace”. Following from figure (7.7), we first compile the application stati-
cally, since we only want to support statically linked binaries. When we run this binary with
the tool it outputs the system calls made by the program. Note that the output of the tool is
mixed with the output of the application. Highlighted in blue is the output of the application.

Figure 7.6: Hello world application in C.

We can see that the “Hello world” application in C makes more system calls than that in
assembly, in addition to write and exit which is common to both, it also calls brk, arch prctl,
uname, readlink and fstat. This is due to the C runtime environment which is compiled together
with the application code. The C runtime environment is executed before the application code
is run and configures the applications memory. The C runtime performs several tasks such as
setting up the on the user side and initialising the heap for the application. It is when the C
runtime environment code is performing these operations that the system calls are invoked.

We are ignoring execve since this system call is not called from the application code, but
by the shell in order to execute the program.
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Figure 7.7: System calls made by Hello world application in C shown by strace tool

Readlink

Readlink was one of the system calls that had already been implemented previously and like
before, we have to call its implementation from our system call handler. Readlink is used to
print the value of a symbolic link in a filesystem, this makes a file management system call
and its original implementation in RustyHermit is to forward it to the underlying host. How-
ever, the figure (7.7) also shows a specific use of readlink when it is called with the argument
“/proc/self/exe”. This is sometimes used in the place of argv[0] in C applications.

During a normal execution of an application, calling readlink with this argument would re-
turn the path of its executable file being executed, however, now we want to run the application
as a unikernel and it is the hypervisor which is currently running on the host, shown in figure
(6.1) in the Design chapter. Because of this, readlink would return the path of the executable
of the hypervisor, Uhyve. This is not the behaviour the application expected and does not em-
ulate the way Linux would interact with the application running directly on top of it. To fix
this, since the system call is forwarded to the hypervisor, we explicitly catch the case where
readlink was invoked with this argument and returned the absolute path of the executable file
of the application instead of that of the hypervisor.

Fstat

Fstat follows the implementation of the stat system call which had previously been imple-
mented with slight variations in their arguments. Fstat is also a file management system call
and is forwarded to the underlying host.

Uname

Uname is another system call and used to get information about the current kernel, these include
the operating system name and its version. This system call does not provide much use to the
applications we support, and in the “Hello World” application in C it is called by the C library
during preparation to run the application. The decision was made to fake this system call and
return hardcoded results which allowed the initialisation of the application to continue. These
hard coded values were copied from Hermitux [15].
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Arch prctl

The arch prctl system call sets the architecture specific thread state. As we can see in figure
(7.7) it is called with the argument “ARCH SET FS” which sets the FS register, we not will
delve deeper into what this is for. For the implementation of this system call we only provide
support for when arch prctl is called with arguments “ARCH SET FS” and “ARCH GET FS”.
All other invocations of this system call with other arguments will emit a warning and return
a value -ENOSYS which lets the application code know that this system call was not imple-
mented. When system calls are performed there is no guarantee that it will succeed, and so
applications requesting them should take this into account and so it is left to the application
side to carry on afterwards. That being said, for the applications we currently want to support,
we know that they will not call arch prctl with other arguments.

Brk

Brk system call changes the heap size. It is used to allocate memory for a process, and in
this case it would be used to increase the user heap, it does this by changing the program
break shown in figure (6.2). The original Libhermit-rs had already implemented sbrk which
is similar to brk in that they both change the program break, and so we decided to base our
implementation of brk off of sbrk to change the program break which was stored in the variable
SBRK COUNTER shown in figure (7.8) on line 86. This brought us to our first major challenge
when it comes to system calls. In figure (7.8) on line 85 and figure (7.9) line 93, we see the
variable and function have a compiler directive before them which means that they would only
be compiled if we provide the flag “newlib” upon compilation and without it they would not
be accessible and essentially be non-existent. This directive appears throughout Libhermit-rs,
and for the implementation of brk, it is sufficient to say that it also preceded by this directive
shown in figure (7.10) 117, in order to access this program break.

Figure 7.8: Variable used to store the program break at marking the end of the heap, compiled
only if newlib flag is provided.

7.3.3 Supporting other applications
Other applications we wanted to support are all written in C, and they included several NPB
applications [27], which are a set benchmarks and would allow us to evaluate the performance
of our unikernel compared to running the applications on Linux. In addition to the benchmarks,
MicroPython [25] seemed like an attractive application as it would allow us to support another
programming language, Python, with minimal resources as MicroPython was made for embed-
ded systems and this would complement the minimalist principles of unikernels. Although not
all the systems calls required by these applications were supported, a few of them were and
their implementation is described below.
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Figure 7.9: Original implementation of sbrk system call using, compiled only if newlib flag is
provided.

Figure 7.10: Newly developed brk system call implementation based off of sbrk, compiled only
if newlib flag is provided

Ioctl

Ioctl is used to control the input and output for devices. Without going into further detail, we
chose to fake the success of the system call by hard coding and returning the values returned
when executed by Linux, similarly to what we did for the uname system call.
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Gettimeofday

Gettimeofday was again previously implemented by the original Libhermit-rs, and we added a
call to its implementation within our system call handler.

Readv & Writev

Readv and writev are system calls commonly used by applications compiled and linked with the
musl library[26]. They operate similarly to the read and write system calls except they perform
the read and write using several buffers. Because readv and writev are essentially performing
several read and write system calls, they have been implemented as wrappers around their
corresponding, more atomic counterpart.

Mmap

The simplest use of the mmap system call is to request memory for the running application
similar to brk and sbrk, however the memory is not on the heap and so does not affect the
program break. It does this by requesting virtual pages for the application and it may or may
not be linked to physical pages. Functions like malloc use both brk and mmap to request more
application memory, however, brk is used for smaller allocations and mmap will be used for
larger allocations.

For the implementation of mmap, we chose to only implement the simplest use case for
now as a means to learn more about this system call and lay the groundwork for it as it would
provide several benefits for the project in the future. For now this mmap requests for physical
memory pages and also virtual memory pages for the application at any address and maps these
to each other enforcing access writes for these pages according to the arguments passed by the
user-side code. The base address of these mapped pages are then returned to the application.

Munmap

Munmap does the reverse and deallocates the pages allocated through mmap and its implemen-
tation does the same.

Mprotect

Mprotect is used to change the access writes of memory obtained through a mmap invocation,
however, the success of its invocation is faked in our implementation and a warning message is
outputted when it is called.

7.3.4 System call development in Rust
Unsafe code

When it comes to developing system calls in Rust, unsafe code blocks are used. These are
used to gain as much control as C when it comes to dereferencing raw pointers and unchecked
memory accesses [19]. The memory management method of Rust adds checks at compile time
to ensure that memory is being used safely. However, due to the nature of how the arguments
of system calls are passed to the kernel from the application code, which is through raw pointer
in registers, this requires regular dereferencing of pointers and casting them to specific types
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to be able to manipulate them. The compile time checks cannot ensure that at runtime these
pointers from the application code are not null references, and so they are considered unsafe and
the compiler will output error messages upon compilation. The way the original RustyHermit
deals with this is to use unsafe code blocks around areas of code which do perform operations
which cannot be checked at compile time. Using the unsafe code blocks removes the compile
time checks for these areas and allows the code to perform these operations.

The use of unsafe code blocks is minimised in the original RustyHermit as these areas
represent parts of the code where no memory checks are performed which is inherently unsafe
and more care should be taken by the developer when performing these operations. The new
system calls supported above follows the same approach to minimise the use of unsafe code
blocks.

7.4 Challenges
During the development of the project we faced many challenges, some of these significantly
impeded our progress.

7.4.1 Unstable Nightly Rust
The first challenge we faced started before beginning the development of the project. When
we first looked at the RustyHermit unikernel it could not compile. RustyHermit is written
in Nightly Rust which is unstable, and what caused this issue was that one of the libraries,
which rusts calls crates, which it depends on, had been updated. This update was such that the
program could no longer compile due to code within the project now using old signatures of
functions of the crate which had now been updated to use different arguments. The fix for this
was to explicitly lock the crate to its previous version so that any further update to this crate
would not affect our project. I do not provide the name of the crate and the functions as I did
not record this at the time it happened. It was especially hard to overcome this problem, as at
the time we were new to the Rust programming language, let alone Nightly Rust. Throughout
the development process of the project, issues like this arose several times, which impeded our
progress.

7.4.2 Newlib and LWIP
In the implementation of the brk system call we mentioned the “newlib” compiler directive.
Any function or variable which was preceded by this directive would not be compiled unless
the “newlib” flag was provided at compilation of the kernel of RustyHermit, Libhermit-rs.
However, with the complex build infrastructure of RustyHermit, this flag was not provided
during the compilation. This meant that we would not be able to support the brk system call as
the dependencies within its implementation required interactions with variables and functions
compiled with this flag. One example is that brk accesses the variable SBRK COUNTER
which we can see from figure (7.8) line 85 is also only compiled if we provide the specific flag.

In an attempt to solve this problem, the compiler flag was added to the build process of
RustyHermit in order to compile its Libhermit-rs with this flag. This proved not to work
as the build process failed, outputting several errors relating to uninitialised symbols namely
“init lwip”, “lwip read” and “lwip write”. LWIP is a minimal and lightweight TCP/IP stack
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implementation [23]. These errors means newlib requires support for LWIP, however this is
not available in RustyHermit. This means that we are still unable to provide support for our
brk system call required by the “Hello world” application in C.

Instead of removing the compiler directives off the functions and variables which could
potentially enable use to support brk, we chose to use another unikernel project which supports
LWIP. This is because LWIP would enable the project in the future to implement networking
system calls whilst maintaining a small resource footprint since LWIP was designed for low
resource domains such as embedded systems.

Moving to another unikernel project does not mean that we now have to perform all the
same steps in extending RustyHermit to provide binary compatibility to another unikernel.
This is because of Hermit-playground.

7.4.3 Hermit-Playground
The Hermit-playground unikernel is targeted to scalable and predictable runtime for high-
performance and cloud computing [6]. This unikernel is written in Rust and runs C appli-
cations. Hermit-playground is very closely related to RustyHermit in that the kernel of both
of these library OS’s is Libhermit-rs. This means that moving to Hermit-playground from
RustyHermit not does require that much effort. Most of the effort is in copying our extended
Libhermit-rs in RustyHermit to Hermit-playground.

Hermit-playground supports LWIP and its different build infrastructure compiles Libhermit-
rs with the “newlib” flag and is what we were looking for. Using Hermit-playground would
allow us to support the brk system call and would allow network system calls to be developed
in the future.

7.5 Developing System calls Tests

7.5.1 In Rust
When we develop these system calls, we want their behaviour to emulate those of the Linux
kernel so that the application running as the unikernel has the same behaviour as it would have
running directly on a Linux host.

Whilst implementing these system calls mentioned above, binary compatibility with assem-
bly applications had not been achieved yet, although the system call handler had already been
developed and registered in the initialisation of the kernel. The only way to test these system
calls for now is to develop Rust applications which invokes the syscall instruction.

To explicitly call the syscall instruction and place arguments to these register values within
specific registers we need to use inline assembly. This allows us to embed assembly code
within the application code which is in a higher programming language. Nightly Rust supports
inline assembly and can be enabled by specifying #![feature(asm)] at the beginning of
applications which makes use of it.

Figure (7.11) shows an example of calling a write system call within assembly. We can see
from the diagram we are following the conventions of the Linux ABI in placing the arguments
to the system call within specific registers. On line 22 the value representing the write system
call is placed within the RAX register. It is also evident from the same figure (7.11), that we use
an unsafe code block. This is because the Rust compiler cannot perform checks on assembly
language and cannot guarantee that its use is safe.

31



Figure 7.11: Example of how write system call is invoked using inline assembly in Rust code

Tests for some of the system calls mentioned above were developed in Rust using inline
assembly. However these are not exhaustive tests, and only verifies the basic use of these
system calls work as expected.

7.5.2 In C
The brk system is not available in RustyHermit, this is described under the challenges section
of the this chapter. This means that we cannot perform tests on this system call. However,
Hermit-playground does support this system call and the test for brk was written for Hermit-
playground. The same principles for developing the tests in Rust is followed by here and figure
(7.12) shows an example of how the brk system call is called in inline assembly.

Figure 7.12: Example of how write system call is invoked using inline assembly in c code

7.6 Putting things together
Like we mentioned before the binary load-time and runtime conventions were developed in-
dividually by Christopher and myself. To achieve binary compatibility these two conventions
need to be followed in together, meaning our work must be combined.

7.6.1 Summary of work for Load-time Binary Compatibility
The hypervisor, Uhyve, was modified to load the kernel and the application as required to
emulate the address space of Linux running an application. The position at which the kernel
was changed, this position is defined by a hardcoded value. The offset of the loadable sections
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of the ELF formatted binary of the application is read from this same file. It is then used to load
in these sections within the virtual memory address space according to these offsets. At this
point several values are then passed to the kernel during its initialisation. These values include
the entry point of the application and the path to the binary executable of the application on the
filesystem of the host OS. An auxiliary vector is created within the stack and is initialised with
values required by the application, these values include OS specific information and so these
are hardcoded to mimic those of Linux. And finally, a jump is made to the entry point of the
application, beginning the execution of the application.

Several bugs were encountered when initialising the stack and because of those the infor-
mation on the stack were corrupted. These values are required by the C runtime which is run
before the application is. Because the stack values are corrupted, the C runtime cannot be exe-
cuted properly and fails to set up the environment for the execution for application, effectively
making it not possible to run applications requiring the values on the stack. This means we are
now in a state where we can only run assembly applications which do not use a C library.

7.6.2 Final State of Project
Due to the deadline marking the end of the project development approaching, we could not
migrate all of our work done to Hermit-playground. This meant that we have provided par-
tial binary compatibility to RustyHermit and slightly extended the number of system calls on
Hermit-playground to include fstat, readv, writev, mmap, mprotect, munmap, brk, ioctl uname
and arch prctl.

7.7 Results
This section demonstrates the results of what was achieved.

7.7.1 Binary Compatible RustyHermit
In the case of RustyHermit, we were able to achieve binary compatibility when it comes to
running binaries of assembly applications for Linux, more specifically assembly applications
which do not make use of a C library. Several assembly applications were developed to demon-
strate this.

Hello World

The first of these is unsurprisingly a “Hello world” application and the code is demonstrated
in figure (7.4). After compiling the application written in a file called “hello world.s” with com-
mands gcc -c hello world.s -o hello world.o and ld hello world.o -o hello world
we can run the executable on Linux with ./hello world. Figure (7.13) shows the output of
running the binary on Linux and will thus be used to compare with the results from running
this binary on top of our binary compatible unikernel.

Figure (7.14) shows the last line of output of the application running on top of RustyHermit.
The other lines not included in the figure shows information from the kernel related to the
loadable segments of the binary when the kernel is initialised, this can be ignored. We can see
that the output of the application and it is identical to that of running it on Linux.
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Figure 7.13: Compiling and running Hello world application in assembly on Linux.

Figure 7.14: Output of binary compatible RustyHermit from running Hello world application
in assembly, removing kernel initialisation messages.

Readlink

This application outputs the target of a symbolic link and in saving space, its code is shown
in the appendix at A.0.2. Following along from the figure (7.15), we can see that a symbolic
link “sym link” is created and its target is identified as the application’s source “readlink.c”.
We then compile and run the application on Linux like before and the output is also shown in
figure (7.16). Not that the output is highlighted to make it distinguishable from the command
prompt.

Figure 7.15: Compiling and running assembly application which uses readlink on Linux

Figure 7.16: Output of binary compatible RustyHermit running assembly application which
uses readlink, removing kernel initialisation messages.

Now running this on as a unikernel. Figure (7.14) shows the output whilst removing the
output from the kernel initialisation of the kernel mentioned before. The result is again identical
to that of Linux.

More applications

A general theme has now been built when it comes to comparing the outputs of the applications
on Linux and as a unikernel, the outputs are identical when we leave out the kernel initialisation
messages. Although more applications have been developed to further demonstrate the binary
capability of the new RustyHermit, we shall not demonstrate them but however leave their
implementations in the appendix.
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Chapter 8

Evaluation

8.1 What was achieved?
The main objective for the project was to extend RustyHermit to be binary compatible with
Linux binaries, whilst taking advantage of the memory safe features of a memory safe pro-
gramming language, Rust. At the end of the project we were able to achieve a unikernel which
was able to run a set binaries of Linux applications written in assembly. We were able to
achieve binary compatibility to a subset of applications we wanted to support, namely “Hello
world” in assembly, show the Results sections. Along the way we chose to also begin to mi-
grate our work to another unikernel, Hermit-playground. Most of the detailed objectives when
it comes to binary compatibility were achieved and only one of the original applications we
wanted to support were actually supported, namely “Hello world” in assembly.

8.2 What was not achieved?
We were unable to support all of our objectives in providing binary compatibility, due to issues
in crafting the stack and migrating our code between different unikernels. So we were not able
to support the full set of applications we meant to, and even if those issues did not arise, we
would still need more system calls to be developed to support those applications.

8.3 Aims
With all this work done and the results shown under the Results section, we show that binary
compatibility is feasible for RustyHermit in Rust, even if we only scratch the surface of full
binary compatibility.

8.4 Is this a good solution?
The final part of this chapter looks into evaluating the solution we proposed and developed.
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8.4.1 Is a Memory Safe Programming Language Worth it?
Performing this extension on a Rust based unikernel allows us to explore the benefits of mem-
ory safe programming languages. However, at this stage of the project using Rust did not
provide as many benefits as I would have expected. Even if I was actively trying minimise the
number of unsafe code blocks being used in my code, I still found myself using them quite
often, and this slowed down the development as it is another construct that needs to be added
to the code. Unsafe code blocks bypass compile time checks, and so these memory safety
guarantees are no longer held up within them. That being said, the problems I have mentioned
may only be specific to the development of system calls, as they do require working with raw
pointers in registers as mentioned previously, and these are inherently unsafe and require the
use of unsafe code blocks. To answer the question, I do believe memory safety is worth it
and would benefit the unikernel as a whole. However, when it comes to system call handling,
interfacing with the application at a binary level at runtime will always prove to be unsafe due
the need to manipulate raw pointers.

8.4.2 Does it solve the problems of why unikernels lack widespread use?
At this point of the project, providing only binary compatibility to assembly applications com-
pletely eliminates the porting effort of running the application as a unikernel. This is shown
by the binaries running on top of RustyHermit without changing them. However, we knew the
problem of porting the application was going to be mostly fixed by providing binary compati-
bility when we looked at Hermitux [16], this means the answer to the question comes down to
if the problems of a unikernel written in a memory unsafe programming language is solved by
using memory safe one. The answer to this is yes as a whole, as we saw in answering the pre-
vious question, even if memory safety cannot always be guaranteed when dealing with system
calls.
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Chapter 9

Conclusion & Future Works

9.1 Conclusion
In this project we demonstrate the feasibility in extending a unikernel written in a memory safe
programming language to be binary compatible in an attempt to overcome the main problems
behind lack of widespread use of unikernels. The unikernel was RustyHermit, written in the
Rust programming language, and achieved the first steps of binary compatibility by extending
it to be binary compatible to a set of binaries of assembly applications natively compiled for
Linux.

9.2 Future Work
Moving forward the project could be further developed to support C applications, this can be
done continuing from where we left off, if this is done the task of supporting new C applications
only involves developing the system calls required by that application. Like we mentioned
before, with LWIP the development of system calls performing network specific tasks will be
easier and would allow the project to support networking.

The binaries of those C applications mentioned before will have to be statically linked,
in the future the project can be extended to support dynamically linked binaries which would
allow a greater range of applications to be run on the unikernel. This can also be done by fully
implementing the mmap system call which would be used by the dynamic loader which forms
part of the C runtime and maps the dynamically linked library code into the virtual memory
address space of the unikernel.

A unikernel friendly filesystem can be implemented within the address space of the virtual
machine, this can be used to load in the files from the host required by the applications in
runtime in the hopes of reducing the dependency on the host OS. This would have the effect of
increasing the security of the unikernel as we interact with the host less often.

The potential of the project ranges from increasing the range of applications supported, to
increasing the OS specific elements it incorporates in an attempt to reduce dependence on the
host OS and so developing it into a full fledged operating system while still maintaining the
unikernel principles.
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Appendix A

Code for Assembly Applications
Supported

This appendix shows the code of the assembly applications which our binary compatible Rusty-
Hermit is able run.

A.0.1 Hello World
The following listing shows the assembly code for ”hello world” application support by our
unikernel.

1

2 .global _start
3

4 .text
5 _start:
6 # write(STDOUT , message , 14) now we print the value to standard

output
7 mov SYS_WRITE , %rax
8 mov STDOUT , %rdi
9 mov $message , %rsi

10 mov $14, %rdx
11 syscall # invoke operating system to do the

write
12

13 exit: # exit(0) # terminate the program
14 mov SYS_EXIT , %rax
15 xor %rdi, %rdi # we want return code 0
16 syscall
17

18 .section .data
19 message:
20 .ascii "Hello , world!\n"
21 .skip 8
22

23 STDOUT: .word 1
24 .skip 8
25 SYS_WRITE: .word 1
26 .skip 8
27 SYS_EXIT: .word 60
28 .skip 8
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A.0.2 Readlink
The following listing shows the assembly application which our unikernel supports. This in-
vokes, readlink, write and exit system calls.

1 .global _start
2

3 .text
4 _start:
5

6 # readlink(fd, buf, 12) # perform readlink on the symbolic link
7 mov SYS_READLINK , %rax
8 mov $link_path , %rdi
9 mov $buf, %rsi

10 mov buf_len , %rdx
11 syscall # invoke operating system to do the readlink
12

13 cmp $0, %rax # if 0 bytes were read from the symbolic link we have
failed ,

14 je exit # close the file and terminate the program
15

16 add $1, %rax # add a new line
17 mov %rax, readlink_len
18

19 # write(STDOUT , buf, readlink_len) # if we did not fail , print to
standard output what readlink read

20 mov SYS_WRITE , %rax
21 mov STDOUT , %rdi
22 mov $buf, %rsi
23 mov readlink_len , %rdx
24 syscall # invoke operating system to do the

write
25

26 exit: # exit(0) # terminate the program
27 mov SYS_EXIT , %rax
28 xor %rdi, %rdi # we want return code 0
29 syscall
30

31 .section .data
32 link_path:
33 .ascii "sym_link\0"
34 .skip 8
35 buf_len:
36 .word 20
37 .skip 8
38

39 STDOUT: .word 1
40 .skip 8
41 SYS_READLINK: .word 89
42 .skip 8
43 SYS_WRITE: .word 1
44 .skip 8
45 SYS_EXIT: .word 60
46 .skip 8
47

48 .section .bss
49 .lcomm len, 8
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50 .lcomm buf, 20
51 .lcomm readlink_len , 8

A.0.3 File Management System Calls
This assembly application is supported by our unikernel and invokes the following system calls:
open, read, write, lseek close and exit. All of these can be considered file management system
calls except for exit.

1 .global _start
2

3 .text
4 _start:
5 # open(filename , flags , mode) # open a file
6 mov SYS_OPEN , %rax
7 mov $filename , %rdi
8 mov flags , %rsi
9 mov mode , %rdx

10 syscall # invoke operating system to do the
open

11

12 cmp $0, %rax # if file descriptor is less than
or equal to zero

13 jle exit # jump to exit and terminate
14 mov %rax, fd
15

16

17 # read(fd, inputString , 12) # read from the file into inputString
18 mov SYS_READ , %rax
19 mov fd, %rdi
20 mov $inputString , %rsi
21 mov $12, %rdx
22 syscall # invoke operating system to do the read
23

24 cmp $12, %rax # if 12 bytes were not read something went wrong ,
25 jne close # close the file and terminate the program
26

27

28 # write(fd, inputString , 12) # now we print the value to standard output
29 mov SYS_WRITE , %rax
30 mov STDOUT , %rdi
31 mov $inputString , %rsi
32 mov $12, %rdx
33 syscall # invoke operating system to do the

write
34

35 cmp $12, %rax
36 jne close
37

38

39 # lseek(fd, newOffset , whence) # move the file offset to the beginning
of the file

40 mov SYS_LSEEK , %rax
41 mov fd, %rdi
42 mov $-5, %rsi
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43 mov $1, %rdx # We want to set the file offset the current
offset + newOffset

44 syscall
45

46 cmp $0, %rax
47 jl close
48

49 # write(fd, message , 7) # write message to the file at the new
file offset

50 mov SYS_WRITE , %rax
51 mov fd, %rdi
52 mov $message , %rsi
53 mov $7, %rdx
54 syscall
55

56 close: # close(fd) # close the file
57 mov SYS_CLOSE , %rax
58 mov fd, %rdi
59 syscall
60

61 exit: # exit(0) # terminate the program
62 mov SYS_EXIT , %rax
63 xor %rdi, %rdi # we want return code 0
64 syscall
65

66 .section .data
67 message:
68 .ascii "world!\n"
69 .skip 8
70 filename:
71 .ascii "file.txt\0"
72

73 .skip 8
74 flags: .word 0x0102
75 .skip 8
76 mode: .word 0x309
77 .skip 8
78

79 STDOUT: .word 1
80 .skip 8
81 SYS_READ: .word 0
82 .skip 8
83 SYS_WRITE: .word 1
84 .skip 8
85 SYS_OPEN: .word 2
86 .skip 8
87 SYS_CLOSE: .word 3
88 .skip 8
89 SYS_LSEEK: .word 8
90 .skip 8
91 SYS_EXIT: .word 60
92 .skip 8
93

94 .section .bss
95 .lcomm fd, 8
96 .lcomm inputString , 12
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A.0.4 Memory Management System Calls
This assembly application is supported by our unikernel and invokes the following system calls:
mmap, write, munmap. Mmap and munmap are two memory management system calls.

1 .global _start
2

3 .text
4 _start:
5 # mmap(addr , len, prot , flags , fd, offset) # Request memory for

read and write of length len
6 mov SYS_MMAP , %rax
7 mov $0, %rdi
8 mov len, %rsi # amount of memory we want
9 mov prot , %rdx # read & write

10 mov flags , %r10 # private & map_anonymous
11 mov $-1, %r8 # fd (not needed)
12 mov $0, %r9 # offset (not needed)
13 syscall # invoke operating system to do the

mmap
14

15 cmp $0, %rax # if the address of the block of
memory allocated is zero then it failed

16 je exit # jump to exit and terminate
17 mov %rax, addr
18

19

20

21 # write(STDOUT , message , 9) # now we print the value to standard
output

22 mov SYS_WRITE , %rax
23 mov STDOUT , %rdi
24 mov $message , %rsi
25 mov $9, %rdx
26 syscall # invoke operating system to do the

write
27

28

29

30 # munmap(addr , len) # Request memory allocated to be freed
31 mov SYS_MUNMAP , %rax
32 mov addr , %rdi # address of the block of memory that was

allocated
33 mov len, %rsi
34 syscall
35

36 cmp $0, %rax # if the address of the block of
memory allocated is zero then it failed

37 je exit # jump to exit and terminate
38 mov %rax, addr
39

40

41 exit: # exit(0) # terminate the program
42 mov SYS_EXIT , %rax
43 xor %rdi, %rdi # we want return code 0
44 syscall
45
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46 .section .data
47 message:
48 .ascii "Success!\n"
49 .skip 8
50 len: .word 1024
51 .skip 8
52 prot: .word 0x3
53 .skip 8
54 flags: .word 0x022 # private & map_anonymous
55 .skip 8
56 mode: .word 0x309
57 .skip 8
58

59 STDOUT: .word 1
60 .skip 8
61 SYS_READ: .word 0
62 .skip 8
63 SYS_WRITE: .word 1
64 .skip 8
65 SYS_MMAP: .word 9
66 .skip 8
67 SYS_MUNMAP: .word 11
68 .skip 8
69 SYS_MPROTECT: .word 10
70 .skip 8
71 SYS_EXIT: .word 60
72 .skip 8
73

74 .section .bss
75 .lcomm addr , 8
76 .lcomm inputString , 12
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