Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Branch: trunk
Fetching contributors…

Cannot retrieve contributors at this time

4460 lines (3947 sloc) 136.951 kB
<
/**********************************************************************
transcode.c -
$Author$
created at: Tue Oct 30 16:10:22 JST 2007
Copyright (C) 2007 Martin Duerst
**********************************************************************/
#include "ruby/ruby.h"
#include "ruby/encoding.h"
#include "internal.h"
#include "transcode_data.h"
#include <ctype.h>
#define ENABLE_ECONV_NEWLINE_OPTION 1
/* VALUE rb_cEncoding = rb_define_class("Encoding", rb_cObject); */
VALUE rb_eUndefinedConversionError;
VALUE rb_eInvalidByteSequenceError;
VALUE rb_eConverterNotFoundError;
VALUE rb_cEncodingConverter;
static VALUE sym_invalid, sym_undef, sym_replace, sym_fallback, sym_aref;
static VALUE sym_xml, sym_text, sym_attr;
static VALUE sym_universal_newline;
static VALUE sym_crlf_newline;
static VALUE sym_cr_newline;
#ifdef ENABLE_ECONV_NEWLINE_OPTION
static VALUE sym_newline, sym_universal, sym_crlf, sym_cr, sym_lf;
#endif
static VALUE sym_partial_input;
static VALUE sym_invalid_byte_sequence;
static VALUE sym_undefined_conversion;
static VALUE sym_destination_buffer_full;
static VALUE sym_source_buffer_empty;
static VALUE sym_finished;
static VALUE sym_after_output;
static VALUE sym_incomplete_input;
static unsigned char *
allocate_converted_string(const char *sname, const char *dname,
const unsigned char *str, size_t len,
unsigned char *caller_dst_buf, size_t caller_dst_bufsize,
size_t *dst_len_ptr);
/* dynamic structure, one per conversion (similar to iconv_t) */
/* may carry conversion state (e.g. for iso-2022-jp) */
typedef struct rb_transcoding {
const rb_transcoder *transcoder;
int flags;
int resume_position;
unsigned int next_table;
VALUE next_info;
unsigned char next_byte;
unsigned int output_index;
ssize_t recognized_len; /* already interpreted */
ssize_t readagain_len; /* not yet interpreted */
union {
unsigned char ary[8]; /* max_input <= sizeof(ary) */
unsigned char *ptr; /* length: max_input */
} readbuf; /* recognized_len + readagain_len used */
ssize_t writebuf_off;
ssize_t writebuf_len;
union {
unsigned char ary[8]; /* max_output <= sizeof(ary) */
unsigned char *ptr; /* length: max_output */
} writebuf;
union rb_transcoding_state_t { /* opaque data for stateful encoding */
void *ptr;
char ary[sizeof(double) > sizeof(void*) ? sizeof(double) : sizeof(void*)];
double dummy_for_alignment;
} state;
} rb_transcoding;
#define TRANSCODING_READBUF(tc) \
((tc)->transcoder->max_input <= (int)sizeof((tc)->readbuf.ary) ? \
(tc)->readbuf.ary : \
(tc)->readbuf.ptr)
#define TRANSCODING_WRITEBUF(tc) \
((tc)->transcoder->max_output <= (int)sizeof((tc)->writebuf.ary) ? \
(tc)->writebuf.ary : \
(tc)->writebuf.ptr)
#define TRANSCODING_WRITEBUF_SIZE(tc) \
((tc)->transcoder->max_output <= (int)sizeof((tc)->writebuf.ary) ? \
sizeof((tc)->writebuf.ary) : \
(size_t)(tc)->transcoder->max_output)
#define TRANSCODING_STATE_EMBED_MAX ((int)sizeof(union rb_transcoding_state_t))
#define TRANSCODING_STATE(tc) \
((tc)->transcoder->state_size <= (int)sizeof((tc)->state) ? \
(tc)->state.ary : \
(tc)->state.ptr)
typedef struct {
struct rb_transcoding *tc;
unsigned char *out_buf_start;
unsigned char *out_data_start;
unsigned char *out_data_end;
unsigned char *out_buf_end;
rb_econv_result_t last_result;
} rb_econv_elem_t;
struct rb_econv_t {
int flags;
const char *source_encoding_name;
const char *destination_encoding_name;
int started;
const unsigned char *replacement_str;
size_t replacement_len;
const char *replacement_enc;
int replacement_allocated;
unsigned char *in_buf_start;
unsigned char *in_data_start;
unsigned char *in_data_end;
unsigned char *in_buf_end;
rb_econv_elem_t *elems;
int num_allocated;
int num_trans;
int num_finished;
struct rb_transcoding *last_tc;
/* last error */
struct {
rb_econv_result_t result;
struct rb_transcoding *error_tc;
const char *source_encoding;
const char *destination_encoding;
const unsigned char *error_bytes_start;
size_t error_bytes_len;
size_t readagain_len;
} last_error;
/* The following fields are only for Encoding::Converter.
* rb_econv_open set them NULL. */
rb_encoding *source_encoding;
rb_encoding *destination_encoding;
};
/*
* Dispatch data and logic
*/
#define DECORATOR_P(sname, dname) (*(sname) == '\0')
typedef struct {
const char *sname;
const char *dname;
const char *lib; /* null means means no need to load a library */
const rb_transcoder *transcoder;
} transcoder_entry_t;
static st_table *transcoder_table;
static transcoder_entry_t *
make_transcoder_entry(const char *sname, const char *dname)
{
st_data_t val;
st_table *table2;
if (!st_lookup(transcoder_table, (st_data_t)sname, &val)) {
val = (st_data_t)st_init_strcasetable();
st_add_direct(transcoder_table, (st_data_t)sname, val);
}
table2 = (st_table *)val;
if (!st_lookup(table2, (st_data_t)dname, &val)) {
transcoder_entry_t *entry = ALLOC(transcoder_entry_t);
entry->sname = sname;
entry->dname = dname;
entry->lib = NULL;
entry->transcoder = NULL;
val = (st_data_t)entry;
st_add_direct(table2, (st_data_t)dname, val);
}
return (transcoder_entry_t *)val;
}
static transcoder_entry_t *
get_transcoder_entry(const char *sname, const char *dname)
{
st_data_t val;
st_table *table2;
if (!st_lookup(transcoder_table, (st_data_t)sname, &val)) {
return NULL;
}
table2 = (st_table *)val;
if (!st_lookup(table2, (st_data_t)dname, &val)) {
return NULL;
}
return (transcoder_entry_t *)val;
}
void
rb_register_transcoder(const rb_transcoder *tr)
{
const char *const sname = tr->src_encoding;
const char *const dname = tr->dst_encoding;
transcoder_entry_t *entry;
entry = make_transcoder_entry(sname, dname);
if (entry->transcoder) {
rb_raise(rb_eArgError, "transcoder from %s to %s has been already registered",
sname, dname);
}
entry->transcoder = tr;
}
static void
declare_transcoder(const char *sname, const char *dname, const char *lib)
{
transcoder_entry_t *entry;
entry = make_transcoder_entry(sname, dname);
entry->lib = lib;
}
static const char transcoder_lib_prefix[] = "enc/trans/";
void
rb_declare_transcoder(const char *enc1, const char *enc2, const char *lib)
{
if (!lib) {
rb_raise(rb_eArgError, "invalid library name - (null)");
}
declare_transcoder(enc1, enc2, lib);
}
#define encoding_equal(enc1, enc2) (STRCASECMP((enc1), (enc2)) == 0)
typedef struct search_path_queue_tag {
struct search_path_queue_tag *next;
const char *enc;
} search_path_queue_t;
typedef struct {
st_table *visited;
search_path_queue_t *queue;
search_path_queue_t **queue_last_ptr;
const char *base_enc;
} search_path_bfs_t;
static int
transcode_search_path_i(st_data_t key, st_data_t val, st_data_t arg)
{
const char *dname = (const char *)key;
search_path_bfs_t *bfs = (search_path_bfs_t *)arg;
search_path_queue_t *q;
if (st_lookup(bfs->visited, (st_data_t)dname, &val)) {
return ST_CONTINUE;
}
q = ALLOC(search_path_queue_t);
q->enc = dname;
q->next = NULL;
*bfs->queue_last_ptr = q;
bfs->queue_last_ptr = &q->next;
st_add_direct(bfs->visited, (st_data_t)dname, (st_data_t)bfs->base_enc);
return ST_CONTINUE;
}
static int
transcode_search_path(const char *sname, const char *dname,
void (*callback)(const char *sname, const char *dname, int depth, void *arg),
void *arg)
{
search_path_bfs_t bfs;
search_path_queue_t *q;
st_data_t val;
st_table *table2;
int found;
int pathlen = -1;
if (encoding_equal(sname, dname))
return -1;
q = ALLOC(search_path_queue_t);
q->enc = sname;
q->next = NULL;
bfs.queue_last_ptr = &q->next;
bfs.queue = q;
bfs.visited = st_init_strcasetable();
st_add_direct(bfs.visited, (st_data_t)sname, (st_data_t)NULL);
while (bfs.queue) {
q = bfs.queue;
bfs.queue = q->next;
if (!bfs.queue)
bfs.queue_last_ptr = &bfs.queue;
if (!st_lookup(transcoder_table, (st_data_t)q->enc, &val)) {
xfree(q);
continue;
}
table2 = (st_table *)val;
if (st_lookup(table2, (st_data_t)dname, &val)) {
st_add_direct(bfs.visited, (st_data_t)dname, (st_data_t)q->enc);
xfree(q);
found = 1;
goto cleanup;
}
bfs.base_enc = q->enc;
st_foreach(table2, transcode_search_path_i, (st_data_t)&bfs);
bfs.base_enc = NULL;
xfree(q);
}
found = 0;
cleanup:
while (bfs.queue) {
q = bfs.queue;
bfs.queue = q->next;
xfree(q);
}
if (found) {
const char *enc = dname;
int depth;
pathlen = 0;
while (1) {
st_lookup(bfs.visited, (st_data_t)enc, &val);
if (!val)
break;
pathlen++;
enc = (const char *)val;
}
depth = pathlen;
enc = dname;
while (1) {
st_lookup(bfs.visited, (st_data_t)enc, &val);
if (!val)
break;
callback((const char *)val, enc, --depth, arg);
enc = (const char *)val;
}
}
st_free_table(bfs.visited);
return pathlen; /* is -1 if not found */
}
static const rb_transcoder *
load_transcoder_entry(transcoder_entry_t *entry)
{
if (entry->transcoder)
return entry->transcoder;
if (entry->lib) {
const char *const lib = entry->lib;
const size_t len = strlen(lib);
const size_t total_len = sizeof(transcoder_lib_prefix) - 1 + len;
const VALUE fn = rb_str_new(0, total_len);
char *const path = RSTRING_PTR(fn);
const int safe = rb_safe_level();
entry->lib = NULL;
memcpy(path, transcoder_lib_prefix, sizeof(transcoder_lib_prefix) - 1);
memcpy(path + sizeof(transcoder_lib_prefix) - 1, lib, len);
rb_str_set_len(fn, total_len);
FL_UNSET(fn, FL_TAINT|FL_UNTRUSTED);
OBJ_FREEZE(fn);
if (!rb_require_safe(fn, safe > 3 ? 3 : safe))
return NULL;
}
if (entry->transcoder)
return entry->transcoder;
return NULL;
}
static const char*
get_replacement_character(const char *encname, size_t *len_ret, const char **repl_encname_ptr)
{
if (encoding_equal(encname, "UTF-8")) {
*len_ret = 3;
*repl_encname_ptr = "UTF-8";
return "\xEF\xBF\xBD";
}
else {
*len_ret = 1;
*repl_encname_ptr = "US-ASCII";
return "?";
}
}
/*
* Transcoding engine logic
*/
static const unsigned char *
transcode_char_start(rb_transcoding *tc,
const unsigned char *in_start,
const unsigned char *inchar_start,
const unsigned char *in_p,
size_t *char_len_ptr)
{
const unsigned char *ptr;
if (inchar_start - in_start < tc->recognized_len) {
MEMCPY(TRANSCODING_READBUF(tc) + tc->recognized_len,
inchar_start, unsigned char, in_p - inchar_start);
ptr = TRANSCODING_READBUF(tc);
}
else {
ptr = inchar_start - tc->recognized_len;
}
*char_len_ptr = tc->recognized_len + (in_p - inchar_start);
return ptr;
}
static rb_econv_result_t
transcode_restartable0(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
rb_transcoding *tc,
const int opt)
{
const rb_transcoder *tr = tc->transcoder;
int unitlen = tr->input_unit_length;
ssize_t readagain_len = 0;
const unsigned char *inchar_start;
const unsigned char *in_p;
unsigned char *out_p;
in_p = inchar_start = *in_pos;
out_p = *out_pos;
#define SUSPEND(ret, num) \
do { \
tc->resume_position = (num); \
if (0 < in_p - inchar_start) \
MEMMOVE(TRANSCODING_READBUF(tc)+tc->recognized_len, \
inchar_start, unsigned char, in_p - inchar_start); \
*in_pos = in_p; \
*out_pos = out_p; \
tc->recognized_len += in_p - inchar_start; \
if (readagain_len) { \
tc->recognized_len -= readagain_len; \
tc->readagain_len = readagain_len; \
} \
return (ret); \
resume_label ## num:; \
} while (0)
#define SUSPEND_OBUF(num) \
do { \
while (out_stop - out_p < 1) { SUSPEND(econv_destination_buffer_full, num); } \
} while (0)
#define SUSPEND_AFTER_OUTPUT(num) \
if ((opt & ECONV_AFTER_OUTPUT) && *out_pos != out_p) { \
SUSPEND(econv_after_output, num); \
}
#define next_table (tc->next_table)
#define next_info (tc->next_info)
#define next_byte (tc->next_byte)
#define writebuf_len (tc->writebuf_len)
#define writebuf_off (tc->writebuf_off)
switch (tc->resume_position) {
case 0: break;
case 1: goto resume_label1;
case 2: goto resume_label2;
case 3: goto resume_label3;
case 4: goto resume_label4;
case 5: goto resume_label5;
case 6: goto resume_label6;
case 7: goto resume_label7;
case 8: goto resume_label8;
case 9: goto resume_label9;
case 10: goto resume_label10;
case 11: goto resume_label11;
case 12: goto resume_label12;
case 13: goto resume_label13;
case 14: goto resume_label14;
case 15: goto resume_label15;
case 16: goto resume_label16;
case 17: goto resume_label17;
case 18: goto resume_label18;
case 19: goto resume_label19;
case 20: goto resume_label20;
case 21: goto resume_label21;
case 22: goto resume_label22;
case 23: goto resume_label23;
case 24: goto resume_label24;
case 25: goto resume_label25;
case 26: goto resume_label26;
case 27: goto resume_label27;
case 28: goto resume_label28;
case 29: goto resume_label29;
case 30: goto resume_label30;
case 31: goto resume_label31;
case 32: goto resume_label32;
case 33: goto resume_label33;
case 34: goto resume_label34;
}
while (1) {
inchar_start = in_p;
tc->recognized_len = 0;
next_table = tr->conv_tree_start;
SUSPEND_AFTER_OUTPUT(24);
if (in_stop <= in_p) {
if (!(opt & ECONV_PARTIAL_INPUT))
break;
SUSPEND(econv_source_buffer_empty, 7);
continue;
}
#define BYTE_ADDR(index) (tr->byte_array + (index))
#define WORD_ADDR(index) (tr->word_array + INFO2WORDINDEX(index))
#define BL_BASE BYTE_ADDR(BYTE_LOOKUP_BASE(WORD_ADDR(next_table)))
#define BL_INFO WORD_ADDR(BYTE_LOOKUP_INFO(WORD_ADDR(next_table)))
#define BL_MIN_BYTE (BL_BASE[0])
#define BL_MAX_BYTE (BL_BASE[1])
#define BL_OFFSET(byte) (BL_BASE[2+(byte)-BL_MIN_BYTE])
#define BL_ACTION(byte) (BL_INFO[BL_OFFSET((byte))])
next_byte = (unsigned char)*in_p++;
follow_byte:
if (next_byte < BL_MIN_BYTE || BL_MAX_BYTE < next_byte)
next_info = INVALID;
else {
next_info = (VALUE)BL_ACTION(next_byte);
}
follow_info:
switch (next_info & 0x1F) {
case NOMAP:
{
const unsigned char *p = inchar_start;
writebuf_off = 0;
while (p < in_p) {
TRANSCODING_WRITEBUF(tc)[writebuf_off++] = (unsigned char)*p++;
}
writebuf_len = writebuf_off;
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(3);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
continue;
case 0x00: case 0x04: case 0x08: case 0x0C:
case 0x10: case 0x14: case 0x18: case 0x1C:
SUSPEND_AFTER_OUTPUT(25);
while (in_p >= in_stop) {
if (!(opt & ECONV_PARTIAL_INPUT))
goto incomplete;
SUSPEND(econv_source_buffer_empty, 5);
}
next_byte = (unsigned char)*in_p++;
next_table = (unsigned int)next_info;
goto follow_byte;
case ZERObt: /* drop input */
continue;
case ONEbt:
SUSPEND_OBUF(9); *out_p++ = getBT1(next_info);
continue;
case TWObt:
SUSPEND_OBUF(10); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(21); *out_p++ = getBT2(next_info);
continue;
case THREEbt:
SUSPEND_OBUF(11); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(15); *out_p++ = getBT2(next_info);
SUSPEND_OBUF(16); *out_p++ = getBT3(next_info);
continue;
case FOURbt:
SUSPEND_OBUF(12); *out_p++ = getBT0(next_info);
SUSPEND_OBUF(17); *out_p++ = getBT1(next_info);
SUSPEND_OBUF(18); *out_p++ = getBT2(next_info);
SUSPEND_OBUF(19); *out_p++ = getBT3(next_info);
continue;
case GB4bt:
SUSPEND_OBUF(29); *out_p++ = getGB4bt0(next_info);
SUSPEND_OBUF(30); *out_p++ = getGB4bt1(next_info);
SUSPEND_OBUF(31); *out_p++ = getGB4bt2(next_info);
SUSPEND_OBUF(32); *out_p++ = getGB4bt3(next_info);
continue;
case STR1:
tc->output_index = 0;
while (tc->output_index < STR1_LENGTH(BYTE_ADDR(STR1_BYTEINDEX(next_info)))) {
SUSPEND_OBUF(28); *out_p++ = BYTE_ADDR(STR1_BYTEINDEX(next_info))[1+tc->output_index];
tc->output_index++;
}
continue;
case FUNii:
next_info = (VALUE)(*tr->func_ii)(TRANSCODING_STATE(tc), next_info);
goto follow_info;
case FUNsi:
{
const unsigned char *char_start;
size_t char_len;
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
next_info = (VALUE)(*tr->func_si)(TRANSCODING_STATE(tc), char_start, (size_t)char_len);
goto follow_info;
}
case FUNio:
SUSPEND_OBUF(13);
if (tr->max_output <= out_stop - out_p)
out_p += tr->func_io(TRANSCODING_STATE(tc),
next_info, out_p, out_stop - out_p);
else {
writebuf_len = tr->func_io(TRANSCODING_STATE(tc),
next_info,
TRANSCODING_WRITEBUF(tc), TRANSCODING_WRITEBUF_SIZE(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(20);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
break;
case FUNso:
{
const unsigned char *char_start;
size_t char_len;
SUSPEND_OBUF(14);
if (tr->max_output <= out_stop - out_p) {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
out_p += tr->func_so(TRANSCODING_STATE(tc),
char_start, (size_t)char_len,
out_p, out_stop - out_p);
}
else {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
writebuf_len = tr->func_so(TRANSCODING_STATE(tc),
char_start, (size_t)char_len,
TRANSCODING_WRITEBUF(tc), TRANSCODING_WRITEBUF_SIZE(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(22);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
break;
}
case FUNsio:
{
const unsigned char *char_start;
size_t char_len;
SUSPEND_OBUF(33);
if (tr->max_output <= out_stop - out_p) {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
out_p += tr->func_sio(TRANSCODING_STATE(tc),
char_start, (size_t)char_len, next_info,
out_p, out_stop - out_p);
}
else {
char_start = transcode_char_start(tc, *in_pos, inchar_start, in_p, &char_len);
writebuf_len = tr->func_sio(TRANSCODING_STATE(tc),
char_start, (size_t)char_len, next_info,
TRANSCODING_WRITEBUF(tc), TRANSCODING_WRITEBUF_SIZE(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(34);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
break;
}
case INVALID:
if (tc->recognized_len + (in_p - inchar_start) <= unitlen) {
if (tc->recognized_len + (in_p - inchar_start) < unitlen)
SUSPEND_AFTER_OUTPUT(26);
while ((opt & ECONV_PARTIAL_INPUT) && tc->recognized_len + (in_stop - inchar_start) < unitlen) {
in_p = in_stop;
SUSPEND(econv_source_buffer_empty, 8);
}
if (tc->recognized_len + (in_stop - inchar_start) <= unitlen) {
in_p = in_stop;
}
else {
in_p = inchar_start + (unitlen - tc->recognized_len);
}
}
else {
ssize_t invalid_len; /* including the last byte which causes invalid */
ssize_t discard_len;
invalid_len = tc->recognized_len + (in_p - inchar_start);
discard_len = ((invalid_len - 1) / unitlen) * unitlen;
readagain_len = invalid_len - discard_len;
}
goto invalid;
case UNDEF:
goto undef;
default:
rb_raise(rb_eRuntimeError, "unknown transcoding instruction");
}
continue;
invalid:
SUSPEND(econv_invalid_byte_sequence, 1);
continue;
incomplete:
SUSPEND(econv_incomplete_input, 27);
continue;
undef:
SUSPEND(econv_undefined_conversion, 2);
continue;
}
/* cleanup */
if (tr->finish_func) {
SUSPEND_OBUF(4);
if (tr->max_output <= out_stop - out_p) {
out_p += tr->finish_func(TRANSCODING_STATE(tc),
out_p, out_stop - out_p);
}
else {
writebuf_len = tr->finish_func(TRANSCODING_STATE(tc),
TRANSCODING_WRITEBUF(tc), TRANSCODING_WRITEBUF_SIZE(tc));
writebuf_off = 0;
while (writebuf_off < writebuf_len) {
SUSPEND_OBUF(23);
*out_p++ = TRANSCODING_WRITEBUF(tc)[writebuf_off++];
}
}
}
while (1)
SUSPEND(econv_finished, 6);
#undef SUSPEND
#undef next_table
#undef next_info
#undef next_byte
#undef writebuf_len
#undef writebuf_off
}
static rb_econv_result_t
transcode_restartable(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
rb_transcoding *tc,
const int opt)
{
if (tc->readagain_len) {
unsigned char *readagain_buf = ALLOCA_N(unsigned char, tc->readagain_len);
const unsigned char *readagain_pos = readagain_buf;
const unsigned char *readagain_stop = readagain_buf + tc->readagain_len;
rb_econv_result_t res;
MEMCPY(readagain_buf, TRANSCODING_READBUF(tc) + tc->recognized_len,
unsigned char, tc->readagain_len);
tc->readagain_len = 0;
res = transcode_restartable0(&readagain_pos, out_pos, readagain_stop, out_stop, tc, opt|ECONV_PARTIAL_INPUT);
if (res != econv_source_buffer_empty) {
MEMCPY(TRANSCODING_READBUF(tc) + tc->recognized_len + tc->readagain_len,
readagain_pos, unsigned char, readagain_stop - readagain_pos);
tc->readagain_len += readagain_stop - readagain_pos;
return res;
}
}
return transcode_restartable0(in_pos, out_pos, in_stop, out_stop, tc, opt);
}
static rb_transcoding *
rb_transcoding_open_by_transcoder(const rb_transcoder *tr, int flags)
{
rb_transcoding *tc;
tc = ALLOC(rb_transcoding);
tc->transcoder = tr;
tc->flags = flags;
if (TRANSCODING_STATE_EMBED_MAX < tr->state_size)
tc->state.ptr = xmalloc(tr->state_size);
if (tr->state_init_func) {
(tr->state_init_func)(TRANSCODING_STATE(tc)); /* xxx: check return value */
}
tc->resume_position = 0;
tc->recognized_len = 0;
tc->readagain_len = 0;
tc->writebuf_len = 0;
tc->writebuf_off = 0;
if ((int)sizeof(tc->readbuf.ary) < tr->max_input) {
tc->readbuf.ptr = xmalloc(tr->max_input);
}
if ((int)sizeof(tc->writebuf.ary) < tr->max_output) {
tc->writebuf.ptr = xmalloc(tr->max_output);
}
return tc;
}
static rb_econv_result_t
rb_transcoding_convert(rb_transcoding *tc,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
return transcode_restartable(
input_ptr, output_ptr,
input_stop, output_stop,
tc, flags);
}
static void
rb_transcoding_close(rb_transcoding *tc)
{
const rb_transcoder *tr = tc->transcoder;
if (tr->state_fini_func) {
(tr->state_fini_func)(TRANSCODING_STATE(tc)); /* check return value? */
}
if (TRANSCODING_STATE_EMBED_MAX < tr->state_size)
xfree(tc->state.ptr);
if ((int)sizeof(tc->readbuf.ary) < tr->max_input)
xfree(tc->readbuf.ptr);
if ((int)sizeof(tc->writebuf.ary) < tr->max_output)
xfree(tc->writebuf.ptr);
xfree(tc);
}
static size_t
rb_transcoding_memsize(rb_transcoding *tc)
{
size_t size = sizeof(rb_transcoding);
const rb_transcoder *tr = tc->transcoder;
if (TRANSCODING_STATE_EMBED_MAX < tr->state_size) {
size += tr->state_size;
}
if ((int)sizeof(tc->readbuf.ary) < tr->max_input) {
size += tr->max_input;
}
if ((int)sizeof(tc->writebuf.ary) < tr->max_output) {
size += tr->max_output;
}
return size;
}
static rb_econv_t *
rb_econv_alloc(int n_hint)
{
rb_econv_t *ec;
if (n_hint <= 0)
n_hint = 1;
ec = ALLOC(rb_econv_t);
ec->flags = 0;
ec->source_encoding_name = NULL;
ec->destination_encoding_name = NULL;
ec->started = 0;
ec->replacement_str = NULL;
ec->replacement_len = 0;
ec->replacement_enc = NULL;
ec->replacement_allocated = 0;
ec->in_buf_start = NULL;
ec->in_data_start = NULL;
ec->in_data_end = NULL;
ec->in_buf_end = NULL;
ec->num_allocated = n_hint;
ec->num_trans = 0;
ec->elems = ALLOC_N(rb_econv_elem_t, ec->num_allocated);
ec->num_finished = 0;
ec->last_tc = NULL;
ec->last_error.result = econv_source_buffer_empty;
ec->last_error.error_tc = NULL;
ec->last_error.source_encoding = NULL;
ec->last_error.destination_encoding = NULL;
ec->last_error.error_bytes_start = NULL;
ec->last_error.error_bytes_len = 0;
ec->last_error.readagain_len = 0;
ec->source_encoding = NULL;
ec->destination_encoding = NULL;
return ec;
}
static int
rb_econv_add_transcoder_at(rb_econv_t *ec, const rb_transcoder *tr, int i)
{
int n, j;
int bufsize = 4096;
unsigned char *p;
if (ec->num_trans == ec->num_allocated) {
n = ec->num_allocated * 2;
REALLOC_N(ec->elems, rb_econv_elem_t, n);
ec->num_allocated = n;
}
p = xmalloc(bufsize);
MEMMOVE(ec->elems+i+1, ec->elems+i, rb_econv_elem_t, ec->num_trans-i);
ec->elems[i].tc = rb_transcoding_open_by_transcoder(tr, 0);
ec->elems[i].out_buf_start = p;
ec->elems[i].out_buf_end = p + bufsize;
ec->elems[i].out_data_start = p;
ec->elems[i].out_data_end = p;
ec->elems[i].last_result = econv_source_buffer_empty;
ec->num_trans++;
if (!DECORATOR_P(tr->src_encoding, tr->dst_encoding))
for (j = ec->num_trans-1; i <= j; j--) {
rb_transcoding *tc = ec->elems[j].tc;
const rb_transcoder *tr2 = tc->transcoder;
if (!DECORATOR_P(tr2->src_encoding, tr2->dst_encoding)) {
ec->last_tc = tc;
break;
}
}
return 0;
}
static rb_econv_t *
rb_econv_open_by_transcoder_entries(int n, transcoder_entry_t **entries)
{
rb_econv_t *ec;
int i, ret;
for (i = 0; i < n; i++) {
const rb_transcoder *tr;
tr = load_transcoder_entry(entries[i]);
if (!tr)
return NULL;
}
ec = rb_econv_alloc(n);
for (i = 0; i < n; i++) {
const rb_transcoder *tr = load_transcoder_entry(entries[i]);
ret = rb_econv_add_transcoder_at(ec, tr, ec->num_trans);
if (ret == -1) {
rb_econv_close(ec);
return NULL;
}
}
return ec;
}
struct trans_open_t {
transcoder_entry_t **entries;
int num_additional;
};
static void
trans_open_i(const char *sname, const char *dname, int depth, void *arg)
{
struct trans_open_t *toarg = arg;
if (!toarg->entries) {
toarg->entries = ALLOC_N(transcoder_entry_t *, depth+1+toarg->num_additional);
}
toarg->entries[depth] = get_transcoder_entry(sname, dname);
}
static rb_econv_t *
rb_econv_open0(const char *sname, const char *dname, int ecflags)
{
transcoder_entry_t **entries = NULL;
int num_trans;
rb_econv_t *ec;
int sidx, didx;
if (*sname) {
sidx = rb_enc_find_index(sname);
if (0 <= sidx) {
rb_enc_from_index(sidx);
}
}
if (*dname) {
didx = rb_enc_find_index(dname);
if (0 <= didx) {
rb_enc_from_index(didx);
}
}
if (*sname == '\0' && *dname == '\0') {
num_trans = 0;
entries = NULL;
}
else {
struct trans_open_t toarg;
toarg.entries = NULL;
toarg.num_additional = 0;
num_trans = transcode_search_path(sname, dname, trans_open_i, (void *)&toarg);
entries = toarg.entries;
if (num_trans < 0) {
xfree(entries);
return NULL;
}
}
ec = rb_econv_open_by_transcoder_entries(num_trans, entries);
xfree(entries);
if (!ec)
return NULL;
ec->flags = ecflags;
ec->source_encoding_name = sname;
ec->destination_encoding_name = dname;
return ec;
}
#define MAX_ECFLAGS_DECORATORS 32
static int
decorator_names(int ecflags, const char **decorators_ret)
{
int num_decorators;
switch (ecflags & ECONV_NEWLINE_DECORATOR_MASK) {
case ECONV_UNIVERSAL_NEWLINE_DECORATOR:
case ECONV_CRLF_NEWLINE_DECORATOR:
case ECONV_CR_NEWLINE_DECORATOR:
case 0:
break;
default:
return -1;
}
if ((ecflags & ECONV_XML_TEXT_DECORATOR) &&
(ecflags & ECONV_XML_ATTR_CONTENT_DECORATOR))
return -1;
num_decorators = 0;
if (ecflags & ECONV_XML_TEXT_DECORATOR)
decorators_ret[num_decorators++] = "xml_text_escape";
if (ecflags & ECONV_XML_ATTR_CONTENT_DECORATOR)
decorators_ret[num_decorators++] = "xml_attr_content_escape";
if (ecflags & ECONV_XML_ATTR_QUOTE_DECORATOR)
decorators_ret[num_decorators++] = "xml_attr_quote";
if (ecflags & ECONV_CRLF_NEWLINE_DECORATOR)
decorators_ret[num_decorators++] = "crlf_newline";
if (ecflags & ECONV_CR_NEWLINE_DECORATOR)
decorators_ret[num_decorators++] = "cr_newline";
if (ecflags & ECONV_UNIVERSAL_NEWLINE_DECORATOR)
decorators_ret[num_decorators++] = "universal_newline";
return num_decorators;
}
rb_econv_t *
rb_econv_open(const char *sname, const char *dname, int ecflags)
{
rb_econv_t *ec;
int num_decorators;
const char *decorators[MAX_ECFLAGS_DECORATORS];
int i;
num_decorators = decorator_names(ecflags, decorators);
if (num_decorators == -1)
return NULL;
ec = rb_econv_open0(sname, dname, ecflags & ECONV_ERROR_HANDLER_MASK);
if (!ec)
return NULL;
for (i = 0; i < num_decorators; i++)
if (rb_econv_decorate_at_last(ec, decorators[i]) == -1) {
rb_econv_close(ec);
return NULL;
}
ec->flags |= ecflags & ~ECONV_ERROR_HANDLER_MASK;
return ec;
}
static int
trans_sweep(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags,
int start)
{
int try;
int i, f;
const unsigned char **ipp, *is, *iold;
unsigned char **opp, *os, *oold;
rb_econv_result_t res;
try = 1;
while (try) {
try = 0;
for (i = start; i < ec->num_trans; i++) {
rb_econv_elem_t *te = &ec->elems[i];
if (i == 0) {
ipp = input_ptr;
is = input_stop;
}
else {
rb_econv_elem_t *prev_te = &ec->elems[i-1];
ipp = (const unsigned char **)&prev_te->out_data_start;
is = prev_te->out_data_end;
}
if (i == ec->num_trans-1) {
opp = output_ptr;
os = output_stop;
}
else {
if (te->out_buf_start != te->out_data_start) {
ssize_t len = te->out_data_end - te->out_data_start;
ssize_t off = te->out_data_start - te->out_buf_start;
MEMMOVE(te->out_buf_start, te->out_data_start, unsigned char, len);
te->out_data_start = te->out_buf_start;
te->out_data_end -= off;
}
opp = &te->out_data_end;
os = te->out_buf_end;
}
f = flags;
if (ec->num_finished != i)
f |= ECONV_PARTIAL_INPUT;
if (i == 0 && (flags & ECONV_AFTER_OUTPUT)) {
start = 1;
flags &= ~ECONV_AFTER_OUTPUT;
}
if (i != 0)
f &= ~ECONV_AFTER_OUTPUT;
iold = *ipp;
oold = *opp;
te->last_result = res = rb_transcoding_convert(te->tc, ipp, is, opp, os, f);
if (iold != *ipp || oold != *opp)
try = 1;
switch (res) {
case econv_invalid_byte_sequence:
case econv_incomplete_input:
case econv_undefined_conversion:
case econv_after_output:
return i;
case econv_destination_buffer_full:
case econv_source_buffer_empty:
break;
case econv_finished:
ec->num_finished = i+1;
break;
}
}
}
return -1;
}
static rb_econv_result_t
rb_trans_conv(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags,
int *result_position_ptr)
{
int i;
int needreport_index;
int sweep_start;
unsigned char empty_buf;
unsigned char *empty_ptr = &empty_buf;
if (!input_ptr) {
input_ptr = (const unsigned char **)&empty_ptr;
input_stop = empty_ptr;
}
if (!output_ptr) {
output_ptr = &empty_ptr;
output_stop = empty_ptr;
}
if (ec->elems[0].last_result == econv_after_output)
ec->elems[0].last_result = econv_source_buffer_empty;
needreport_index = -1;
for (i = ec->num_trans-1; 0 <= i; i--) {
switch (ec->elems[i].last_result) {
case econv_invalid_byte_sequence:
case econv_incomplete_input:
case econv_undefined_conversion:
case econv_after_output:
case econv_finished:
sweep_start = i+1;
needreport_index = i;
goto found_needreport;
case econv_destination_buffer_full:
case econv_source_buffer_empty:
break;
default:
rb_bug("unexpected transcode last result");
}
}
/* /^[sd]+$/ is confirmed. but actually /^s*d*$/. */
if (ec->elems[ec->num_trans-1].last_result == econv_destination_buffer_full &&
(flags & ECONV_AFTER_OUTPUT)) {
rb_econv_result_t res;
res = rb_trans_conv(ec, NULL, NULL, output_ptr, output_stop,
(flags & ~ECONV_AFTER_OUTPUT)|ECONV_PARTIAL_INPUT,
result_position_ptr);
if (res == econv_source_buffer_empty)
return econv_after_output;
return res;
}
sweep_start = 0;
found_needreport:
do {
needreport_index = trans_sweep(ec, input_ptr, input_stop, output_ptr, output_stop, flags, sweep_start);
sweep_start = needreport_index + 1;
} while (needreport_index != -1 && needreport_index != ec->num_trans-1);
for (i = ec->num_trans-1; 0 <= i; i--) {
if (ec->elems[i].last_result != econv_source_buffer_empty) {
rb_econv_result_t res = ec->elems[i].last_result;
if (res == econv_invalid_byte_sequence ||
res == econv_incomplete_input ||
res == econv_undefined_conversion ||
res == econv_after_output) {
ec->elems[i].last_result = econv_source_buffer_empty;
}
if (result_position_ptr)
*result_position_ptr = i;
return res;
}
}
if (result_position_ptr)
*result_position_ptr = -1;
return econv_source_buffer_empty;
}
static rb_econv_result_t
rb_econv_convert0(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
rb_econv_result_t res;
int result_position;
int has_output = 0;
memset(&ec->last_error, 0, sizeof(ec->last_error));
if (ec->num_trans == 0) {
size_t len;
if (ec->in_buf_start && ec->in_data_start != ec->in_data_end) {
if (output_stop - *output_ptr < ec->in_data_end - ec->in_data_start) {
len = output_stop - *output_ptr;
memcpy(*output_ptr, ec->in_data_start, len);
*output_ptr = output_stop;
ec->in_data_start += len;
res = econv_destination_buffer_full;
goto gotresult;
}
len = ec->in_data_end - ec->in_data_start;
memcpy(*output_ptr, ec->in_data_start, len);
*output_ptr += len;
ec->in_data_start = ec->in_data_end = ec->in_buf_start;
if (flags & ECONV_AFTER_OUTPUT) {
res = econv_after_output;
goto gotresult;
}
}
if (output_stop - *output_ptr < input_stop - *input_ptr) {
len = output_stop - *output_ptr;
}
else {
len = input_stop - *input_ptr;
}
if (0 < len && (flags & ECONV_AFTER_OUTPUT)) {
*(*output_ptr)++ = *(*input_ptr)++;
res = econv_after_output;
goto gotresult;
}
memcpy(*output_ptr, *input_ptr, len);
*output_ptr += len;
*input_ptr += len;
if (*input_ptr != input_stop)
res = econv_destination_buffer_full;
else if (flags & ECONV_PARTIAL_INPUT)
res = econv_source_buffer_empty;
else
res = econv_finished;
goto gotresult;
}
if (ec->elems[ec->num_trans-1].out_data_start) {
unsigned char *data_start = ec->elems[ec->num_trans-1].out_data_start;
unsigned char *data_end = ec->elems[ec->num_trans-1].out_data_end;
if (data_start != data_end) {
size_t len;
if (output_stop - *output_ptr < data_end - data_start) {
len = output_stop - *output_ptr;
memcpy(*output_ptr, data_start, len);
*output_ptr = output_stop;
ec->elems[ec->num_trans-1].out_data_start += len;
res = econv_destination_buffer_full;
goto gotresult;
}
len = data_end - data_start;
memcpy(*output_ptr, data_start, len);
*output_ptr += len;
ec->elems[ec->num_trans-1].out_data_start =
ec->elems[ec->num_trans-1].out_data_end =
ec->elems[ec->num_trans-1].out_buf_start;
has_output = 1;
}
}
if (ec->in_buf_start &&
ec->in_data_start != ec->in_data_end) {
res = rb_trans_conv(ec, (const unsigned char **)&ec->in_data_start, ec->in_data_end, output_ptr, output_stop,
(flags&~ECONV_AFTER_OUTPUT)|ECONV_PARTIAL_INPUT, &result_position);
if (res != econv_source_buffer_empty)
goto gotresult;
}
if (has_output &&
(flags & ECONV_AFTER_OUTPUT) &&
*input_ptr != input_stop) {
input_stop = *input_ptr;
res = rb_trans_conv(ec, input_ptr, input_stop, output_ptr, output_stop, flags, &result_position);
if (res == econv_source_buffer_empty)
res = econv_after_output;
}
else if ((flags & ECONV_AFTER_OUTPUT) ||
ec->num_trans == 1) {
res = rb_trans_conv(ec, input_ptr, input_stop, output_ptr, output_stop, flags, &result_position);
}
else {
flags |= ECONV_AFTER_OUTPUT;
do {
res = rb_trans_conv(ec, input_ptr, input_stop, output_ptr, output_stop, flags, &result_position);
} while (res == econv_after_output);
}
gotresult:
ec->last_error.result = res;
if (res == econv_invalid_byte_sequence ||
res == econv_incomplete_input ||
res == econv_undefined_conversion) {
rb_transcoding *error_tc = ec->elems[result_position].tc;
ec->last_error.error_tc = error_tc;
ec->last_error.source_encoding = error_tc->transcoder->src_encoding;
ec->last_error.destination_encoding = error_tc->transcoder->dst_encoding;
ec->last_error.error_bytes_start = TRANSCODING_READBUF(error_tc);
ec->last_error.error_bytes_len = error_tc->recognized_len;
ec->last_error.readagain_len = error_tc->readagain_len;
}
return res;
}
static int output_replacement_character(rb_econv_t *ec);
static int
output_hex_charref(rb_econv_t *ec)
{
int ret;
unsigned char utfbuf[1024];
const unsigned char *utf;
size_t utf_len;
int utf_allocated = 0;
char charef_buf[16];
const unsigned char *p;
if (encoding_equal(ec->last_error.source_encoding, "UTF-32BE")) {
utf = ec->last_error.error_bytes_start;
utf_len = ec->last_error.error_bytes_len;
}
else {
utf = allocate_converted_string(ec->last_error.source_encoding, "UTF-32BE",
ec->last_error.error_bytes_start, ec->last_error.error_bytes_len,
utfbuf, sizeof(utfbuf),
&utf_len);
if (!utf)
return -1;
if (utf != utfbuf && utf != ec->last_error.error_bytes_start)
utf_allocated = 1;
}
if (utf_len % 4 != 0)
goto fail;
p = utf;
while (4 <= utf_len) {
unsigned int u = 0;
u += p[0] << 24;
u += p[1] << 16;
u += p[2] << 8;
u += p[3];
snprintf(charef_buf, sizeof(charef_buf), "&#x%X;", u);
ret = rb_econv_insert_output(ec, (unsigned char *)charef_buf, strlen(charef_buf), "US-ASCII");
if (ret == -1)
goto fail;
p += 4;
utf_len -= 4;
}
if (utf_allocated)
xfree((void *)utf);
return 0;
fail:
if (utf_allocated)
xfree((void *)utf);
return -1;
}
rb_econv_result_t
rb_econv_convert(rb_econv_t *ec,
const unsigned char **input_ptr, const unsigned char *input_stop,
unsigned char **output_ptr, unsigned char *output_stop,
int flags)
{
rb_econv_result_t ret;
unsigned char empty_buf;
unsigned char *empty_ptr = &empty_buf;
ec->started = 1;
if (!input_ptr) {
input_ptr = (const unsigned char **)&empty_ptr;
input_stop = empty_ptr;
}
if (!output_ptr) {
output_ptr = &empty_ptr;
output_stop = empty_ptr;
}
resume:
ret = rb_econv_convert0(ec, input_ptr, input_stop, output_ptr, output_stop, flags);
if (ret == econv_invalid_byte_sequence ||
ret == econv_incomplete_input) {
/* deal with invalid byte sequence */
/* todo: add more alternative behaviors */
switch (ec->flags & ECONV_INVALID_MASK) {
case ECONV_INVALID_REPLACE:
if (output_replacement_character(ec) == 0)
goto resume;
}
}
if (ret == econv_undefined_conversion) {
/* valid character in source encoding
* but no related character(s) in destination encoding */
/* todo: add more alternative behaviors */
switch (ec->flags & ECONV_UNDEF_MASK) {
case ECONV_UNDEF_REPLACE:
if (output_replacement_character(ec) == 0)
goto resume;
break;
case ECONV_UNDEF_HEX_CHARREF:
if (output_hex_charref(ec) == 0)
goto resume;
break;
}
}
return ret;
}
const char *
rb_econv_encoding_to_insert_output(rb_econv_t *ec)
{
rb_transcoding *tc = ec->last_tc;
const rb_transcoder *tr;
if (tc == NULL)
return "";
tr = tc->transcoder;
if (tr->asciicompat_type == asciicompat_encoder)
return tr->src_encoding;
return tr->dst_encoding;
}
static unsigned char *
allocate_converted_string(const char *sname, const char *dname,
const unsigned char *str, size_t len,
unsigned char *caller_dst_buf, size_t caller_dst_bufsize,
size_t *dst_len_ptr)
{
unsigned char *dst_str;
size_t dst_len;
size_t dst_bufsize;
rb_econv_t *ec;
rb_econv_result_t res;
const unsigned char *sp;
unsigned char *dp;
if (caller_dst_buf)
dst_bufsize = caller_dst_bufsize;
else if (len == 0)
dst_bufsize = 1;
else
dst_bufsize = len;
ec = rb_econv_open(sname, dname, 0);
if (ec == NULL)
return NULL;
if (caller_dst_buf)
dst_str = caller_dst_buf;
else
dst_str = xmalloc(dst_bufsize);
dst_len = 0;
sp = str;
dp = dst_str+dst_len;
res = rb_econv_convert(ec, &sp, str+len, &dp, dst_str+dst_bufsize, 0);
dst_len = dp - dst_str;
while (res == econv_destination_buffer_full) {
if (SIZE_MAX/2 < dst_bufsize) {
goto fail;
}
dst_bufsize *= 2;
if (dst_str == caller_dst_buf) {
unsigned char *tmp;
tmp = xmalloc(dst_bufsize);
memcpy(tmp, dst_str, dst_bufsize/2);
dst_str = tmp;
}
else {
dst_str = xrealloc(dst_str, dst_bufsize);
}
dp = dst_str+dst_len;
res = rb_econv_convert(ec, &sp, str+len, &dp, dst_str+dst_bufsize, 0);
dst_len = dp - dst_str;
}
if (res != econv_finished) {
goto fail;
}
rb_econv_close(ec);
*dst_len_ptr = dst_len;
return dst_str;
fail:
if (dst_str != caller_dst_buf)
xfree(dst_str);
rb_econv_close(ec);
return NULL;
}
/* result: 0:success -1:failure */
int
rb_econv_insert_output(rb_econv_t *ec,
const unsigned char *str, size_t len, const char *str_encoding)
{
const char *insert_encoding = rb_econv_encoding_to_insert_output(ec);
unsigned char insert_buf[4096];
const unsigned char *insert_str = NULL;
size_t insert_len;
int last_trans_index;
rb_transcoding *tc;
unsigned char **buf_start_p;
unsigned char **data_start_p;
unsigned char **data_end_p;
unsigned char **buf_end_p;
size_t need;
ec->started = 1;
if (len == 0)
return 0;
if (encoding_equal(insert_encoding, str_encoding)) {
insert_str = str;
insert_len = len;
}
else {
insert_str = allocate_converted_string(str_encoding, insert_encoding,
str, len, insert_buf, sizeof(insert_buf), &insert_len);
if (insert_str == NULL)
return -1;
}
need = insert_len;
last_trans_index = ec->num_trans-1;
if (ec->num_trans == 0) {
tc = NULL;
buf_start_p = &ec->in_buf_start;
data_start_p = &ec->in_data_start;
data_end_p = &ec->in_data_end;
buf_end_p = &ec->in_buf_end;
}
else if (ec->elems[last_trans_index].tc->transcoder->asciicompat_type == asciicompat_encoder) {
tc = ec->elems[last_trans_index].tc;
need += tc->readagain_len;
if (need < insert_len)
goto fail;
if (last_trans_index == 0) {
buf_start_p = &ec->in_buf_start;
data_start_p = &ec->in_data_start;
data_end_p = &ec->in_data_end;
buf_end_p = &ec->in_buf_end;
}
else {
rb_econv_elem_t *ee = &ec->elems[last_trans_index-1];
buf_start_p = &ee->out_buf_start;
data_start_p = &ee->out_data_start;
data_end_p = &ee->out_data_end;
buf_end_p = &ee->out_buf_end;
}
}
else {
rb_econv_elem_t *ee = &ec->elems[last_trans_index];
buf_start_p = &ee->out_buf_start;
data_start_p = &ee->out_data_start;
data_end_p = &ee->out_data_end;
buf_end_p = &ee->out_buf_end;
tc = ec->elems[last_trans_index].tc;
}
if (*buf_start_p == NULL) {
unsigned char *buf = xmalloc(need);
*buf_start_p = buf;
*data_start_p = buf;
*data_end_p = buf;
*buf_end_p = buf+need;
}
else if ((size_t)(*buf_end_p - *data_end_p) < need) {
MEMMOVE(*buf_start_p, *data_start_p, unsigned char, *data_end_p - *data_start_p);
*data_end_p = *buf_start_p + (*data_end_p - *data_start_p);
*data_start_p = *buf_start_p;
if ((size_t)(*buf_end_p - *data_end_p) < need) {
unsigned char *buf;
size_t s = (*data_end_p - *buf_start_p) + need;
if (s < need)
goto fail;
buf = xrealloc(*buf_start_p, s);
*data_start_p = buf;
*data_end_p = buf + (*data_end_p - *buf_start_p);
*buf_start_p = buf;
*buf_end_p = buf + s;
}
}
memcpy(*data_end_p, insert_str, insert_len);
*data_end_p += insert_len;
if (tc && tc->transcoder->asciicompat_type == asciicompat_encoder) {
memcpy(*data_end_p, TRANSCODING_READBUF(tc)+tc->recognized_len, tc->readagain_len);
*data_end_p += tc->readagain_len;
tc->readagain_len = 0;
}
if (insert_str != str && insert_str != insert_buf)
xfree((void*)insert_str);
return 0;
fail:
if (insert_str != str && insert_str != insert_buf)
xfree((void*)insert_str);
return -1;
}
void
rb_econv_close(rb_econv_t *ec)
{
int i;
if (ec->replacement_allocated) {
xfree((void *)ec->replacement_str);
}
for (i = 0; i < ec->num_trans; i++) {
rb_transcoding_close(ec->elems[i].tc);
if (ec->elems[i].out_buf_start)
xfree(ec->elems[i].out_buf_start);
}
xfree(ec->in_buf_start);
xfree(ec->elems);
xfree(ec);
}
size_t
rb_econv_memsize(rb_econv_t *ec)
{
size_t size = sizeof(rb_econv_t);
int i;
if (ec->replacement_allocated) {
size += ec->replacement_len;
}
for (i = 0; i < ec->num_trans; i++) {
size += rb_transcoding_memsize(ec->elems[i].tc);
if (ec->elems[i].out_buf_start) {
size += ec->elems[i].out_buf_end - ec->elems[i].out_buf_start;
}
}
size += ec->in_buf_end - ec->in_buf_start;
size += sizeof(rb_econv_elem_t) * ec->num_allocated;
return size;
}
int
rb_econv_putbackable(rb_econv_t *ec)
{
if (ec->num_trans == 0)
return 0;
#if SIZEOF_SIZE_T > SIZEOF_INT
if (ec->elems[0].tc->readagain_len > INT_MAX) return INT_MAX;
#endif
return (int)ec->elems[0].tc->readagain_len;
}
void
rb_econv_putback(rb_econv_t *ec, unsigned char *p, int n)
{
rb_transcoding *tc;
if (ec->num_trans == 0 || n == 0)
return;
tc = ec->elems[0].tc;
memcpy(p, TRANSCODING_READBUF(tc) + tc->recognized_len + tc->readagain_len - n, n);
tc->readagain_len -= n;
}
struct asciicompat_encoding_t {
const char *ascii_compat_name;
const char *ascii_incompat_name;
};
static int
asciicompat_encoding_i(st_data_t key, st_data_t val, st_data_t arg)
{
struct asciicompat_encoding_t *data = (struct asciicompat_encoding_t *)arg;
transcoder_entry_t *entry = (transcoder_entry_t *)val;
const rb_transcoder *tr;
if (DECORATOR_P(entry->sname, entry->dname))
return ST_CONTINUE;
tr = load_transcoder_entry(entry);
if (tr && tr->asciicompat_type == asciicompat_decoder) {
data->ascii_compat_name = tr->dst_encoding;
return ST_STOP;
}
return ST_CONTINUE;
}
const char *
rb_econv_asciicompat_encoding(const char *ascii_incompat_name)
{
st_data_t v;
st_table *table2;
struct asciicompat_encoding_t data;
if (!st_lookup(transcoder_table, (st_data_t)ascii_incompat_name, &v))
return NULL;
table2 = (st_table *)v;
/*
* Assumption:
* There is at most one transcoder for
* converting from ASCII incompatible encoding.
*
* For ISO-2022-JP, there is ISO-2022-JP -> stateless-ISO-2022-JP and no others.
*/
if (table2->num_entries != 1)
return NULL;
data.ascii_incompat_name = ascii_incompat_name;
data.ascii_compat_name = NULL;
st_foreach(table2, asciicompat_encoding_i, (st_data_t)&data);
return data.ascii_compat_name;
}
VALUE
rb_econv_substr_append(rb_econv_t *ec, VALUE src, long off, long len, VALUE dst, int flags)
{
unsigned const char *ss, *sp, *se;
unsigned char *ds, *dp, *de;
rb_econv_result_t res;
int max_output;
if (NIL_P(dst)) {
dst = rb_str_buf_new(len);
if (ec->destination_encoding)
rb_enc_associate(dst, ec->destination_encoding);
}
if (ec->last_tc)
max_output = ec->last_tc->transcoder->max_output;
else
max_output = 1;
res = econv_destination_buffer_full;
while (res == econv_destination_buffer_full) {
long dlen = RSTRING_LEN(dst);
if (rb_str_capacity(dst) - dlen < (size_t)len + max_output) {
unsigned long new_capa = (unsigned long)dlen + len + max_output;
if (LONG_MAX < new_capa)
rb_raise(rb_eArgError, "too long string");
rb_str_resize(dst, new_capa);
rb_str_set_len(dst, dlen);
}
ss = sp = (const unsigned char *)RSTRING_PTR(src) + off;
se = ss + len;
ds = (unsigned char *)RSTRING_PTR(dst);
de = ds + rb_str_capacity(dst);
dp = ds += dlen;
res = rb_econv_convert(ec, &sp, se, &dp, de, flags);
off += sp - ss;
len -= sp - ss;
rb_str_set_len(dst, dlen + (dp - ds));
rb_econv_check_error(ec);
}
return dst;
}
VALUE
rb_econv_str_append(rb_econv_t *ec, VALUE src, VALUE dst, int flags)
{
return rb_econv_substr_append(ec, src, 0, RSTRING_LEN(src), dst, flags);
}
VALUE
rb_econv_substr_convert(rb_econv_t *ec, VALUE src, long byteoff, long bytesize, int flags)
{
return rb_econv_substr_append(ec, src, byteoff, bytesize, Qnil, flags);
}
VALUE
rb_econv_str_convert(rb_econv_t *ec, VALUE src, int flags)
{
return rb_econv_substr_append(ec, src, 0, RSTRING_LEN(src), Qnil, flags);
}
static int
rb_econv_add_converter(rb_econv_t *ec, const char *sname, const char *dname, int n)
{
transcoder_entry_t *entry;
const rb_transcoder *tr;
if (ec->started != 0)
return -1;
entry = get_transcoder_entry(sname, dname);
if (!entry)
return -1;
tr = load_transcoder_entry(entry);
if (!tr) return -1;
return rb_econv_add_transcoder_at(ec, tr, n);
}
static int
rb_econv_decorate_at(rb_econv_t *ec, const char *decorator_name, int n)
{
return rb_econv_add_converter(ec, "", decorator_name, n);
}
int
rb_econv_decorate_at_first(rb_econv_t *ec, const char *decorator_name)
{
const rb_transcoder *tr;
if (ec->num_trans == 0)
return rb_econv_decorate_at(ec, decorator_name, 0);
tr = ec->elems[0].tc->transcoder;
if (!DECORATOR_P(tr->src_encoding, tr->dst_encoding) &&
tr->asciicompat_type == asciicompat_decoder)
return rb_econv_decorate_at(ec, decorator_name, 1);
return rb_econv_decorate_at(ec, decorator_name, 0);
}
int
rb_econv_decorate_at_last(rb_econv_t *ec, const char *decorator_name)
{
const rb_transcoder *tr;
if (ec->num_trans == 0)
return rb_econv_decorate_at(ec, decorator_name, 0);
tr = ec->elems[ec->num_trans-1].tc->transcoder;
if (!DECORATOR_P(tr->src_encoding, tr->dst_encoding) &&
tr->asciicompat_type == asciicompat_encoder)
return rb_econv_decorate_at(ec, decorator_name, ec->num_trans-1);
return rb_econv_decorate_at(ec, decorator_name, ec->num_trans);
}
void
rb_econv_binmode(rb_econv_t *ec)
{
const char *dname = 0;
switch (ec->flags & ECONV_NEWLINE_DECORATOR_MASK) {
case ECONV_UNIVERSAL_NEWLINE_DECORATOR:
dname = "universal_newline";
break;
case ECONV_CRLF_NEWLINE_DECORATOR:
dname = "crlf_newline";
break;
case ECONV_CR_NEWLINE_DECORATOR:
dname = "cr_newline";
break;
}
if (dname) {
const rb_transcoder *transcoder = get_transcoder_entry("", dname)->transcoder;
int num_trans = ec->num_trans;
int i, j = 0;
for (i=0; i < num_trans; i++) {
if (transcoder == ec->elems[i].tc->transcoder) {
rb_transcoding_close(ec->elems[i].tc);
xfree(ec->elems[i].out_buf_start);
ec->num_trans--;
}
else
ec->elems[j++] = ec->elems[i];
}
}
ec->flags &= ~ECONV_NEWLINE_DECORATOR_MASK;
}
static VALUE
econv_description(const char *sname, const char *dname, int ecflags, VALUE mesg)
{
int has_description = 0;
if (NIL_P(mesg))
mesg = rb_str_new(NULL, 0);
if (*sname != '\0' || *dname != '\0') {
if (*sname == '\0')
rb_str_cat2(mesg, dname);
else if (*dname == '\0')
rb_str_cat2(mesg, sname);
else
rb_str_catf(mesg, "%s to %s", sname, dname);
has_description = 1;
}
if (ecflags & (ECONV_NEWLINE_DECORATOR_MASK|
ECONV_XML_TEXT_DECORATOR|
ECONV_XML_ATTR_CONTENT_DECORATOR|
ECONV_XML_ATTR_QUOTE_DECORATOR)) {
const char *pre = "";
if (has_description)
rb_str_cat2(mesg, " with ");
if (ecflags & ECONV_UNIVERSAL_NEWLINE_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "universal_newline");
}
if (ecflags & ECONV_CRLF_NEWLINE_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "crlf_newline");
}
if (ecflags & ECONV_CR_NEWLINE_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "cr_newline");
}
if (ecflags & ECONV_XML_TEXT_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "xml_text");
}
if (ecflags & ECONV_XML_ATTR_CONTENT_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "xml_attr_content");
}
if (ecflags & ECONV_XML_ATTR_QUOTE_DECORATOR) {
rb_str_cat2(mesg, pre); pre = ",";
rb_str_cat2(mesg, "xml_attr_quote");
}
has_description = 1;
}
if (!has_description) {
rb_str_cat2(mesg, "no-conversion");
}
return mesg;
}
VALUE
rb_econv_open_exc(const char *sname, const char *dname, int ecflags)
{
VALUE mesg, exc;
mesg = rb_str_new_cstr("code converter not found (");
econv_description(sname, dname, ecflags, mesg);
rb_str_cat2(mesg, ")");
exc = rb_exc_new3(rb_eConverterNotFoundError, mesg);
return exc;
}
static VALUE
make_econv_exception(rb_econv_t *ec)
{
VALUE mesg, exc;
if (ec->last_error.result == econv_invalid_byte_sequence ||
ec->last_error.result == econv_incomplete_input) {
const char *err = (const char *)ec->last_error.error_bytes_start;
size_t error_len = ec->last_error.error_bytes_len;
VALUE bytes = rb_str_new(err, error_len);
VALUE dumped = rb_str_dump(bytes);
size_t readagain_len = ec->last_error.readagain_len;
VALUE bytes2 = Qnil;
VALUE dumped2;
int idx;
if (ec->last_error.result == econv_incomplete_input) {
mesg = rb_sprintf("incomplete %s on %s",
StringValueCStr(dumped),
ec->last_error.source_encoding);
}
else if (readagain_len) {
bytes2 = rb_str_new(err+error_len, readagain_len);
dumped2 = rb_str_dump(bytes2);
mesg = rb_sprintf("%s followed by %s on %s",
StringValueCStr(dumped),
StringValueCStr(dumped2),
ec->last_error.source_encoding);
}
else {
mesg = rb_sprintf("%s on %s",
StringValueCStr(dumped),
ec->last_error.source_encoding);
}
exc = rb_exc_new3(rb_eInvalidByteSequenceError, mesg);
rb_ivar_set(exc, rb_intern("error_bytes"), bytes);
rb_ivar_set(exc, rb_intern("readagain_bytes"), bytes2);
rb_ivar_set(exc, rb_intern("incomplete_input"), ec->last_error.result == econv_incomplete_input ? Qtrue : Qfalse);
set_encs:
rb_ivar_set(exc, rb_intern("source_encoding_name"), rb_str_new2(ec->last_error.source_encoding));
rb_ivar_set(exc, rb_intern("destination_encoding_name"), rb_str_new2(ec->last_error.destination_encoding));
idx = rb_enc_find_index(ec->last_error.source_encoding);
if (0 <= idx)
rb_ivar_set(exc, rb_intern("source_encoding"), rb_enc_from_encoding(rb_enc_from_index(idx)));
idx = rb_enc_find_index(ec->last_error.destination_encoding);
if (0 <= idx)
rb_ivar_set(exc, rb_intern("destination_encoding"), rb_enc_from_encoding(rb_enc_from_index(idx)));
return exc;
}
if (ec->last_error.result == econv_undefined_conversion) {
VALUE bytes = rb_str_new((const char *)ec->last_error.error_bytes_start,
ec->last_error.error_bytes_len);
VALUE dumped = Qnil;
int idx;
if (strcmp(ec->last_error.source_encoding, "UTF-8") == 0) {
rb_encoding *utf8 = rb_utf8_encoding();
const char *start, *end;
int n;
start = (const char *)ec->last_error.error_bytes_start;
end = start + ec->last_error.error_bytes_len;
n = rb_enc_precise_mbclen(start, end, utf8);
if (MBCLEN_CHARFOUND_P(n) &&
(size_t)MBCLEN_CHARFOUND_LEN(n) == ec->last_error.error_bytes_len) {
unsigned int cc = rb_enc_mbc_to_codepoint(start, end, utf8);
dumped = rb_sprintf("U+%04X", cc);
}
}
if (dumped == Qnil)
dumped = rb_str_dump(bytes);
if (strcmp(ec->last_error.source_encoding,
ec->source_encoding_name) == 0 &&
strcmp(ec->last_error.destination_encoding,
ec->destination_encoding_name) == 0) {
mesg = rb_sprintf("%s from %s to %s",
StringValueCStr(dumped),
ec->last_error.source_encoding,
ec->last_error.destination_encoding);
}
else {
int i;
mesg = rb_sprintf("%s to %s in conversion from %s",
StringValueCStr(dumped),
ec->last_error.destination_encoding,
ec->source_encoding_name);
for (i = 0; i < ec->num_trans; i++) {
const rb_transcoder *tr = ec->elems[i].tc->transcoder;
if (!DECORATOR_P(tr->src_encoding, tr->dst_encoding))
rb_str_catf(mesg, " to %s",
ec->elems[i].tc->transcoder->dst_encoding);
}
}
exc = rb_exc_new3(rb_eUndefinedConversionError, mesg);
idx = rb_enc_find_index(ec->last_error.source_encoding);
if (0 <= idx)
rb_enc_associate_index(bytes, idx);
rb_ivar_set(exc, rb_intern("error_char"), bytes);
goto set_encs;
}
return Qnil;
}
static void
more_output_buffer(
VALUE destination,
unsigned char *(*resize_destination)(VALUE, size_t, size_t),
int max_output,
unsigned char **out_start_ptr,
unsigned char **out_pos,
unsigned char **out_stop_ptr)
{
size_t len = (*out_pos - *out_start_ptr);
size_t new_len = (len + max_output) * 2;
*out_start_ptr = resize_destination(destination, len, new_len);
*out_pos = *out_start_ptr + len;
*out_stop_ptr = *out_start_ptr + new_len;
}
static int
make_replacement(rb_econv_t *ec)
{
rb_transcoding *tc;
const rb_transcoder *tr;
const unsigned char *replacement;
const char *repl_enc;
const char *ins_enc;
size_t len;
if (ec->replacement_str)
return 0;
ins_enc = rb_econv_encoding_to_insert_output(ec);
tc = ec->last_tc;
if (*ins_enc) {
tr = tc->transcoder;
rb_enc_find(tr->dst_encoding);
replacement = (const unsigned char *)get_replacement_character(ins_enc, &len, &repl_enc);
}
else {
replacement = (unsigned char *)"?";
len = 1;
repl_enc = "";
}
ec->replacement_str = replacement;
ec->replacement_len = len;
ec->replacement_enc = repl_enc;
ec->replacement_allocated = 0;
return 0;
}
int
rb_econv_set_replacement(rb_econv_t *ec,
const unsigned char *str, size_t len, const char *encname)
{
unsigned char *str2;
size_t len2;
const char *encname2;
encname2 = rb_econv_encoding_to_insert_output(ec);
if (encoding_equal(encname, encname2)) {
str2 = xmalloc(len);
MEMCPY(str2, str, unsigned char, len); /* xxx: str may be invalid */
len2 = len;
encname2 = encname;
}
else {
str2 = allocate_converted_string(encname, encname2, str, len, NULL, 0, &len2);
if (!str2)
return -1;
}
if (ec->replacement_allocated) {
xfree((void *)ec->replacement_str);
}
ec->replacement_allocated = 1;
ec->replacement_str = str2;
ec->replacement_len = len2;
ec->replacement_enc = encname2;
return 0;
}
static int
output_replacement_character(rb_econv_t *ec)
{
int ret;
if (make_replacement(ec) == -1)
return -1;
ret = rb_econv_insert_output(ec, ec->replacement_str, ec->replacement_len, ec->replacement_enc);
if (ret == -1)
return -1;
return 0;
}
#if 1
#define hash_fallback rb_hash_aref
static VALUE
proc_fallback(VALUE fallback, VALUE c)
{
return rb_proc_call(fallback, rb_ary_new4(1, &c));
}
static VALUE
method_fallback(VALUE fallback, VALUE c)
{
return rb_method_call(1, &c, fallback);
}
static VALUE
aref_fallback(VALUE fallback, VALUE c)
{
return rb_funcall3(fallback, sym_aref, 1, &c);
}
static void
transcode_loop(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
VALUE destination,
unsigned char *(*resize_destination)(VALUE, size_t, size_t),
const char *src_encoding,
const char *dst_encoding,
int ecflags,
VALUE ecopts)
{
rb_econv_t *ec;
rb_transcoding *last_tc;
rb_econv_result_t ret;
unsigned char *out_start = *out_pos;
int max_output;
VALUE exc;
VALUE fallback = Qnil;
VALUE (*fallback_func)(VALUE, VALUE) = 0;
ec = rb_econv_open_opts(src_encoding, dst_encoding, ecflags, ecopts);
if (!ec)
rb_exc_raise(rb_econv_open_exc(src_encoding, dst_encoding, ecflags));
if (!NIL_P(ecopts) && RB_TYPE_P(ecopts, T_HASH)) {
fallback = rb_hash_aref(ecopts, sym_fallback);
if (RB_TYPE_P(fallback, T_HASH)) {
fallback_func = hash_fallback;
}
else if (rb_obj_is_proc(fallback)) {
fallback_func = proc_fallback;
}
else if (rb_obj_is_method(fallback)) {
fallback_func = method_fallback;
}
else {
fallback_func = aref_fallback;
}
}
last_tc = ec->last_tc;
max_output = last_tc ? last_tc->transcoder->max_output : 1;
resume:
ret = rb_econv_convert(ec, in_pos, in_stop, out_pos, out_stop, 0);
if (!NIL_P(fallback) && ret == econv_undefined_conversion) {
VALUE rep = rb_enc_str_new(
(const char *)ec->last_error.error_bytes_start,
ec->last_error.error_bytes_len,
rb_enc_find(ec->last_error.source_encoding));
rep = (*fallback_func)(fallback, rep);
if (rep != Qundef && !NIL_P(rep)) {
StringValue(rep);
ret = rb_econv_insert_output(ec, (const unsigned char *)RSTRING_PTR(rep),
RSTRING_LEN(rep), rb_enc_name(rb_enc_get(rep)));
if ((int)ret == -1) {
rb_raise(rb_eArgError, "too big fallback string");
}
goto resume;
}
}
if (ret == econv_invalid_byte_sequence ||
ret == econv_incomplete_input ||
ret == econv_undefined_conversion) {
exc = make_econv_exception(ec);
rb_econv_close(ec);
rb_exc_raise(exc);
}
if (ret == econv_destination_buffer_full) {
more_output_buffer(destination, resize_destination, max_output, &out_start, out_pos, &out_stop);
goto resume;
}
rb_econv_close(ec);
return;
}
#else
/* sample transcode_loop implementation in byte-by-byte stream style */
static void
transcode_loop(const unsigned char **in_pos, unsigned char **out_pos,
const unsigned char *in_stop, unsigned char *out_stop,
VALUE destination,
unsigned char *(*resize_destination)(VALUE, size_t, size_t),
const char *src_encoding,
const char *dst_encoding,
int ecflags,
VALUE ecopts)
{
rb_econv_t *ec;
rb_transcoding *last_tc;
rb_econv_result_t ret;
unsigned char *out_start = *out_pos;
const unsigned char *ptr;
int max_output;
VALUE exc;
ec = rb_econv_open_opts(src_encoding, dst_encoding, ecflags, ecopts);
if (!ec)
rb_exc_raise(rb_econv_open_exc(src_encoding, dst_encoding, ecflags));
last_tc = ec->last_tc;
max_output = last_tc ? last_tc->transcoder->max_output : 1;
ret = econv_source_buffer_empty;
ptr = *in_pos;
while (ret != econv_finished) {
unsigned char input_byte;
const unsigned char *p = &input_byte;
if (ret == econv_source_buffer_empty) {
if (ptr < in_stop) {
input_byte = *ptr;
ret = rb_econv_convert(ec, &p, p+1, out_pos, out_stop, ECONV_PARTIAL_INPUT);
}
else {
ret = rb_econv_convert(ec, NULL, NULL, out_pos, out_stop, 0);
}
}
else {
ret = rb_econv_convert(ec, NULL, NULL, out_pos, out_stop, ECONV_PARTIAL_INPUT);
}
if (&input_byte != p)
ptr += p - &input_byte;
switch (ret) {
case econv_invalid_byte_sequence:
case econv_incomplete_input:
case econv_undefined_conversion:
exc = make_econv_exception(ec);
rb_econv_close(ec);
rb_exc_raise(exc);
break;
case econv_destination_buffer_full:
more_output_buffer(destination, resize_destination, max_output, &out_start, out_pos, &out_stop);
break;
case econv_source_buffer_empty:
break;
case econv_finished:
break;
}
}
rb_econv_close(ec);
*in_pos = in_stop;
return;
}
#endif
/*
* String-specific code
*/
static unsigned char *
str_transcoding_resize(VALUE destination, size_t len, size_t new_len)
{
rb_str_resize(destination, new_len);
return (unsigned char *)RSTRING_PTR(destination);
}
static int
econv_opts(VALUE opt, int ecflags)
{
VALUE v;
v = rb_hash_aref(opt, sym_invalid);
if (NIL_P(v)) {
}
else if (v==sym_replace) {
ecflags |= ECONV_INVALID_REPLACE;
}
else {
rb_raise(rb_eArgError, "unknown value for invalid character option");
}
v = rb_hash_aref(opt, sym_undef);
if (NIL_P(v)) {
}
else if (v==sym_replace) {
ecflags |= ECONV_UNDEF_REPLACE;
}
else {
rb_raise(rb_eArgError, "unknown value for undefined character option");
}
v = rb_hash_aref(opt, sym_replace);
if (!NIL_P(v) && !(ecflags & ECONV_INVALID_REPLACE)) {
ecflags |= ECONV_UNDEF_REPLACE;
}
v = rb_hash_aref(opt, sym_xml);
if (!NIL_P(v)) {
if (v==sym_text) {
ecflags |= ECONV_XML_TEXT_DECORATOR|ECONV_UNDEF_HEX_CHARREF;
}
else if (v==sym_attr) {
ecflags |= ECONV_XML_ATTR_CONTENT_DECORATOR|ECONV_XML_ATTR_QUOTE_DECORATOR|ECONV_UNDEF_HEX_CHARREF;
}
else if (RB_TYPE_P(v, T_SYMBOL)) {
rb_raise(rb_eArgError, "unexpected value for xml option: %s", rb_id2name(SYM2ID(v)));
}
else {
rb_raise(rb_eArgError, "unexpected value for xml option");
}
}
#ifdef ENABLE_ECONV_NEWLINE_OPTION
v = rb_hash_aref(opt, sym_newline);
if (!NIL_P(v)) {
ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK;
if (v == sym_universal) {
ecflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
}
else if (v == sym_crlf) {
ecflags |= ECONV_CRLF_NEWLINE_DECORATOR;
}
else if (v == sym_cr) {
ecflags |= ECONV_CR_NEWLINE_DECORATOR;
}
else if (v == sym_lf) {
/* ecflags |= ECONV_LF_NEWLINE_DECORATOR; */
}
else if (SYMBOL_P(v)) {
rb_raise(rb_eArgError, "unexpected value for newline option: %s",
rb_id2name(SYM2ID(v)));
}
else {
rb_raise(rb_eArgError, "unexpected value for newline option");
}
}
else
#endif
{
int setflags = 0, newlineflag = 0;
v = rb_hash_aref(opt, sym_universal_newline);
if (RTEST(v))
setflags |= ECONV_UNIVERSAL_NEWLINE_DECORATOR;
newlineflag |= !NIL_P(v);
v = rb_hash_aref(opt, sym_crlf_newline);
if (RTEST(v))
setflags |= ECONV_CRLF_NEWLINE_DECORATOR;
newlineflag |= !NIL_P(v);
v = rb_hash_aref(opt, sym_cr_newline);
if (RTEST(v))
setflags |= ECONV_CR_NEWLINE_DECORATOR;
newlineflag |= !NIL_P(v);
if (newlineflag) {
ecflags &= ~ECONV_NEWLINE_DECORATOR_MASK;
ecflags |= setflags;
}
}
return ecflags;
}
int
rb_econv_prepare_options(VALUE opthash, VALUE *opts, int ecflags)
{
VALUE newhash = Qnil;
VALUE v;
if (NIL_P(opthash)) {
*opts = Qnil;
return ecflags;
}
ecflags = econv_opts(opthash, ecflags);
v = rb_hash_aref(opthash, sym_replace);
if (!NIL_P(v)) {
StringValue(v);
if (rb_enc_str_coderange(v) == ENC_CODERANGE_BROKEN) {
VALUE dumped = rb_str_dump(v);
rb_raise(rb_eArgError, "replacement string is broken: %s as %s",
StringValueCStr(dumped),
rb_enc_name(rb_enc_get(v)));
}
v = rb_str_new_frozen(v);
newhash = rb_hash_new();
rb_hash_aset(newhash, sym_replace, v);
}
v = rb_hash_aref(opthash, sym_fallback);
if (!NIL_P(v)) {
VALUE h = rb_check_hash_type(v);
if (NIL_P(h)
? (rb_obj_is_proc(v) || rb_obj_is_method(v) || rb_respond_to(v, sym_aref))
: (v = h, 1)) {
if (NIL_P(newhash))
newhash = rb_hash_new();
rb_hash_aset(newhash, sym_fallback, v);
}
}
if (!NIL_P(newhash))
rb_hash_freeze(newhash);
*opts = newhash;
return ecflags;
}
int
rb_econv_prepare_opts(VALUE opthash, VALUE *opts)
{
return rb_econv_prepare_options(opthash, opts, 0);
}
rb_econv_t *
rb_econv_open_opts(const char *source_encoding, const char *destination_encoding, int ecflags, VALUE opthash)
{
rb_econv_t *ec;
VALUE replacement;
if (NIL_P(opthash)) {
replacement = Qnil;
}
else {
if (!RB_TYPE_P(opthash, T_HASH) || !OBJ_FROZEN(opthash))
rb_bug("rb_econv_open_opts called with invalid opthash");
replacement = rb_hash_aref(opthash, sym_replace);
}
ec = rb_econv_open(source_encoding, destination_encoding, ecflags);
if (!ec)
return ec;
if (!NIL_P(replacement)) {
int ret;
rb_encoding *enc = rb_enc_get(replacement);
ret = rb_econv_set_replacement(ec,
(const unsigned char *)RSTRING_PTR(replacement),
RSTRING_LEN(replacement),
rb_enc_name(enc));
if (ret == -1) {
rb_econv_close(ec);
return NULL;
}
}
return ec;
}
static int
enc_arg(volatile VALUE *arg, const char **name_p, rb_encoding **enc_p)
{
rb_encoding *enc;
const char *n;
int encidx;
VALUE encval;
if (((encidx = rb_to_encoding_index(encval = *arg)) < 0) ||
!(enc = rb_enc_from_index(encidx))) {
enc = NULL;
encidx = 0;
n = StringValueCStr(*arg);
}
else {
n = rb_enc_name(enc);
}
*name_p = n;
*enc_p = enc;
return encidx;
}
static int
str_transcode_enc_args(VALUE str, volatile VALUE *arg1, volatile VALUE *arg2,
const char **sname_p, rb_encoding **senc_p,
const char **dname_p, rb_encoding **denc_p)
{
rb_encoding *senc, *denc;
const char *sname, *dname;
int sencidx, dencidx;
dencidx = enc_arg(arg1, &dname, &denc);
if (NIL_P(*arg2)) {
sencidx = rb_enc_get_index(str);
senc = rb_enc_from_index(sencidx);
sname = rb_enc_name(senc);
}
else {
sencidx = enc_arg(arg2, &sname, &senc);
}
*sname_p = sname;
*senc_p = senc;
*dname_p = dname;
*denc_p = denc;
return dencidx;
}
static int
str_transcode0(int argc, VALUE *argv, VALUE *self, int ecflags, VALUE ecopts)
{
VALUE dest;
VALUE str = *self;
volatile VALUE arg1, arg2;
long blen, slen;
unsigned char *buf, *bp, *sp;
const unsigned char *fromp;
rb_encoding *senc, *denc;
const char *sname, *dname;
int dencidx;
rb_check_arity(argc, 0, 2);
if (argc == 0) {
arg1 = rb_enc_default_internal();
if (NIL_P(arg1)) {
if (!ecflags) return -1;
arg1 = rb_obj_encoding(str);
}
ecflags |= ECONV_INVALID_REPLACE | ECONV_UNDEF_REPLACE;
}
else {
arg1 = argv[0];
}
arg2 = argc<=1 ? Qnil : argv[1];
dencidx = str_transcode_enc_args(str, &arg1, &arg2, &sname, &senc, &dname, &denc);
if ((ecflags & (ECONV_NEWLINE_DECORATOR_MASK|
ECONV_XML_TEXT_DECORATOR|
ECONV_XML_ATTR_CONTENT_DECORATOR|
ECONV_XML_ATTR_QUOTE_DECORATOR)) == 0) {
if (senc && senc == denc) {
return NIL_P(arg2) ? -1 : dencidx;
}
if (senc && denc && rb_enc_asciicompat(senc) && rb_enc_asciicompat(denc)) {
if (rb_enc_str_coderange(str) == ENC_CODERANGE_7BIT) {
return dencidx;
}
}
if (encoding_equal(sname, dname)) {
return NIL_P(arg2) ? -1 : dencidx;
}
}
else {
if (encoding_equal(sname, dname)) {
sname = "";
dname = "";
}
}
fromp = sp = (unsigned char *)RSTRING_PTR(str);
slen = RSTRING_LEN(str);
blen = slen + 30; /* len + margin */
dest = rb_str_tmp_new(blen);
bp = (unsigned char *)RSTRING_PTR(dest);
transcode_loop(&fromp, &bp, (sp+slen), (bp+blen), dest, str_transcoding_resize, sname, dname, ecflags, ecopts);
if (fromp != sp+slen) {
rb_raise(rb_eArgError, "not fully converted, %"PRIdPTRDIFF" bytes left", sp+slen-fromp);
}
buf = (unsigned char *)RSTRING_PTR(dest);
*bp = '\0';
rb_str_set_len(dest, bp - buf);
/* set encoding */
if (!denc) {
dencidx = rb_define_dummy_encoding(dname);
}
*self = dest;
return dencidx;
}
static int
str_transcode(int argc, VALUE *argv, VALUE *self)
{
VALUE opt;
int ecflags = 0;
VALUE ecopts = Qnil;
argc = rb_scan_args(argc, argv, "02:", NULL, NULL, &opt);
if (!NIL_P(opt)) {
ecflags = rb_econv_prepare_opts(opt, &ecopts);
}
return str_transcode0(argc, argv, self, ecflags, ecopts);
}
static inline VALUE
str_encode_associate(VALUE str, int encidx)
{
int cr = 0;
rb_enc_associate_index(str, encidx);
/* transcoded string never be broken. */
if (rb_enc_asciicompat(rb_enc_from_index(encidx))) {
rb_str_coderange_scan_restartable(RSTRING_PTR(str), RSTRING_END(str), 0, &cr);
}
else {
cr = ENC_CODERANGE_VALID;
}
ENC_CODERANGE_SET(str, cr);
return str;
}
/*
* call-seq:
* str.encode!(encoding [, options] ) -> str
* str.encode!(dst_encoding, src_encoding [, options] ) -> str
*
* The first form transcodes the contents of <i>str</i> from
* str.encoding to +encoding+.
* The second form transcodes the contents of <i>str</i> from
* src_encoding to dst_encoding.
* The options Hash gives details for conversion. See String#encode
* for details.
* Returns the string even if no changes were made.
*/
static VALUE
str_encode_bang(int argc, VALUE *argv, VALUE str)
{
VALUE newstr;
int encidx;
rb_check_frozen(str);
newstr = str;
encidx = str_transcode(argc, argv, &newstr);
if (encidx < 0) return str;
if (newstr == str) {
rb_enc_associate_index(str, encidx);
return str;
}
rb_str_shared_replace(str, newstr);
return str_encode_associate(str, encidx);
}
static VALUE encoded_dup(VALUE newstr, VALUE str, int encidx);
/*
* call-seq:
* str.encode(encoding [, options] ) -> str
* str.encode(dst_encoding, src_encoding [, options] ) -> str
* str.encode([options]) -> str
*
* The first form returns a copy of +str+ transcoded
* to encoding +encoding+.
* The second form returns a copy of +str+ transcoded
* from src_encoding to dst_encoding.
* The last form returns a copy of +str+ transcoded to
* <tt>Encoding.default_internal</tt>.
*
* By default, the first and second form raise
* Encoding::UndefinedConversionError for characters that are
* undefined in the destination encoding, and
* Encoding::InvalidByteSequenceError for invalid byte sequences
* in the source encoding. The last form by default does not raise
* exceptions but uses replacement strings.
*
* Please note that conversion from an encoding +enc+ to the
* same encoding +enc+ is a no-op, i.e. the receiver is returned without
* any changes, and no exceptions are raised, even if there are invalid bytes.
*
* The +options+ Hash gives details for conversion and can have the following
* keys:
*
* :invalid ::
* If the value is +:replace+, #encode replaces invalid byte sequences in
* +str+ with the replacement character. The default is to raise the
* Encoding::InvalidByteSequenceError exception
* :undef ::
* If the value is +:replace+, #encode replaces characters which are
* undefined in the destination encoding with the replacement character.
* The default is to raise the Encoding::UndefinedConversionError.
* :replace ::
* Sets the replacement string to the given value. The default replacement
* string is "\uFFFD" for Unicode encoding forms, and "?" otherwise.
* :fallback ::
* Sets the replacement string by the given object for undefined
* character. The object should be a Hash, a Proc, a Method, or an
* object which has [] method.
* Its key is an undefined character encoded in the source encoding
* of current transcoder. Its value can be any encoding until it
* can be converted into the destination encoding of the transcoder.
* :xml ::
* The value must be +:text+ or +:attr+.
* If the value is +:text+ #encode replaces undefined characters with their
* (upper-case hexadecimal) numeric character references. '&', '<', and '>'
* are converted to "&amp;", "&lt;", and "&gt;", respectively.
* If the value is +:attr+, #encode also quotes the replacement result
* (using '"'), and replaces '"' with "&quot;".
* :cr_newline ::
* Replaces LF ("\n") with CR ("\r") if value is true.
* :crlf_newline ::
* Replaces LF ("\n") with CRLF ("\r\n") if value is true.
* :universal_newline ::
* Replaces CRLF ("\r\n") and CR ("\r") with LF ("\n") if value is true.
*/
static VALUE
str_encode(int argc, VALUE *argv, VALUE str)
{
VALUE newstr = str;
int encidx = str_transcode(argc, argv, &newstr);
return encoded_dup(newstr, str, encidx);
}
VALUE
rb_str_encode(VALUE str, VALUE to, int ecflags, VALUE ecopts)
{
int argc = 1;
VALUE *argv = &to;
VALUE newstr = str;
int encidx = str_transcode0(argc, argv, &newstr, ecflags, ecopts);
return encoded_dup(newstr, str, encidx);
}
static VALUE
encoded_dup(VALUE newstr, VALUE str, int encidx)
{
if (encidx < 0) return rb_str_dup(str);
if (newstr == str) {
newstr = rb_str_dup(str);
rb_enc_associate_index(newstr, encidx);
return newstr;
}
else {
RBASIC(newstr)->klass = rb_obj_class(str);
}
return str_encode_associate(newstr, encidx);
}
static void
econv_free(void *ptr)
{
rb_econv_t *ec = ptr;
rb_econv_close(ec);
}
static size_t
econv_memsize(const void *ptr)
{
return ptr ? sizeof(rb_econv_t) : 0;
}
static const rb_data_type_t econv_data_type = {
"econv",
{NULL, econv_free, econv_memsize,},
};
static VALUE
econv_s_allocate(VALUE klass)
{
return TypedData_Wrap_Struct(klass, &econv_data_type, NULL);
}
static rb_encoding *
make_dummy_encoding(const char *name)
{
rb_encoding *enc;
int idx;
idx = rb_define_dummy_encoding(name);
enc = rb_enc_from_index(idx);
return enc;
}
static rb_encoding *
make_encoding(const char *name)
{
rb_encoding *enc;
enc = rb_enc_find(name);
if (!enc)
enc = make_dummy_encoding(name);
return enc;
}
static VALUE
make_encobj(const char *name)
{
return rb_enc_from_encoding(make_encoding(name));
}
/*
* call-seq:
* Encoding::Converter.asciicompat_encoding(string) -> encoding or nil
* Encoding::Converter.asciicompat_encoding(encoding) -> encoding or nil
*
* Returns the corresponding ASCII compatible encoding.
*
* Returns nil if the argument is an ASCII compatible encoding.
*
* "corresponding ASCII compatible encoding" is an ASCII compatible encoding which
* can represents exactly the same characters as the given ASCII incompatible encoding.
* So, no conversion undefined error occurs when converting between the two encodings.
*
* Encoding::Converter.asciicompat_encoding("ISO-2022-JP") #=> #<Encoding:stateless-ISO-2022-JP>
* Encoding::Converter.asciicompat_encoding("UTF-16BE") #=> #<Encoding:UTF-8>
* Encoding::Converter.asciicompat_encoding("UTF-8") #=> nil
*
*/
static VALUE
econv_s_asciicompat_encoding(VALUE klass, VALUE arg)
{
const char *arg_name, *result_name;
rb_encoding *arg_enc, *result_enc;
enc_arg(&arg, &arg_name, &arg_enc);
result_name = rb_econv_asciicompat_encoding(arg_name);
if (result_name == NULL)
return Qnil;
result_enc = make_encoding(result_name);
return rb_enc_from_encoding(result_enc);
}
static void
econv_args(int argc, VALUE *argv,
volatile VALUE *snamev_p, volatile VALUE *dnamev_p,
const char **sname_p, const char **dname_p,
rb_encoding **senc_p, rb_encoding **denc_p,
int *ecflags_p,
VALUE *ecopts_p)
{
VALUE opt, flags_v, ecopts;
int sidx, didx;
const char *sname, *dname;
rb_encoding *senc, *denc;
int ecflags;
argc = rb_scan_args(argc, argv, "21:", snamev_p, dnamev_p, &flags_v, &opt);
if (!NIL_P(flags_v)) {
if (!NIL_P(opt)) {
rb_error_arity(argc + 1, 2, 3);
}
ecflags = NUM2INT(rb_to_int(flags_v));
ecopts = Qnil;
}
else if (!NIL_P(opt)) {
ecflags = rb_econv_prepare_opts(opt, &ecopts);
}
else {
ecflags = 0;
ecopts = Qnil;
}
senc = NULL;
sidx = rb_to_encoding_index(*snamev_p);
if (0 <= sidx) {
senc = rb_enc_from_index(sidx);
}
else {
StringValue(*snamev_p);
}
denc = NULL;
didx = rb_to_encoding_index(*dnamev_p);
if (0 <= didx) {
denc = rb_enc_from_index(didx);
}
else {
StringValue(*dnamev_p);
}
sname = senc ? rb_enc_name(senc) : StringValueCStr(*snamev_p);
dname = denc ? rb_enc_name(denc) : StringValueCStr(*dnamev_p);
*sname_p = sname;
*dname_p = dname;
*senc_p = senc;
*denc_p = denc;
*ecflags_p = ecflags;
*ecopts_p = ecopts;
}
static int
decorate_convpath(VALUE convpath, int ecflags)
{
int num_decorators;
const char *decorators[MAX_ECFLAGS_DECORATORS];
int i;
int n, len;
num_decorators = decorator_names(ecflags, decorators);
if (num_decorators == -1)
return -1;
len = n = RARRAY_LENINT(convpath);
if (n != 0) {
VALUE pair = RARRAY_PTR(convpath)[n-1];
if (RB_TYPE_P(pair, T_ARRAY)) {
const char *sname = rb_enc_name(rb_to_encoding(RARRAY_PTR(pair)[0]));
const char *dname = rb_enc_name(rb_to_encoding(RARRAY_PTR(pair)[1]));
transcoder_entry_t *entry = get_transcoder_entry(sname, dname);
const rb_transcoder *tr = load_transcoder_entry(entry);
if (!tr)
return -1;
if (!DECORATOR_P(tr->src_encoding, tr->dst_encoding) &&
tr->asciicompat_type == asciicompat_encoder) {
n--;
rb_ary_store(convpath, len + num_decorators - 1, pair);
}
}
else {
rb_ary_store(convpath, len + num_decorators - 1, pair);
}
}
for (i = 0; i < num_decorators; i++)
rb_ary_store(convpath, n + i, rb_str_new_cstr(decorators[i]));
return 0;
}
static void
search_convpath_i(const char *sname, const char *dname, int depth, void *arg)
{
VALUE *ary_p = arg;
VALUE v;
if (*ary_p == Qnil) {
*ary_p = rb_ary_new();
}
if (DECORATOR_P(sname, dname)) {
v = rb_str_new_cstr(dname);
}
else {
v = rb_assoc_new(make_encobj(sname), make_encobj(dname));
}
rb_ary_store(*ary_p, depth, v);
}
/*
* call-seq:
* Encoding::Converter.search_convpath(source_encoding, destination_encoding) -> ary
* Encoding::Converter.search_convpath(source_encoding, destination_encoding, opt) -> ary
*
* Returns a conversion path.
*
* p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP")
* #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
* # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>]]
*
* p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", universal_newline: true)
* or
* p Encoding::Converter.search_convpath("ISO-8859-1", "EUC-JP", newline: :universal)
* #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
* # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
* # "universal_newline"]
*
* p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", universal_newline: true)
* or
* p Encoding::Converter.search_convpath("ISO-8859-1", "UTF-32BE", newline: :universal)
* #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
* # "universal_newline",
* # [#<Encoding:UTF-8>, #<Encoding:UTF-32BE>]]
*/
static VALUE
econv_s_search_convpath(int argc, VALUE *argv, VALUE klass)
{
volatile VALUE snamev, dnamev;
const char *sname, *dname;
rb_encoding *senc, *denc;
int ecflags;
VALUE ecopts;
VALUE convpath;
econv_args(argc, argv, &snamev, &dnamev, &sname, &dname, &senc, &denc, &ecflags, &ecopts);
convpath = Qnil;
transcode_search_path(sname, dname, search_convpath_i, &convpath);
if (NIL_P(convpath))
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
if (decorate_convpath(convpath, ecflags) == -1)
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
return convpath;
}
/*
* Check the existence of a conversion path.
* Returns the number of converters in the conversion path.
* result: >=0:success -1:failure
*/
int
rb_econv_has_convpath_p(const char* from_encoding, const char* to_encoding)
{
VALUE convpath = Qnil;
transcode_search_path(from_encoding, to_encoding, search_convpath_i,
&convpath);
return RTEST(convpath);
}
struct rb_econv_init_by_convpath_t {
rb_econv_t *ec;
int index;
int ret;
};
static void
rb_econv_init_by_convpath_i(const char *sname, const char *dname, int depth, void *arg)
{
struct rb_econv_init_by_convpath_t *a = (struct rb_econv_init_by_convpath_t *)arg;
int ret;
if (a->ret == -1)
return;
ret = rb_econv_add_converter(a->ec, sname, dname, a->index);
a->ret = ret;
return;
}
static rb_econv_t *
rb_econv_init_by_convpath(VALUE self, VALUE convpath,
const char **sname_p, const char **dname_p,
rb_encoding **senc_p, rb_encoding**denc_p)
{
rb_econv_t *ec;
long i;
int ret, first=1;
VALUE elt;
rb_encoding *senc = 0, *denc = 0;
const char *sname, *dname;
ec = rb_econv_alloc(RARRAY_LENINT(convpath));
DATA_PTR(self) = ec;
for (i = 0; i < RARRAY_LEN(convpath); i++) {
volatile VALUE snamev, dnamev;
VALUE pair;
elt = rb_ary_entry(convpath, i);
if (!NIL_P(pair = rb_check_array_type(elt))) {
if (RARRAY_LEN(pair) != 2)
rb_raise(rb_eArgError, "not a 2-element array in convpath");
snamev = rb_ary_entry(pair, 0);
enc_arg(&snamev, &sname, &senc);
dnamev = rb_ary_entry(pair, 1);
enc_arg(&dnamev, &dname, &denc);
}
else {
sname = "";
dname = StringValueCStr(elt);
}
if (DECORATOR_P(sname, dname)) {
ret = rb_econv_add_converter(ec, sname, dname, ec->num_trans);
if (ret == -1)
rb_raise(rb_eArgError, "decoration failed: %s", dname);
}
else {
int j = ec->num_trans;
struct rb_econv_init_by_convpath_t arg;
arg.ec = ec;
arg.index = ec->num_trans;
arg.ret = 0;
ret = transcode_search_path(sname, dname, rb_econv_init_by_convpath_i, &arg);
if (ret == -1 || arg.ret == -1)
rb_raise(rb_eArgError, "adding conversion failed: %s to %s", sname, dname);
if (first) {
first = 0;
*senc_p = senc;
*sname_p = ec->elems[j].tc->transcoder->src_encoding;
}
*denc_p = denc;
*dname_p = ec->elems[ec->num_trans-1].tc->transcoder->dst_encoding;
}
}
if (first) {
*senc_p = NULL;
*denc_p = NULL;
*sname_p = "";
*dname_p = "";
}
ec->source_encoding_name = *sname_p;
ec->destination_encoding_name = *dname_p;
return ec;
}
/*
* call-seq:
* Encoding::Converter.new(source_encoding, destination_encoding)
* Encoding::Converter.new(source_encoding, destination_encoding, opt)
* Encoding::Converter.new(convpath)
*
* possible options elements:
* hash form:
* :invalid => nil # raise error on invalid byte sequence (default)
* :invalid => :replace # replace invalid byte sequence
* :undef => nil # raise error on undefined conversion (default)
* :undef => :replace # replace undefined conversion
* :replace => string # replacement string ("?" or "\uFFFD" if not specified)
* :newline => :universal # decorator for converting CRLF and CR to LF
* :newline => :crlf # decorator for converting LF to CRLF
* :newline => :cr # decorator for converting LF to CR
* :universal_newline => true # decorator for converting CRLF and CR to LF
* :crlf_newline => true # decorator for converting LF to CRLF
* :cr_newline => true # decorator for converting LF to CR
* :xml => :text # escape as XML CharData.
* :xml => :attr # escape as XML AttValue
* integer form:
* Encoding::Converter::INVALID_REPLACE
* Encoding::Converter::UNDEF_REPLACE
* Encoding::Converter::UNDEF_HEX_CHARREF
* Encoding::Converter::UNIVERSAL_NEWLINE_DECORATOR
* Encoding::Converter::CRLF_NEWLINE_DECORATOR
* Encoding::Converter::CR_NEWLINE_DECORATOR
* Encoding::Converter::XML_TEXT_DECORATOR
* Encoding::Converter::XML_ATTR_CONTENT_DECORATOR
* Encoding::Converter::XML_ATTR_QUOTE_DECORATOR
*
* Encoding::Converter.new creates an instance of Encoding::Converter.
*
* Source_encoding and destination_encoding should be a string or
* Encoding object.
*
* opt should be nil, a hash or an integer.
*
* convpath should be an array.
* convpath may contain
* - two-element arrays which contain encodings or encoding names, or
* - strings representing decorator names.
*
* Encoding::Converter.new optionally takes an option.
* The option should be a hash or an integer.
* The option hash can contain :invalid => nil, etc.
* The option integer should be logical-or of constants such as
* Encoding::Converter::INVALID_REPLACE, etc.
*
* [:invalid => nil]
* Raise error on invalid byte sequence. This is a default behavior.
* [:invalid => :replace]
* Replace invalid byte sequence by replacement string.
* [:undef => nil]
* Raise an error if a character in source_encoding is not defined in destination_encoding.
* This is a default behavior.
* [:undef => :replace]
* Replace undefined character in destination_encoding with replacement string.
* [:replace => string]
* Specify the replacement string.
* If not specified, "\uFFFD" is used for Unicode encodings and "?" for others.
* [:universal_newline => true]
* Convert CRLF and CR to LF.
* [:crlf_newline => true]
* Convert LF to CRLF.
* [:cr_newline => true]
* Convert LF to CR.
* [:xml => :text]
* Escape as XML CharData.
* This form can be used as a HTML 4.0 #PCDATA.
* - '&' -> '&amp;'
* - '<' -> '&lt;'
* - '>' -> '&gt;'
* - undefined characters in destination_encoding -> hexadecimal CharRef such as &#xHH;
* [:xml => :attr]
* Escape as XML AttValue.
* The converted result is quoted as "...".
* This form can be used as a HTML 4.0 attribute value.
* - '&' -> '&amp;'
* - '<' -> '&lt;'
* - '>' -> '&gt;'
* - '"' -> '&quot;'
* - undefined characters in destination_encoding -> hexadecimal CharRef such as &#xHH;
*
* Examples:
* # UTF-16BE to UTF-8
* ec = Encoding::Converter.new("UTF-16BE", "UTF-8")
*
* # Usually, decorators such as newline conversion are inserted last.
* ec = Encoding::Converter.new("UTF-16BE", "UTF-8", :universal_newline => true)
* p ec.convpath #=> [[#<Encoding:UTF-16BE>, #<Encoding:UTF-8>],
* # "universal_newline"]
*
* # But, if the last encoding is ASCII incompatible,
* # decorators are inserted before the last conversion.
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE", :crlf_newline => true)
* p ec.convpath #=> ["crlf_newline",
* # [#<Encoding:UTF-8>, #<Encoding:UTF-16BE>]]
*
* # Conversion path can be specified directly.
* ec = Encoding::Converter.new(["universal_newline", ["EUC-JP", "UTF-8"], ["UTF-8", "UTF-16BE"]])
* p ec.convpath #=> ["universal_newline",
* # [#<Encoding:EUC-JP>, #<Encoding:UTF-8>],
* # [#<Encoding:UTF-8>, #<Encoding:UTF-16BE>]]
*/
static VALUE
econv_init(int argc, VALUE *argv, VALUE self)
{
VALUE ecopts;
volatile VALUE snamev, dnamev;
const char *sname, *dname;
rb_encoding *senc, *denc;
rb_econv_t *ec;
int ecflags;
VALUE convpath;
if (rb_check_typeddata(self, &econv_data_type)) {
rb_raise(rb_eTypeError, "already initialized");
}
if (argc == 1 && !NIL_P(convpath = rb_check_array_type(argv[0]))) {
ec = rb_econv_init_by_convpath(self, convpath, &sname, &dname, &senc, &denc);
ecflags = 0;
ecopts = Qnil;
}
else {
econv_args(argc, argv, &snamev, &dnamev, &sname, &dname, &senc, &denc, &ecflags, &ecopts);
ec = rb_econv_open_opts(sname, dname, ecflags, ecopts);
}
if (!ec) {
rb_exc_raise(rb_econv_open_exc(sname, dname, ecflags));
}
if (!DECORATOR_P(sname, dname)) {
if (!senc)
senc = make_dummy_encoding(sname);
if (!denc)
denc = make_dummy_encoding(dname);
}
ec->source_encoding = senc;
ec->destination_encoding = denc;
DATA_PTR(self) = ec;
return self;
}
/*
* call-seq:
* ec.inspect -> string
*
* Returns a printable version of <i>ec</i>
*
* ec = Encoding::Converter.new("iso-8859-1", "utf-8")
* puts ec.inspect #=> #<Encoding::Converter: ISO-8859-1 to UTF-8>
*
*/
static VALUE
econv_inspect(VALUE self)
{
const char *cname = rb_obj_classname(self);
rb_econv_t *ec;
TypedData_Get_Struct(self, rb_econv_t, &econv_data_type, ec);
if (!ec)
return rb_sprintf("#<%s: uninitialized>", cname);
else {
const char *sname = ec->source_encoding_name;
const char *dname = ec->destination_encoding_name;
VALUE str;
str = rb_sprintf("#<%s: ", cname);
econv_description(sname, dname, ec->flags, str);
rb_str_cat2(str, ">");
return str;
}
}
static rb_econv_t *
check_econv(VALUE self)
{
rb_econv_t *ec;
TypedData_Get_Struct(self, rb_econv_t, &econv_data_type, ec);
if (!ec) {
rb_raise(rb_eTypeError, "uninitialized encoding converter");
}
return ec;
}
/*
* call-seq:
* ec.source_encoding -> encoding
*
* Returns the source encoding as an Encoding object.
*/
static VALUE
econv_source_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->source_encoding)
return Qnil;
return rb_enc_from_encoding(ec->source_encoding);
}
/*
* call-seq:
* ec.destination_encoding -> encoding
*
* Returns the destination encoding as an Encoding object.
*/
static VALUE
econv_destination_encoding(VALUE self)
{
rb_econv_t *ec = check_econv(self);
if (!ec->destination_encoding)
return Qnil;
return rb_enc_from_encoding(ec->destination_encoding);
}
/*
* call-seq:
* ec.convpath -> ary
*
* Returns the conversion path of ec.
*
* The result is an array of conversions.
*
* ec = Encoding::Converter.new("ISO-8859-1", "EUC-JP", crlf_newline: true)
* p ec.convpath
* #=> [[#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>],
* # [#<Encoding:UTF-8>, #<Encoding:EUC-JP>],
* # "crlf_newline"]
*
* Each element of the array is a pair of encodings or a string.
* A pair means an encoding conversion.
* A string means a decorator.
*
* In the above example, [#<Encoding:ISO-8859-1>, #<Encoding:UTF-8>] means
* a converter from ISO-8859-1 to UTF-8.
* "crlf_newline" means newline converter from LF to CRLF.
*/
static VALUE
econv_convpath(VALUE self)
{
rb_econv_t *ec = check_econv(self);
VALUE result;
int i;
result = rb_ary_new();
for (i = 0; i < ec->num_trans; i++) {
const rb_transcoder *tr = ec->elems[i].tc->transcoder;
VALUE v;
if (DECORATOR_P(tr->src_encoding, tr->dst_encoding))
v = rb_str_new_cstr(tr->dst_encoding);
else
v = rb_assoc_new(make_encobj(tr->src_encoding), make_encobj(tr->dst_encoding));
rb_ary_push(result, v);
}
return result;
}
/*
* call-seq:
* ec == other -> true or false
*/
static VALUE
econv_equal(VALUE self, VALUE other)
{
rb_econv_t *ec1 = check_econv(self);
rb_econv_t *ec2;
int i;
if (!rb_typeddata_is_kind_of(other, &econv_data_type)) {
return Qnil;
}
ec2 = DATA_PTR(other);
if (!ec2) return Qfalse;
if (ec1->source_encoding_name != ec2->source_encoding_name &&
strcmp(ec1->source_encoding_name, ec2->source_encoding_name))
return Qfalse;
if (ec1->destination_encoding_name != ec2->destination_encoding_name &&
strcmp(ec1->destination_encoding_name, ec2->destination_encoding_name))
return Qfalse;
if (ec1->flags != ec2->flags) return Qfalse;
if (ec1->replacement_enc != ec2->replacement_enc &&
strcmp(ec1->replacement_enc, ec2->replacement_enc))
return Qfalse;
if (ec1->replacement_len != ec2->replacement_len) return Qfalse;
if (ec1->replacement_str != ec2->replacement_str &&
memcmp(ec1->replacement_str, ec2->replacement_str, ec2->replacement_len))
return Qfalse;
if (ec1->num_trans != ec2->num_trans) return Qfalse;
for (i = 0; i < ec1->num_trans; i++) {
if (ec1->elems[i].tc->transcoder != ec2->elems[i].tc->transcoder)
return Qfalse;
}
return Qtrue;
}
static VALUE
econv_result_to_symbol(rb_econv_result_t res)
{
switch (res) {
case econv_invalid_byte_sequence: return sym_invalid_byte_sequence;
case econv_incomplete_input: return sym_incomplete_input;
case econv_undefined_conversion: return sym_undefined_conversion;
case econv_destination_buffer_full: return sym_destination_buffer_full;
case econv_source_buffer_empty: return sym_source_buffer_empty;
case econv_finished: return sym_finished;
case econv_after_output: return sym_after_output;
default: return INT2NUM(res); /* should not be reached */
}
}
/*
* call-seq:
* ec.primitive_convert(source_buffer, destination_buffer) -> symbol
* ec.primitive_convert(source_buffer, destination_buffer, destination_byteoffset) -> symbol
* ec.primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize) -> symbol
* ec.primitive_convert(source_buffer, destination_buffer, destination_byteoffset, destination_bytesize, opt) -> symbol
*
* possible opt elements:
* hash form:
* :partial_input => true # source buffer may be part of larger source
* :after_output => true # stop conversion after output before input
* integer form:
* Encoding::Converter::PARTIAL_INPUT
* Encoding::Converter::AFTER_OUTPUT
*
* possible results:
* :invalid_byte_sequence
* :incomplete_input
* :undefined_conversion
* :after_output
* :destination_buffer_full
* :source_buffer_empty
* :finished
*
* primitive_convert converts source_buffer into destination_buffer.
*
* source_buffer should be a string or nil.
* nil means an empty string.
*
* destination_buffer should be a string.
*
* destination_byteoffset should be an integer or nil.
* nil means the end of destination_buffer.
* If it is omitted, nil is assumed.
*
* destination_bytesize should be an integer or nil.
* nil means unlimited.
* If it is omitted, nil is assumed.
*
* opt should be nil, a hash or an integer.
* nil means no flags.
* If it is omitted, nil is assumed.
*
* primitive_convert converts the content of source_buffer from beginning
* and store the result into destination_buffer.
*
* destination_byteoffset and destination_bytesize specify the region which
* the converted result is stored.
* destination_byteoffset specifies the start position in destination_buffer in bytes.
* If destination_byteoffset is nil,
* destination_buffer.bytesize is used for appending the result.
* destination_bytesize specifies maximum number of bytes.
* If destination_bytesize is nil,
* destination size is unlimited.
* After conversion, destination_buffer is resized to
* destination_byteoffset + actually produced number of bytes.
* Also destination_buffer's encoding is set to destination_encoding.
*
* primitive_convert drops the converted part of source_buffer.
* the dropped part is converted in destination_buffer or
* buffered in Encoding::Converter object.
*
* primitive_convert stops conversion when one of following condition met.
* - invalid byte sequence found in source buffer (:invalid_byte_sequence)
* - unexpected end of source buffer (:incomplete_input)
* this occur only when :partial_input is not specified.
* - character not representable in output encoding (:undefined_conversion)
* - after some output is generated, before input is done (:after_output)
* this occur only when :after_output is specified.
* - destination buffer is full (:destination_buffer_full)
* this occur only when destination_bytesize is non-nil.
* - source buffer is empty (:source_buffer_empty)
* this occur only when :partial_input is specified.
* - conversion is finished (:finished)
*
* example:
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
* ret = ec.primitive_convert(src="pi", dst="", nil, 100)
* p [ret, src, dst] #=> [:finished, "", "\x00p\x00i"]
*
* ec = Encoding::Converter.new("UTF-8", "UTF-16BE")
* ret = ec.primitive_convert(src="pi", dst="", nil, 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "i", "\x00"]
* ret = ec.primitive_convert(src, dst="", nil, 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "", "p"]
* ret = ec.primitive_convert(src, dst="", nil, 1)
* p [ret, src, dst] #=> [:destination_buffer_full, "", "\x00"]
* ret = ec.primitive_convert(src, dst="", nil, 1)
* p [ret, src, dst] #=> [:finished, "", "i"]
*
*/
static VALUE
econv_primitive_convert(int argc, VALUE *argv, VALUE self)
{
VALUE input, output, output_byteoffset_v, output_bytesize_v, opt, flags_v;
rb_econv_t *ec = check_econv(self);
rb_econv_result_t res;
const unsigned char *ip, *is;
unsigned char *op, *os;
long output_byteoffset, output_bytesize;
unsigned long output_byteend;
int flags;
argc = rb_scan_args(argc, argv, "23:", &input, &output, &output_byteoffset_v, &output_bytesize_v, &flags_v, &opt);
if (NIL_P(output_byteoffset_v))
output_byteoffset = 0; /* dummy */
else
output_byteoffset = NUM2LONG(output_byteoffset_v);
if (NIL_P(output_bytesize_v))
output_bytesize = 0; /* dummy */
else
output_bytesize = NUM2LONG(output_bytesize_v);
if (!NIL_P(flags_v)) {
if (!NIL_P(opt)) {
rb_error_arity(argc + 1, 2, 5);
}
flags = NUM2INT(rb_to_int(flags_v));
}
else if (!NIL_P(opt)) {
VALUE v;
flags = 0;
v = rb_hash_aref(opt, sym_partial_input);
if (RTEST(v))
flags |= ECONV_PARTIAL_INPUT;
v = rb_hash_aref(opt, sym_after_output);
if (RTEST(v))
flags |= ECONV_AFTER_OUTPUT;
}
else {
flags = 0;
}
StringValue(output);
if (!NIL_P(input))
StringValue(input);
rb_str_modify(output);
if (NIL_P(output_bytesize_v)) {
output_bytesize = RSTRING_EMBED_LEN_MAX;
if (!NIL_P(input) && output_bytesize < RSTRING_LEN(input))
output_bytesize = RSTRING_LEN(input);
}
retry:
if (NIL_P(output_byteoffset_v))
output_byteoffset = RSTRING_LEN(output);
if (output_byteoffset < 0)
rb_raise(rb_eArgError, "negative output_byteoffset");
if (RSTRING_LEN(output) < output_byteoffset)
rb_raise(rb_eArgError, "output_byteoffset too big");
if (output_bytesize < 0)
rb_raise(rb_eArgError, "negative output_bytesize");
output_byteend = (unsigned long)output_byteoffset +
(unsigned long)output_bytesize;
if (output_byteend < (unsigned long)output_byteoffset ||
LONG_MAX < output_byteend)
rb_raise(rb_eArgError, "output_byteoffset+output_bytesize too big");
if (rb_str_capacity(output) < output_byteend)
rb_str_resize(output, output_byteend);
if (NIL_P(input)) {
ip = is = NULL;
}
else {
ip = (const unsigned char *)RSTRING_PTR(input);
is = ip + RSTRING_LEN(input);
}
op = (unsigned char *)RSTRING_PTR(output) + output_byteoffset;
os = op + output_bytesize;
res = rb_econv_convert(ec, &ip, is, &op, os, flags);
rb_str_set_len(output, op-(unsigned char *)RSTRING_PTR(output));
if (!NIL_P(input))
rb_str_drop_bytes(input, ip - (unsigned char *)RSTRING_PTR(input));
if (NIL_P(output_bytesize_v) && res == econv_destination_buffer_full) {
if (LONG_MAX / 2 < output_bytesize)
rb_raise(rb_eArgError, "too long conversion result");
output_bytesize *= 2;
output_byteoffset_v = Qnil;
goto retry;
}
if (ec->destination_encoding) {
rb_enc_associate(output, ec->destination_encoding);
}
return econv_result_to_symbol(res);
}
/*
* call-seq:
* ec.convert(source_string) -> destination_string
*
* Convert source_string and return destination_string.
*
* source_string is assumed as a part of source.
* i.e. :partial_input=>true is specified internally.
* finish method should be used last.
*
* ec = Encoding::Converter.new("utf-8", "euc-jp")
* puts ec.convert("\u3042").dump #=> "\xA4\xA2"
* puts ec.finish.dump #=> ""
*
* ec = Encoding::Converter.new("euc-jp", "utf-8")
* puts ec.convert("\xA4").dump #=> ""
* puts ec.convert("\xA2").dump #=> "\xE3\x81\x82"
* puts ec.finish.dump #=> ""
*
* ec = Encoding::Converter.new("utf-8", "iso-2022-jp")
* puts ec.convert("\xE3").dump #=> "".force_encoding("ISO-2022-JP")
* puts ec.convert("\x81").dump #=> "".force_encoding("ISO-2022-JP")
* puts ec.convert("\x82").dump #=> "\e$B$\"".force_encoding("ISO-2022-JP")
* puts ec.finish.dump #=> "\e(B".force_encoding("ISO-2022-JP")
*
* If a conversion error occur,
* Encoding::UndefinedConversionError or
* Encoding::InvalidByteSequenceError is raised.
* Encoding::Converter#convert doesn't supply methods to recover or restart
* from these exceptions.
* When you want to handle these conversion errors,
* use Encoding::Converter#primitive_convert.
*
*/
static VALUE
econv_convert(VALUE self, VALUE source_string)
{
VALUE ret, dst;
VALUE av[5];
int ac;
rb_econv_t *ec = check_econv(self);
StringValue(source_string);
dst = rb_str_new(NULL, 0);
av[0] = rb_str_dup(source_string);
av[1] = dst;
av[2] = Qnil;
av[3] = Qnil;
av[4] = INT2NUM(ECONV_PARTIAL_INPUT);
ac = 5;
ret = econv_primitive_convert(ac, av, self);
if (ret == sym_invalid_byte_sequence ||
ret == sym_undefined_conversion ||
ret == sym_incomplete_input) {
VALUE exc = make_econv_exception(ec);
rb_exc_raise(exc);
}
if (ret == sym_finished) {
rb_raise(rb_eArgError, "converter already finished");
}
if (ret != sym_source_buffer_empty) {
rb_bug("unexpected result of econv_primitive_convert");
}
return dst;
}
/*
* call-seq:
* ec.finish -> string
*
* Finishes the converter.
* It returns the last part of the converted string.
*
* ec = Encoding::Converter.new("utf-8", "iso-2022-jp")
* p ec.convert("\u3042") #=> "\e$B$\""
* p ec.finish #=> "\e(B"
*/
static VALUE
econv_finish(VALUE self)
{
VALUE ret, dst;
VALUE av[5];
int ac;
rb_econv_t *ec = check_econv(self);
dst = rb_str_new(NULL, 0);
av[0] = Qnil;
av[1] = dst;
av[2] = Qnil;
av[3] = Qnil;
av[4] = INT2NUM(0);
ac = 5;
ret = econv_primitive_convert(ac, av, self);
if (ret == sym_invalid_byte_sequence ||
ret == sym_undefined_conversion ||
ret == sym_incomplete_input) {
VALUE exc = make_econv_exception(ec);
rb_exc_raise(exc);
}
if (ret != sym_finished) {
rb_bug("unexpected result of econv_primitive_convert");
}
return dst;
}
/*
* call-seq:
* ec.primitive_errinfo -> array
*
* primitive_errinfo returns important information regarding the last error
* as a 5-element array:
*
* [result, enc1, enc2, error_bytes, readagain_bytes]
*
* result is the last result of primitive_convert.
*
* Other elements are only meaningful when result is
* :invalid_byte_sequence, :incomplete_input or :undefined_conversion.
*
* enc1 and enc2 indicate a conversion step as a pair of strings.
* For example, a converter from EUC-JP to ISO-8859-1 converts
* a string as follows: EUC-JP -> UTF-8 -> ISO-8859-1.
* So [enc1, enc2] is either ["EUC-JP", "UTF-8"] or ["UTF-8", "ISO-8859-1"].
*
* error_bytes and readagain_bytes indicate the byte sequences which caused the error.
* error_bytes is discarded portion.
* readagain_bytes is buffered portion which is read again on next conversion.
*
* Example:
*
* # \xff is invalid as EUC-JP.
* ec = Encoding::Converter.new("EUC-JP", "Shift_JIS")
* ec.primitive_convert(src="\xff", dst="", nil, 10)
* p ec.primitive_errinfo
* #=> [:invalid_byte_sequence, "EUC-JP", "UTF-8", "\xFF", ""]
*
* # HIRAGANA LETTER A (\xa4\xa2 in EUC-JP) is not representable in ISO-8859-1.
* # Since this error is occur in UTF-8 to ISO-8859-1 conversion,
* # error_bytes is HIRAGANA LETTER A in UTF-8 (\xE3\x81\x82).
* ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
* ec.primitive_convert(src="\xa4\xa2", dst="", nil, 10)
* p ec.primitive_errinfo
* #=> [:undefined_conversion, "UTF-8", "ISO-8859-1", "\xE3\x81\x82", ""]
*
* # partial character is invalid
* ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")
* ec.primitive_convert(src="\xa4", dst="", nil, 10)
* p ec.primitive_errinfo
* #=> [:incomplete_input, "EUC-JP", "UTF-8", "\xA4", ""]
*
* # Encoding::Converter::PARTIAL_INPUT prevents invalid errors by
* # partial characters.
* ec = Encoding::Converter.new("EUC-JP", "ISO-8859-1")