From 12ee3d599b22f8b423d34c22aadb8c160356cb1e Mon Sep 17 00:00:00 2001 From: Aise Johan de Jong Date: Mon, 17 Jun 2019 08:16:42 -0400 Subject: [PATCH] Voevodsky's fun nilpotency thing --- my.bib | 11 ++++++ weil.tex | 104 +++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 115 insertions(+) diff --git a/my.bib b/my.bib index 833f333da..a436ceca0 100644 --- a/my.bib +++ b/my.bib @@ -6168,6 +6168,17 @@ @INCOLLECTION{Talpo-Vistoli YEAR = {2013}, } +@ARTICLE{nilpotence, + AUTHOR = {Voevodsky, V.}, + TITLE = {A nilpotence theorem for cycles algebraically equivalent to zero}, + JOURNAL = {Internat. Math. Res. Notices}, + YEAR = {1995}, + NUMBER = {4}, + PAGES = {187--198}, + ISSN = {1073-7928}, + URL = {https://doi.org/10.1155/S1073792895000158}, +} + @ARTICLE{Voevodsky, AUTHOR = {Vladimir Voevodsky}, TITLE = {Homology of schemes}, diff --git a/weil.tex b/weil.tex index adbd803e6..46b30786b 100644 --- a/weil.tex +++ b/weil.tex @@ -1817,6 +1817,110 @@ \section{Cycles over non-closed fields} $\ell$th root in $\Pic(X)$. This is what we had to show. \end{proof} +\begin{lemma} +\label{lemma-smash-nilpotence} +\begin{reference} +\cite{nilpotence} +\end{reference} +Let $k$ be a field. Let $X$ be a geometrically irreducible +smooth projective scheme over $k$. Let $x, x' \in X$ be $k$-rational points. +Then there exists an $n \geq 1$ such that +$$ +([x] - [x']) \times \ldots \times ([x] - [x']) \in +A_0(X^n) +$$ +is torsion. +\end{lemma} + +\begin{proof} +If we can show this after base change to the algebraic closure of $k$, +then the result follows over $k$. (The kernel of pullback on zero cycles +is torsion.) Hence we may and do assume $k$ is algebraically closed. +Using Bertini we can choose a smooth curve $C \subset X$ passing through +$x$ and $x'$. Hence we may assume $X$ is a curve. + +\medskip\noindent +Write $S^n(X) = \underline{\Hilbfunctor}^n_{X/k}$ with notation as in +Picard Schemes of Curves, Sections \ref{pic-section-hilbert-scheme-points} +and \ref{pic-section-divisors}. There is a canonical morphism +$$ +\pi : X^n \longrightarrow S^n(X) +$$ +which sends the $k$-rational point $(x_1, \ldots, x_n)$ to the $k$-rational +point corresponding to the divisor $[x_1] + \ldots + [x_n]$ on $X$. +There is a faithful action of the symmetric group $S_n$ on $X^n$. +The morphism $\pi$ is $S_n$-invariant and the fibres of $\pi$ are +$S_n$-orbits (set theoretically). Finally, $\pi$ is finite flat of +degree $n!$, see Picard Schemes of Curves, Lemma +\ref{pic-lemma-universal-object}. + +\medskip\noindent +Let $\alpha_n$ be the zero cycle on $X^n$ given by the formula in the +statement of the lemma. Let $\mathcal{L} = \mathcal{O}_X(x - x')$. Then +$c_1(\mathcal{L}) \cap [X] = [x] - [x']$. Thus +$$ +\alpha_n = c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_n) \cap [X^n] +$$ +where $\mathcal{L}_i = \text{pr}_i^*\mathcal{L}$ and $\text{pr}_i : X^n \to X$ +is the $i$th projection. By either +Divisors, Lemma \ref{divisors-lemma-finite-locally-free-has-norm} or +Divisors, Lemma \ref{divisors-lemma-norm-in-normal-case} +there is a norm for $\pi$. Set +$$ +\mathcal{N} = \text{Norm}_\pi(\mathcal{L}_1) +$$ +See Divisors, Lemma \ref{divisors-lemma-norm-invertible}. We have +$$ +\pi^*\mathcal{N} = +(\otimes_{i = 1, \ldots, n} \mathcal{L}_i)^{\otimes (n - 1)!} +$$ +in $\Pic(X^n)$ by a calculation. Deails omitted; hint: this follows from +the fact that +$\text{Norm}_\pi : \pi_*\mathcal{O}_{X^n} \to \mathcal{O}_{S^n(X)}$ +composed with the natural map $\pi_*\mathcal{O}_{S^n(X)} \to \mathcal{O}_{X^n}$ +is equal to the product over all $\sigma \in S_n$ of the action of +$\sigma$ on $\pi_*\mathcal{O}_{X^n}$. Consider +$$ +\beta_n = c_1(\mathcal{N})^n \cap [S^n(X)] +$$ +in $A_0(S^n(X))$. Observe that $c_1(\mathcal{L}_i) \cap c_1(\mathcal{L}_i) = 0$ +because $\mathcal{L}_i$ is pulled back from a curve. Thus we see that +\begin{align*} +\pi^*\beta_n +& = +((n - 1)!)^n +(\sum\nolimits_{i = 1, \ldots, n} c_1(\mathcal{L}_i))^n \cap [X^n] \\ +& = +((n - 1)!)^n n^n +c_1(\mathcal{L}_1) \cap \ldots \cap c_1(\mathcal{L}_n) \cap [X^n] \\ +& = +(n!)^n \alpha_n +\end{align*} +Thus it suffices to show that $\beta_n$ is torsion. + +\medskip\noindent +There is a canonical morphism +$$ +f : S^n(X) \longrightarrow \underline{\Picardfunctor}^n_{X/k} +$$ +See Picard Groups of Curves, Lemma \ref{pic-lemma-picard-pieces}. +For $n \geq 2g - 1$ this morphism is a projective space bundle. +The invertible sheaf $\mathcal{N}$ is trivial on the +fibres of $f$ (hint: because $\mathcal{L}$ is algebraically +equivalent to zero, so is $\mathcal{N}$ and the fibres are +projective spaces). Thus by the projective space bundle formula +(Chow Homology, Lemma \ref{chow-lemma-chow-ring-projective-bundle}) +we see that $\mathcal{N} = f^*\mathcal{M}$ for some invertible +module $\mathcal{M}$ on $\underline{\Picardfunctor}^n_{X/k}$. +Of course, then we see that +$$ +c_1(\mathcal{N})^n = f^*(c_1(\mathcal{M})^n) +$$ +is zero because $n > g = \dim(\underline{\Picardfunctor}^n_{X/k})$. +This finishes the proof. +\end{proof} + +