Skip to content
Permalink
Browse files

New chapter about Weil Cohomology Theories

  • Loading branch information...
aisejohan committed May 31, 2019
1 parent 0061f3f commit 33d5efc04a589510e810cbd451ce427849ab129d
Showing with 49 additions and 8 deletions.
  1. +1 −1 Makefile
  2. +7 −6 chapters.tex
  3. +1 −0 preamble.tex
  4. +1 −1 tags/Makefile
  5. +39 −0 weil.tex
@@ -14,7 +14,7 @@ LIJST = introduction conventions sets categories \
schemes constructions properties morphisms coherent divisors limits \
varieties topologies descent perfect more-morphisms flat groupoids \
more-groupoids etale \
chow intersection pic \
chow intersection weil pic \
adequate dualizing duality discriminant local-cohomology \
algebraization curves resolve models pione etale-cohomology \
crystalline proetale more-etale trace \
@@ -52,6 +52,7 @@
\setcounter{enumi}{40}
\item \hyperref[chow-section-phantom]{Chow Homology}
\item \hyperref[intersection-section-phantom]{Intersection Theory}
\item \hyperref[weil-section-phantom]{Weil Cohomology Theories}
\item \hyperref[pic-section-phantom]{Picard Schemes of Curves}
\item \hyperref[adequate-section-phantom]{Adequate Modules}
\item \hyperref[dualizing-section-phantom]{Dualizing Complexes}
@@ -71,7 +72,7 @@
\end{enumerate}
Algebraic Spaces
\begin{enumerate}
\setcounter{enumi}{58}
\setcounter{enumi}{59}
\item \hyperref[spaces-section-phantom]{Algebraic Spaces}
\item \hyperref[spaces-properties-section-phantom]{Properties of Algebraic Spaces}
\item \hyperref[spaces-morphisms-section-phantom]{Morphisms of Algebraic Spaces}
@@ -92,7 +93,7 @@
\end{enumerate}
Topics in Geometry
\begin{enumerate}
\setcounter{enumi}{75}
\setcounter{enumi}{76}
\item \hyperref[spaces-chow-section-phantom]{Chow Groups of Spaces}
\item \hyperref[groupoids-quotients-section-phantom]{Quotients of Groupoids}
\item \hyperref[spaces-more-cohomology-section-phantom]{More on Cohomology of Spaces}
@@ -104,15 +105,15 @@
\end{enumerate}
Deformation Theory
\begin{enumerate}
\setcounter{enumi}{83}
\setcounter{enumi}{84}
\item \hyperref[formal-defos-section-phantom]{Formal Deformation Theory}
\item \hyperref[defos-section-phantom]{Deformation Theory}
\item \hyperref[cotangent-section-phantom]{The Cotangent Complex}
\item \hyperref[examples-defos-section-phantom]{Deformation Problems}
\end{enumerate}
Algebraic Stacks
\begin{enumerate}
\setcounter{enumi}{87}
\setcounter{enumi}{88}
\item \hyperref[algebraic-section-phantom]{Algebraic Stacks}
\item \hyperref[examples-stacks-section-phantom]{Examples of Stacks}
\item \hyperref[stacks-sheaves-section-phantom]{Sheaves on Algebraic Stacks}
@@ -130,13 +131,13 @@
\end{enumerate}
Topics in Moduli Theory
\begin{enumerate}
\setcounter{enumi}{101}
\setcounter{enumi}{102}
\item \hyperref[moduli-section-phantom]{Moduli Stacks}
\item \hyperref[moduli-curves-section-phantom]{Moduli of Curves}
\end{enumerate}
Miscellany
\begin{enumerate}
\setcounter{enumi}{103}
\setcounter{enumi}{104}
\item \hyperref[examples-section-phantom]{Examples}
\item \hyperref[exercises-section-phantom]{Exercises}
\item \hyperref[guide-section-phantom]{Guide to Literature}
@@ -74,6 +74,7 @@
\externaldocument[etale-]{etale}
\externaldocument[chow-]{chow}
\externaldocument[intersection-]{intersection}
\externaldocument[weil-]{weil}
\externaldocument[pic-]{pic}
\externaldocument[adequate-]{adequate}
\externaldocument[dualizing-]{dualizing}
@@ -15,7 +15,7 @@ LIJST = introduction conventions sets categories \
schemes constructions properties morphisms coherent divisors limits \
varieties topologies descent perfect more-morphisms flat groupoids \
more-groupoids etale \
chow intersection pic \
chow intersection weil pic \
adequate dualizing duality discriminant local-cohomology \
algebraization curves resolve models pione etale-cohomology \
crystalline proetale more-etale trace \
@@ -0,0 +1,39 @@
\input{preamble}

% OK, start here.
%
\begin{document}

\title{Weil Cohomology Theories}


\maketitle

\phantomsection
\label{section-phantom}

\tableofcontents

\section{Introduction}
\label{section-introduction}

\noindent
In this chapter we discuss Weil cohomology theories for smooth
projective schemes over any base field. In the case of an algebraically
closed base field, our notion is the same as the notion introduced
in \cite{Kleiman-cycles}, see (insert future reference here).









\input{chapters}

\bibliography{my}
\bibliographystyle{amsalpha}

\end{document}

0 comments on commit 33d5efc

Please sign in to comment.
You can’t perform that action at this time.