Skip to content

Commit

Permalink
Fix direction det operator
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed May 1, 2021
1 parent f5ebf12 commit 35721fa
Showing 1 changed file with 30 additions and 36 deletions.
66 changes: 30 additions & 36 deletions more-algebra.tex
Expand Up @@ -34276,43 +34276,38 @@ \section{Determinants of complexes}
\item $K^n$, $L^n$ are finite projective $R$-modules, nonzero only for
$n \in \{-1, 0\}$.
\end{enumerate}
Then we construct an isomorphism
In this situation we will construct an isomorphism
$$
\det(a^\bullet) : \det(K^\bullet) \longrightarrow \det(L^\bullet)
$$
as follows. Using the exact sequences
Using the exact sequences $0 \to \Ker(a^i) \to K^i \to L^i \to 0$
we obtain isomorphisms
$$
0 \to \Ker(a^i) \to K^i \to L^i \to 0
\gamma^i : \det(\Ker(a^i)) \otimes \det(L^i) \to \det(K^i)
$$
we obtain isomorphisms
$\gamma^i : \det(\Ker(a^i)) \otimes \det(L^i) \to \det(K^i)$
by Lemma \ref{lemma-det-ses}. Since $a^\bullet$ is a quasi-isomorphism
the complex $\Ker(a^\bullet)$ is acyclic, has rank $0$, and the
canonical section defines a trivialization of the
invertible $R$-module $\det(\Ker(a^\bullet)) =
\det(\Ker(a^0)) \otimes \det(\Ker(a^{-1}))^{\otimes -1}$, see above.
Then we define $\det(a^\bullet)$ as the map
\begin{align*}
\det(L^\bullet)
& =
\det(L^0) \otimes_R \det(L^{-1})^{\otimes -1} \\
& \to
\det(\Ker(a^0)) \otimes_R \det(L^0) \otimes_R
\left(\det(\Ker(a^{-1}) \otimes_R \det(L^{-1})\right)^{\otimes -1} \\
& \to
\det(K^0) \otimes_R \det(K^{-1})^{\otimes -1} \\
& =
\det(K^\bullet)
\end{align*}
where the first arrow uses the trivialization of $\det(\Ker(a^\bullet))$
and the second arrow uses the isomorphisms $\gamma^i$.
for $i = -1, 0$ by Lemma \ref{lemma-det-ses}. Since $a^\bullet$
is a quasi-isomorphism the complex $\Ker(a^\bullet)$ is acyclic
and has rank $0$. Hence the canonical element $\delta(\Ker(a^\bullet))$
is a trivialization of the invertible $R$-module
$\det(\Ker(a^\bullet))$, see above. We define
$\det(a^\bullet) : \det(K^\bullet) \to \det(L^\bullet)$ as the
unique isomorphism such that the diagram
$$
\xymatrix{
\det(K^\bullet) \ar[rr]_{\det(a^\bullet)} \ar[dr]_{\delta(\Ker(a^\bullet))} & &
\det(L^\bullet) \\
& \det(K^\bullet) \otimes \det(\Ker(a^\bullet))
\ar[ru]_{\gamma^0 \otimes (\gamma^{-1})^{\otimes -1}}
}
$$
commutes.

\begin{lemma}
\label{lemma-canonical-element-well-defined}
Let $R$ be a ring. Let $a^\bullet : K^\bullet \to L^\bullet$ be a map of
complexes of $R$-modules satisfying (1), (2), (3) above. If $L^\bullet$
has rank $0$, then $\det(a^\bullet)$ maps the
canonical element $\delta(L^\bullet)$ to $\delta(K^\bullet)$.
canonical element $\delta(K^\bullet)$ to $\delta(L^\bullet)$.
\end{lemma}

\begin{proof}
Expand Down Expand Up @@ -34345,7 +34340,7 @@ \section{Determinants of complexes}
Let $h : K^0 \to L^{-1}$ be a map such that
$b^0 = a^0 + d \circ h$ and $b^{-1} = a^{-1} + h \circ d$ are surjective.
Then $\det(a^\bullet) = \det(b^\bullet)$ as maps
$\det(L^\bullet) \to \det(K^\bullet)$.
$\det(K^\bullet) \to \det(L^\bullet)$.
\end{lemma}

\begin{proof}
Expand Down Expand Up @@ -34380,7 +34375,7 @@ \section{Determinants of complexes}
}
$$
commutes. Since $\det(c^\bullet)$ maps the canonical trivialization
of $\det(\Ker(a^\bullet))$ to the same for $b^\bullet$
of $\det(\Ker(a^\bullet))$ to the canonical trivializatio of $\Ker(b^\bullet)$
(Lemma \ref{lemma-canonical-element-well-defined})
we see that we conclude if (and only if)
$$
Expand Down Expand Up @@ -34435,7 +34430,7 @@ \section{Determinants of complexes}
Let $R$ be a ring. Let $a^\bullet : K^\bullet \to L^\bullet$
and $b^\bullet : L^\bullet \to M^\bullet$ be maps of
complexes of $R$-modules satisfying (1), (2), (3) above.
Then we have $\det(a^\bullet) \circ \det(b^\bullet) =
Then we have $\det(b^\bullet) \circ \det(a^\bullet) =
\det(b^\bullet \circ a^\bullet)$ as maps
$\det(M^\bullet) \to \det(K^\bullet)$.
\end{lemma}
Expand Down Expand Up @@ -34500,7 +34495,7 @@ \section{Determinants of complexes}
and $c^\bullet$ satisfy conditions (1), (2), (3) above. Whenever
we have such a diagram it makes sense to define
$$
\det(a^\bullet) = \det(c^\bullet)^{-1} \circ \det(b^\bullet)
\det(a^\bullet) = \det(c^\bullet) \circ \det(b^\bullet)^{-1}
$$
where $\det(c^\bullet)$ and $\det(b^\bullet)$ are the isomorphisms
constructed in the text above. We will show that good diagrams always
Expand Down Expand Up @@ -34576,14 +34571,13 @@ \section{Determinants of complexes}
$M_{123}^\bullet \to M_{23}^\bullet$ have properties (1), (2), (3)
and the square in the diagram commutes: we can just take
$M_{123}^n = M_{12}^n \times_{L_2^n} M_{23}^n$.
Then Lemma \ref{lemma-compose-surjections}
shows that
Then Lemma \ref{lemma-compose-surjections} shows that
$$
\xymatrix{
\det(L_2^\bullet) \ar[r] \ar[d] &
\det(M_{23}^\bullet) \ar[d] \\
\det(M_{12}^\bullet) \ar[r] &
\det(M_{123}^\bullet)
\det(L_2^\bullet) &
\det(M_{23}^\bullet) \ar[l] \\
\det(M_{12}^\bullet) \ar[u] &
\det(M_{123}^\bullet) \ar[l] \ar[u]
}
$$
commutes. A diagram chase shows that the composition
Expand Down

0 comments on commit 35721fa

Please sign in to comment.