Skip to content

Commit

Permalink
Add lemma in perfect.tex
Browse files Browse the repository at this point in the history
  • Loading branch information
aisejohan committed Mar 30, 2015
1 parent 7816601 commit 39c8eb2
Showing 1 changed file with 28 additions and 16 deletions.
44 changes: 28 additions & 16 deletions perfect.tex
Expand Up @@ -3322,28 +3322,19 @@ \section{Cohomology and base change, IV}
\label{lemma-cohomology-base-change}
Let $f : X \to Y$ be a quasi-compact and quasi-separated morphism
of schemes. For $E$ in $D_\QCoh(\mathcal{O}_X)$ and
$K$ in $D_\QCoh(\mathcal{O}_Y)$ we have
$K$ in $D_\QCoh(\mathcal{O}_Y)$ the map
$$
Rf_*(E) \otimes_{\mathcal{O}_Y}^\mathbf{L} K =
Rf_*(E) \otimes_{\mathcal{O}_Y}^\mathbf{L} K
\longrightarrow
Rf_*(E \otimes_{\mathcal{O}_X}^\mathbf{L} Lf^*K)
$$
defined in
Cohomology, Equation (\ref{cohomology-equation-projection-formula-map})
is an isomorphism.
\end{lemma}

\begin{proof}
Without any assumptions there is a map
$Rf_*(E) \otimes_{\mathcal{O}_Y}^\mathbf{L} K \to
Rf_*(E \otimes_{\mathcal{O}_X}^\mathbf{L} Lf^*K)$.
Namely, it is the adjoint to the canonical map
$$
Lf^*(Rf_*(E) \otimes_{\mathcal{O}_Y}^\mathbf{L} K) =
Lf^*(Rf_*(E)) \otimes_{\mathcal{O}_X}^\mathbf{L} Lf^*K
\longrightarrow
E \otimes_{\mathcal{O}_X}^\mathbf{L} Lf^*K
$$
coming from the map $Lf^*Rf_*E \to E$. See
Cohomology, Lemmas \ref{cohomology-lemma-pullback-tensor-product} and
\ref{cohomology-lemma-adjoint}.
To check it is an isomorphism we may work locally on $Y$.
To check the map is an isomorphism we may work locally on $Y$.
Hence we reduce to the case that $Y$ is affine.

\medskip\noindent
Expand Down Expand Up @@ -3717,6 +3708,27 @@ \section{Producing perfect complexes}
has cohomology in the range $[a, \infty)$ and we win.
\end{proof}

\noindent
We will generalize the following lemma to perfect proper morphisms in
More on Morphisms, Lemma
\ref{more-morphisms-lemma-perfect-proper-perfect-direct-image}.

\begin{lemma}
\label{lemma-flat-proper-perfect-direct-image}
Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a flat proper
morphism of schemes. Let $E \in D(\mathcal{O}_X)$ be perfect. Then
$Rf_*E$ is a perfect object of $D(\mathcal{O}_S)$.
\end{lemma}

\begin{proof}
We claim that Lemma \ref{lemma-perfect-direct-image} applies.
Conditions (1) and (2) are immediate. Condition (3) is local
on $X$. Thus we may assume $X$ and $S$ affine and $E$
represented by a strictly perfect complex of $\mathcal{O}_X$-modules.
Since $\mathcal{O}_X$ is flat as a sheaf of $f^{-1}\mathcal{O}_S$-modules
we find that condition (3) is satisfied.
\end{proof}




Expand Down

0 comments on commit 39c8eb2

Please sign in to comment.