Skip to content
Permalink
Browse files

Typos

  • Loading branch information...
aisejohan committed Sep 2, 2019
1 parent ba2ebf5 commit 53158d95fc94be13cddd1585110baed192775ace
Showing with 2 additions and 2 deletions.
  1. +2 −2 crystalline.tex
@@ -1017,13 +1017,13 @@ \section{Module of differentials}
modulo $K^2 +(K \cap J(1))^{[2]}$ for $n \geq 1$.
The equality holds for $n = 1$. Assume $n > 1$.
Note that $\delta_i(y - z)$ lies in $(K \cap J(1))^{[2]}$ for $i > 1$.
Calculating module $K^2 + (K \cap J(1))^{[2]}$ we have
Calculating modulo $K^2 + (K \cap J(1))^{[2]}$ we have
$$
\delta_n(z) = \delta_n(z - y + y) =
\sum\nolimits_{i = 0}^n \delta_i(z - y)\delta_{n - i}(y) =
\delta_{n - 1}(y) \delta_1(z - y) + \delta_n(y)
$$
This prove the desired equality.
This proves the desired equality.

\medskip\noindent
Let $M$ be a $B$-module. Let $\theta : B \to M$ be a divided power

0 comments on commit 53158d9

Please sign in to comment.
You can’t perform that action at this time.