Skip to content
Permalink
Browse files

Fix two typos

  • Loading branch information...
aisejohan committed May 31, 2019
1 parent 33d5efc commit 53cbe0baf68c96d70b358946d8f6893ef37a0e66
Showing with 2 additions and 2 deletions.
  1. +2 −2 chow.tex
@@ -3581,7 +3581,7 @@ \section{Chow groups and K-groups}
\begin{lemma}
\label{lemma-finite-cycles-k-group}
Let $\pi : X \to Y$ be a finite morphism of schemes locally of finite type
over $(S, \delta)$ as in Sitation \ref{situation-setup}. Then
over $(S, \delta)$ as in Situation \ref{situation-setup}. Then
$\pi_* : \textit{Coh}(X) \to \textit{Coh}(Y)$ is an exact functor
which sends $\textit{Coh}_{\leq k}(X)$ into $\textit{Coh}_{\leq k}(Y)$
and induces homomorphisms on $K_0$ of these categories and
@@ -3617,7 +3617,7 @@ \section{Chow groups and K-groups}
\begin{lemma}
\label{lemma-from-chow-to-K}
Let $X$ be a scheme locally of finite type over $(S, \delta)$
as in Sitation \ref{situation-setup}. There is a canonical map
as in Situation \ref{situation-setup}. There is a canonical map
$$
A_k(X)
\longrightarrow

0 comments on commit 53cbe0b

Please sign in to comment.
You can’t perform that action at this time.