# stacks/stacks-project

Fix two typos in divisors

 @@ -924,7 +924,7 @@ \section{Morphisms and weakly associated points} then $s$ is not associated to $f_*\mathcal{F}$. \item If $s \not \in f(X)$, $(f_*\mathcal{F})_s$ is a finite $\mathcal{O}_{S, s}$-module, and $\mathcal{O}_{S, s}$ is Noetherian, then $\text{depth}(f_*\mathcal{O}_{S, s}) \geq 2$. is Noetherian, then $\text{depth}((f_*\mathcal{F})_s) \geq 2$. \item If $\mathcal{F}$ is flat over $S$ and $a \in \mathfrak m_s$ is a nonzerodivisor, then $a$ is a nonzerodivisor on $(f_*\mathcal{F})_s$. \item If $\mathcal{F}$ is flat over $S$ and $a, b \in \mathfrak m_s$ @@ -942,7 +942,7 @@ \section{Morphisms and weakly associated points} Part (2) follows from (1) and Lemma \ref{lemma-ass-weakly-ass}. \medskip\noindent Proof of part (3). To show the depth is $\geq w$ it suffices to show that Proof of part (3). To show the depth is $\geq 2$ it suffices to show that $\Hom_{\mathcal{O}_{S, s}}(\kappa(s), (f_*\mathcal{F})_s) = 0$ and $\Ext^1_{\mathcal{O}_{S, s}}(\kappa(s), (f_*\mathcal{F})_s) = 0$, see Algebra, Lemma \ref{algebra-lemma-depth-ext}.