diff --git a/local-cohomology.tex b/local-cohomology.tex index eef5b90cd..39cec339f 100644 --- a/local-cohomology.tex +++ b/local-cohomology.tex @@ -5562,6 +5562,37 @@ \section{Algebraization of local cohomology, bootstrap} The result follows easily from Lemma \ref{lemma-bootstrap}. \end{proof} +\begin{remark} +\label{remark-combine} +Let $I \subset \mathfrak a \subset A$ be ideals of a Noetherian ring $A$ +and let $M$ be a finite $A$-module. Let $s$ and $d$ be integers. +Suppose that +\begin{enumerate} +\item $A, I, \mathfrak a, M$ satisfy the conditions of +Situation \ref{situation-bootstrap} for $s$ and $d$, and +\item $A, I, \mathfrak a, M$ satisfy the conditions of +Lemma \ref{lemma-algebraize-local-cohomology-general} +for $s + 1$ and $d$ with $J = \mathfrak a$. +\end{enumerate} +Then there exists an ideal +$J_0 \subset \mathfrak a$ with $V(J_0) \cap V(I) = V(\mathfrak a)$ +such that for any $J' \subset J_0$ with $V(J') \cap V(I) = V(\mathfrak a)$ +the map +$$ +H^{s + 1}_{J'}(M) \longrightarrow \lim H^{s + 1}_\mathfrak a(M/I^nM) +$$ +is an isomorphism. Namely, we have the existence of $J_0$ +and the isomorphism +$H^{s + 1}_{J'}(M) = H^{s + 1}(R\Gamma_\mathfrak a(M)^\wedge)$ +by Lemma \ref{lemma-algebraize-local-cohomology-general}, +we have $H^{s + 1}(R\Gamma_\mathfrak a(M)^\wedge)$ sandwiched +between the limit and $R^1\lim H^s_\mathfrak a(M/I^nM)$ by +Dualizing Complexes, Lemma \ref{dualizing-lemma-completion-local}, +and we have the vanishing of +$R^1\lim H^s_\mathfrak a(M/I^nM)$ by Lemma \ref{lemma-final-bootstrap}. +\end{remark} + +