From c1510bacba8251c99767bebe4f3310fa3570d79b Mon Sep 17 00:00:00 2001 From: Aise Johan de Jong Date: Sat, 14 Nov 2020 21:48:43 -0500 Subject: [PATCH] assignes -> assigns Thanks to R https://stacks.math.columbia.edu/tag/0B7H#comment-5453 --- chow.tex | 10 +++++----- quot.tex | 2 +- spaces-chow.tex | 8 ++++---- 3 files changed, 10 insertions(+), 10 deletions(-) diff --git a/chow.tex b/chow.tex index 578c5aab1..d482a84a0 100644 --- a/chow.tex +++ b/chow.tex @@ -5647,7 +5647,7 @@ \section{Bivariant intersection theory} Let $(S, \delta)$ be as in Situation \ref{situation-setup}. Let $f : X \to Y$ be a flat morphism of relative dimension $r$ between schemes locally of finite type over $S$. -Then the rule that to $Y' \to Y$ assignes +Then the rule that to $Y' \to Y$ assigns $(f')^* : \CH_k(Y') \to \CH_{k + r}(X')$ where $X' = X \times_Y Y'$ is a bivariant class of degree $-r$. \end{lemma} @@ -5666,7 +5666,7 @@ \section{Bivariant intersection theory} Let $X$ be locally of finite type over $S$. Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in Definition \ref{definition-gysin-homomorphism}. -Then the rule that to $f : X' \to X$ assignes +Then the rule that to $f : X' \to X$ assigns $(i')^* : \CH_k(X') \to \CH_{k - 1}(D')$ where $D' = D \times_X X'$ is a bivariant class of degree $1$. \end{lemma} @@ -5684,7 +5684,7 @@ \section{Bivariant intersection theory} Let $f : X \to Y$ and $g : Y \to Z$ be morphisms of schemes locally of finite type over $S$. Let $c \in A^p(X \to Z)$ and assume $f$ is proper. -Then the rule that to $Z' \to Z$ assignes +Then the rule that to $Z' \to Z$ assigns $\alpha \longmapsto f'_*(c \cap \alpha)$ is a bivariant class denoted $f_* \circ c \in A^p(Y \to Z)$. \end{lemma} @@ -5814,7 +5814,7 @@ \section{Chow cohomology and the first Chern class} Let $(S, \delta)$ be as in Situation \ref{situation-setup}. Let $X$ be locally of finite type over $S$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. -Then the rule that to $f : X' \to X$ assignes +Then the rule that to $f : X' \to X$ assigns $c_1(f^*\mathcal{L}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$ is a bivariant class of degree $1$. \end{lemma} @@ -6929,7 +6929,7 @@ \section{Intersecting with Chern classes} Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a locally free $\mathcal{O}_X$-module of rank $r$. Let $0 \leq p \leq r$. -Then the rule that to $f : X' \to X$ assignes +Then the rule that to $f : X' \to X$ assigns $c_p(f^*\mathcal{E}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$ is a bivariant class of degree $p$. \end{lemma} diff --git a/quot.tex b/quot.tex index 8bbf8f489..696af768f 100644 --- a/quot.tex +++ b/quot.tex @@ -3451,7 +3451,7 @@ \section{The stack of algebraic spaces} \medskip\noindent The construction from left to right in either arrow is straightforward: given $X \to T$ of finite type the functor -$\mathcal{S}_T \to \Spacesstack'_{ft}$ assignes to $U/T$ the +$\mathcal{S}_T \to \Spacesstack'_{ft}$ assigns to $U/T$ the base change $X_U \to U$. We will explain how to construct a quasi-inverse. \medskip\noindent diff --git a/spaces-chow.tex b/spaces-chow.tex index 95944ae4e..9264e6dd6 100644 --- a/spaces-chow.tex +++ b/spaces-chow.tex @@ -3927,7 +3927,7 @@ \section{Bivariant intersection theory} \label{lemma-cap-c1-bivariant} In Situation \ref{situation-setup} let $X/B$ be good. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. -Then the rule that to $f : X' \to X$ assignes +Then the rule that to $f : X' \to X$ assigns $c_1(f^*\mathcal{L}) \cap - : \CH_k(X') \to \CH_{k - 1}(X')$ is a bivariant class of degree $1$. \end{lemma} @@ -3943,7 +3943,7 @@ \section{Bivariant intersection theory} \label{lemma-flat-pullback-bivariant} In Situation \ref{situation-setup} let $f : X \to Y$ be a morphism of good algebraic spaces over $B$ which is flat of relative dimension $r$. -Then the rule that to $Y' \to Y$ assignes +Then the rule that to $Y' \to Y$ assigns $(f')^* : \CH_k(Y') \to \CH_{k + r}(X')$ where $X' = X \times_Y Y'$ is a bivariant class of degree $-r$. \end{lemma} @@ -3961,7 +3961,7 @@ \section{Bivariant intersection theory} In Situation \ref{situation-setup} let $X/B$ be good. Let $(\mathcal{L}, s, i : D \to X)$ be a triple as in Definition \ref{definition-gysin-homomorphism}. -Then the rule that to $f : X' \to X$ assignes +Then the rule that to $f : X' \to X$ assigns $(i')^* : \CH_k(X') \to \CH_{k - 1}(D')$ where $D' = D \times_X X'$ is a bivariant class of degree $1$. \end{lemma} @@ -3978,7 +3978,7 @@ \section{Bivariant intersection theory} In Situation \ref{situation-setup} let $f : X \to Y$ and $g : Y \to Z$ be morphisms of good algebraic spaces over $B$. Let $c \in A^p(X \to Z)$ and assume $f$ is proper. -Then the rule that to $X' \to X$ assignes +Then the rule that to $X' \to X$ assigns $\alpha \longmapsto f_*(c \cap \alpha)$ is a bivariant class of degree $p$. \end{lemma}