Skip to content
Permalink
Browse files

Projective space bundle formula

  • Loading branch information...
aisejohan committed Oct 1, 2019
1 parent c2e42d9 commit c191740d29b184e9642818d89f662323db962c8c
Showing with 42 additions and 0 deletions.
  1. +42 −0 derham.tex
@@ -1595,6 +1595,48 @@ \section{The spectral sequence for a smooth morphism}





\section{Projective space bundle formula}
\label{section-projective-space-bundle-formula}

\noindent
The title says it all.

\begin{proposition}
\label{proposition-projective-space-bundle-formula}
Let $X \to S$ be a morphism of schemes. Let $\mathcal{E}$ be a locally
free $\mathcal{O}_X$-module of constant rank $r$. Consider the morphism
$p : P = \mathbf{P}(\mathcal{E}) \to X$.
Then the map
$$
\bigoplus\nolimits_{i = 0, \ldots, r - 1} H^*_{dR}(X/S)
\longrightarrow
H^*_{dR}(P/S), \quad
(a_0, \ldots, a_{r - 1}) \longmapsto
\sum p^*(a_i) \cup c_1^{dR}(\mathcal{O}_P(1))^i
$$
is an isomorphism.
\end{proposition}

\begin{proof}
Choose an affine open $\Spec(A) \subset X$ such that $\mathcal{E}$ restricts
to the trivial locally free module $\mathcal{O}_{\Spec(A)}^{\oplus r}$.
Then $P \times_X \Spec(A) = \mathbf{P}^{r - 1}_A$. Thus we see that
$p$ is proper and smooth, see Section \ref{section-projective-space}.
Moreover, the classes $c_1^{dR}(\mathcal{O}_P(1))^i$, $i = 0, 1, \ldots, r - 1$
restricted to a fibre $X_y = \mathbf{P}^{r - 1}_y$ freely generate the
de Rham cohomology $H^*_{dR}(X_y/y)$ over $\kappa(y)$, see
Lemma \ref{lemma-de-rham-cohomology-projective-space}. Thus we've verified the
conditions of Proposition \ref{proposition-global-generation-on-fibres}
and we win.
\end{proof}






\section{Comparing sheaves of differential forms}
\label{section-quasi-finite-syntomic}

0 comments on commit c191740

Please sign in to comment.
You can’t perform that action at this time.