# stacks / stacks-project

Also changed a couple of very minor things
aisejohan committed Dec 10, 2019
1 parent a844090 commit d271fed1c7bfd0b70eee0c40b8cd7a2fbe66b6da
Showing with 7 additions and 2 deletions.
1. +1 −1 algebra.tex
2. +4 −0 tags/tags
3. +2 −1 varieties.tex
 @@ -35337,7 +35337,7 @@ \section{Syntomic morphisms} \label{lemma-base-change-relative-global-complete-intersection} Let $S = R[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$ be a relative global complete intersection (Defintion \ref{definition-relative-global-complete-intersection}) (Definition \ref{definition-relative-global-complete-intersection}) \begin{enumerate} \item For any $R \to R'$ the base change $R' \otimes_R S = R'[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$ is a relative
 @@ -19842,3 +19842,7 @@ 0FWC,derham-section-weil 0FWD,derham-proposition-de-rham-is-weil 0FWE,derham-remark-hodge-cohomology-is-weil 0FWF,algebra-lemma-characterize-geometrically-integral 0FWG,algebra-lemma-finite-projective-reduced 0FWH,properties-lemma-finite-locally-free-reduced 0FWI,duality-lemma-shriek-etale
 @@ -9218,7 +9218,8 @@ \section{Degrees on curves} all irreducible components of dimension $1$ we see that the kernel and cokernel $$0 \to \mathcal{K} \to \mathcal{O}_X \to f_*\mathcal{O}_{X'} \to \mathcal{Q} \to 0 0 \to \mathcal{K} \to \mathcal{O}_X \to f_*\mathcal{O}_{X'} \to \mathcal{Q} \to 0$$ have supports of dimension $\leq 0$. Note that tensoring this with $\mathcal{E}$ is still an exact sequence as $\mathcal{E}$ is locally free.