Skip to content
Permalink
Browse files

Tags: added new tags

Also changed a couple of very minor things
  • Loading branch information
aisejohan committed Dec 10, 2019
1 parent a844090 commit d271fed1c7bfd0b70eee0c40b8cd7a2fbe66b6da
Showing with 7 additions and 2 deletions.
  1. +1 −1 algebra.tex
  2. +4 −0 tags/tags
  3. +2 −1 varieties.tex
@@ -35337,7 +35337,7 @@ \section{Syntomic morphisms}
\label{lemma-base-change-relative-global-complete-intersection}
Let $S = R[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$ be a
relative global complete intersection
(Defintion \ref{definition-relative-global-complete-intersection})
(Definition \ref{definition-relative-global-complete-intersection})
\begin{enumerate}
\item For any $R \to R'$ the base change
$R' \otimes_R S = R'[x_1, \ldots, x_n]/(f_1, \ldots, f_c)$ is a relative
@@ -19842,3 +19842,7 @@
0FWC,derham-section-weil
0FWD,derham-proposition-de-rham-is-weil
0FWE,derham-remark-hodge-cohomology-is-weil
0FWF,algebra-lemma-characterize-geometrically-integral
0FWG,algebra-lemma-finite-projective-reduced
0FWH,properties-lemma-finite-locally-free-reduced
0FWI,duality-lemma-shriek-etale
@@ -9218,7 +9218,8 @@ \section{Degrees on curves}
all irreducible components of dimension $1$ we see that the kernel
and cokernel
$$
0 \to \mathcal{K} \to \mathcal{O}_X \to f_*\mathcal{O}_{X'} \to \mathcal{Q} \to 0
0 \to \mathcal{K} \to \mathcal{O}_X \to f_*\mathcal{O}_{X'}
\to \mathcal{Q} \to 0
$$
have supports of dimension $\leq 0$. Note that tensoring this with
$\mathcal{E}$ is still an exact sequence as $\mathcal{E}$ is locally free.

0 comments on commit d271fed

Please sign in to comment.
You can’t perform that action at this time.