diff --git a/derived.tex b/derived.tex index 3efd21db..c1e5e6f9 100644 --- a/derived.tex +++ b/derived.tex @@ -1594,7 +1594,7 @@ \section{Localization of triangulated categories} \begin{lemma} \label{lemma-limit-triangles} -Let $\mathcal{D}$ be a triangulated category. +Let $\mathcal{D}$ be a pre-triangulated category. Let $S$ be a saturated multiplicative system in $\mathcal{D}$ that is compatible with the triangulated structure. Let $(X, Y, Z, f, g, h)$ be a distinguished triangle in $\mathcal{D}$. @@ -1723,11 +1723,11 @@ \section{Localization of triangulated categories} $(s_4, s'_4, s''_4) : (X_2, Y_2, Z_2, f_2, g_2, h_2) \to (X_3, Y_3, Z_3, f_3, g_3, h_3)$ in $\mathcal{I}$. We would be done if the compositions -$X' \to X_1 \to X_3$ and $X' \to X_2 \to X_3$ where equal +$X' \to X_1 \to X_3$ and $X' \to X_2 \to X_3$ were equal (see displayed equation in Categories, Definition \ref{categories-definition-cofinal}). If not, then, because $X/S$ is filtered, we can choose -a morphism $X_3 \to X_4$ in $S$ such that the compositions +a morphism $X_3 \to X_4$ in $X/S$ such that the compositions $X' \to X_1 \to X_3 \to X_4$ and $X' \to X_2 \to X_3 \to X_4$ are equal. Then we finally complete $X_3 \to X_4$ to a morphism $(X_3, Y_3, Z_3) \to (X_4, Y_4, Z_4)$ in $\mathcal{I}$