Skip to content

Commit

Permalink
Chern classes as bivariant classes
Browse files Browse the repository at this point in the history
Easier than in the case of schemes
  • Loading branch information
aisejohan committed May 29, 2018
1 parent 1c9a363 commit e6185f7
Showing 1 changed file with 173 additions and 0 deletions.
173 changes: 173 additions & 0 deletions spaces-chow.tex
Expand Up @@ -4363,6 +4363,179 @@ \section{Projective space bundle formula}



\section{The Chern classes of a vector bundle}
\label{section-chern-classes-vector-bundles}

\noindent
This section is the analogue of Chow Homology, Sections
\ref{chow-section-chern-classes-vector-bundles} and
\ref{chow-section-intersecting-chern-classes}.
However, contrary to what is done there, we directly
define the chern classes of a vector bundle as bivariant classes.
This saves a considerable amount of work.

\begin{lemma}
\label{lemma-segre-classes}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$.
Let $(\pi : P \to X, \mathcal{O}_P(1))$ be the projective space
bundle associated to $\mathcal{E}$. For every
morphism $X' \to X$ of good algebraic spaces over $B$
there are unique maps
$$
c_i(\mathcal{E}) \cap - : A_k(X') \longrightarrow A_{k - i}(X'),\quad
i = 0, \ldots, r
$$
such that for $\alpha \in A_k(X')$ we have
$c_0(\mathcal{E}) \cap \alpha = \alpha$ and
$$
\sum\nolimits_{i = 0, \ldots, r}
(-1)^i c_1(\mathcal{O}_{P'}(1))^i \cap
(\pi')^*\left(c_{r - i}(\mathcal{E}) \cap \alpha\right) = 0
$$
where $\pi' : P' \to X'$ is the base change of $\pi$.
Moreover, these maps define a bivariant class
$c_i(\mathcal{E})$ of degree $i$ on $X$.
\end{lemma}

\begin{proof}
Uniqueness and existence of the maps $c_i(\mathcal{E}) \cap -$
follows immediately from Lemma \ref{lemma-chow-ring-projective-bundle}
and the given description of $c_0(\mathcal{E})$. For every $i \in \mathbf{Z}$
the rule which to every morphism $X' \to X$ of good algebraic spaces
over $B$ assigns the map
$$
t_i(\mathcal{E}) \cap - :
A_k(X') \longrightarrow A_{k - i}(X'),\quad
\alpha \longmapsto
\pi'_*(c_1(\mathcal{O}_{P'}(1))^{r - 1 + i} \cap (\pi')^*\alpha)
$$
is a bivariant class\footnote{Up to signs these are
the Segre classes of $\mathcal{E}$.} by Lemmas \ref{lemma-cap-c1-bivariant},
\ref{lemma-flat-pullback-bivariant}, and
\ref{lemma-push-proper-bivariant}.
By Lemma \ref{lemma-cap-projective-bundle} we have
$t_i(\mathcal{E}) = 0$ for $i < 0$ and $t_0(\mathcal{E}) = 1$.
Applying pushforward to the equation in the statement of the lemma
we find from Lemma \ref{lemma-cap-projective-bundle} that
$$
(-1)^r t_1(\mathcal{E}) + (-1)^{r - 1}c_1(\mathcal{E}) = 0
$$
In particular we find that $c_1(\mathcal{E})$ is a bivariant class.
If we multiply the equation in the statement of the lemma by
$c_1(\mathcal{O}_{P'}(1))$ and push the result forward to $X'$
we find
$$
(-1)^r t_2(\mathcal{E}) +
(-1)^{r - 1} t_1(\mathcal{E}) \cap c_1(\mathcal{E}) +
(-1)^{r - 2} c_2(\mathcal{E}) = 0
$$
As before we conclude that $c_2(\mathcal{E})$ is a bivariant class.
And so on.
\end{proof}

\begin{definition}
\label{definition-chern-classes}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$.
For $i = 0, \ldots, r$ the {\it $i$th chern class of $\mathcal{E}$}
is the bivariant class $c_i(\mathcal{E}) \in A^i(X)$ of degree $i$
constructed in Lemma \ref{lemma-segre-classes}.
\end{definition}

\noindent
For convenience we often set $c_i(\mathcal{E}) = 0$
for $i > r$ and $i < 0$. By definition
we have $c_0(\mathcal{E}) = 1 \in A^0(X)$.
Here is a sanity check.

\begin{lemma}
\label{lemma-first-chern-class}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
The first chern class of $\mathcal{L}$ on $X$ of
Definition \ref{definition-chern-classes}
is equal to the bivariant class of Lemma \ref{lemma-cap-c1-bivariant}.
\end{lemma}

\begin{proof}
Namely, in this case $P = \mathbf{P}(\mathcal{L}) = X$ with
$\mathcal{O}_P(1) = \mathcal{L}$ by our normalization of the
projective bundle, see Section \ref{section-projective-space-bundle-formula}.
Hence the equation in Lemma \ref{lemma-segre-classes}
reads
$$
(-1)^0 c_1(\mathcal{L})^0 \cap c^{new}_1(\mathcal{L}) \cap \alpha +
(-1)^1 c_1(\mathcal{L})^1 \cap c^{new}_0(\mathcal{L}) \cap \alpha = 0
$$
where $c_i^{new}(\mathcal{L})$ is as in
Definition \ref{definition-chern-classes}.
Since $c_0^{new}(\mathcal{L}) = 1$ and $c_1(\mathcal{L})^0 = 1$
we conclude.
\end{proof}

\noindent
Next we see that chern classes are in the center of the bivariant
Chow cohomology ring $A^*(X)$.

\begin{lemma}
\label{lemma-cap-commutative-chern}
In Situation \ref{situation-setup} let $X/B$ be good.
Let $\mathcal{E}$ be a locally free $\mathcal{O}_X$-module of rank $r$.
Then $c_j(\mathcal{L}) \in A^j(X)$ commutes with every
element $c \in A^p(X)$. In particular, if $\mathcal{F}$ is a
second locally free $\mathcal{O}_X$-module on $X$ of rank $s$, then
$$
c_i(\mathcal{E}) \cap c_j(\mathcal{F}) \cap \alpha
=
c_j(\mathcal{F}) \cap c_i(\mathcal{E}) \cap \alpha
$$
as elements of $A_{k - i - j}(X)$ for all $\alpha \in A_k(X)$.
\end{lemma}

\begin{proof}
Let $X' \to X$ be a morphism of good algebraic spaces over $B$.
Let $\alpha \in A_k(X')$. Write $\alpha_j = c_j(\mathcal{E}) \cap \alpha$, so
$\alpha_0 = \alpha$. By Lemma \ref{lemma-segre-classes} we have
$$
\sum\nolimits_{i = 0}^r
(-1)^i c_1(\mathcal{O}_{P'}(1))^i \cap
(\pi')^*(\alpha_{r - i}) = 0
$$
in the chow group of the projective bundle
$(\pi' : P' \to X', \mathcal{O}_{P'}(1))$
associated to $(X' \to X)^*\mathcal{E}$.
Applying $c \cap -$ and using Lemma \ref{lemma-c1-center}
and the properties of bivariant classes we obtain
$$
\sum\nolimits_{i = 0}^r
(-1)^i c_1(\mathcal{O}_{P'}(1))^i \cap
\pi^*(c \cap \alpha_{r - i}) = 0
$$
in the Chow group of $P'$. Hence we see that $c \cap \alpha_j$ is
equal to $c_j(\mathcal{E}) \cap (c \cap \alpha)$ by the uniqueness in
Lemma \ref{lemma-segre-classes}. This proves the lemma.
\end{proof}





















\input{chapters}

Expand Down

0 comments on commit e6185f7

Please sign in to comment.