Skip to content
Browse files

Kunneth for etale cohomology

This is obviously insane, but somehow I started writing it this way and
I couldn't get myself to stop. If you have a better way of writing the
proofs in this section, by all means send me suggestions.
  • Loading branch information...
aisejohan committed Nov 6, 2018
1 parent 121629c commit fb45029ca76b41380349c752c6f60ae95ff6e33b
Showing with 56 additions and 1 deletion.
  1. +56 −1 etale-cohomology.tex
(akin to smooth base change).
Finally we use this to get a more general K\"unneth formula.

Consider a cartesian diagram in the category of schemes:
X \times_S Y \ar[d]_p \ar[r]_q \ar[rd]_c & Y \ar[d]^g \\
X \ar[r]^f & S
Let $\Lambda$ be a ring and let $E \in D(X_\etale, \Lambda)$
and $K \in D(Y_\etale, \Lambda)$. Then there is a canonical map
Rf_*E \otimes_\Lambda^\mathbf{L} Rg_*K
Rc_*(p^{-1}E \otimes_\Lambda^\mathbf{L} q^{-1}K)
For example we can define this using the canonical maps
$Rf_*E \to Rc_*p^{-1}E$ and $Rg_*K \to Rc_*q^{-1}K$ and
the relative cup product defined in Cohomology on Sites,
Remark \ref{sites-cohomology-remark-cup-product}.
Or you can use the adjoint to the map
c^{-1}(Rf_*E \otimes_\Lambda^\mathbf{L} Rg_*K)
p^{-1}f^{-1}Rf_*E \otimes_\Lambda^\mathbf{L} q^{-1} g^{-1}Rg_*K
p^{-1}E \otimes_\Lambda^\mathbf{L} q^{-1}K
which uses the adjunction maps $f^{-1}Rf_*E \to E$ and
$g^{-1}Rg_*K \to K$.

Let $k$ be a separably closed field. Let $X$ be a proper scheme over $k$.
$K$-subalgebras $B_i$. Let $J$ be the set of pairs $(i, g)$ where
$i \in I$ and $g \in B_i$ nonzero with ordering
$(i', g') \geq (i, g)$ if and only if $i' \geq i$ and
$g$ maps to an invertible element of $B_{i'}$.
$g$ maps to an invertible element of $(B_{i'})_{g'}$.
Then $L = \colim_{(i, g) \in J} (B_i)_g$.
For $j = (i, g) \in J$ set $S_j = \Spec(B_i)$
and $U_j = \Spec((B_i)_g)$.
proved in Lemma \ref{lemma-kunneth-localize-on-X}.

Let $K$ be a field. Let $X$ be a scheme over $K$.
For any commutative diagram
X \ar[d] & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^h \ar[d]^e \\
\Spec(K) & S' \ar[l] & T \ar[l]_g
$X' = X \times_{\Spec(K)} S'$ and $Y = X' \times_{S'} T$ and
$g$ quasi-compact and quasi-separated, and every abelian sheaves
$\mathcal{G}$ on $X_\etale$ and $\mathcal{F}$ on $T_\etale$
whose stalks are torsion of orders invertible in $K$ the base change map
\mathcal{G} \otimes (f')^{-1}Rg_*\mathcal{F}
Rh_*(\mathcal{G} \otimes e^{-1}\mathcal{F})
is an isomorphism.

0 comments on commit fb45029

Please sign in to comment.
You can’t perform that action at this time.