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Derivation of Tloo.diff

Proofs

The main quantity of interest is the mean expected log pointwise predictive
density, which we want to use for model evaluation and comparison.

Definition 1 (elpd). The mean expected log pointwise predictive density for a
model p is defined as

elpd = /pt(x) log p(z) d

where py(z) = p(x|0y) is the true density at a new unseen observation x and
log p(x) is the log predictive density for observation x.

We estimate elpd using leave-one-out cross-validation (loo).

Definition 2 (Leave-one-out cross-validation). The loo estimator elpd,,, is
given by
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where m; = log p(yily—i) = [log p(y;|0)p(0]y—;)db.
To estimate elpd,,, in turn, we use difference estimator. Definitions follow.
Definition 3. Let 7; be any approximation of m;. The difference estimator of

elpd,,, based on 7; is given by
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where S is the subsample set, m is the subsampling size, and the probability of
subsampling observation i is 1/n, i.e. the subsample is uniform with replacement.

One important estimator of 7; among others is the importance sampling

estimator s
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where r(0) is any suitable weight function such that 0 < r7(f) < oo for all
6 € © and (04, ...,0s) is a sample from a suitable approximation of the posterior
p(0)y). We are in particular interested in the weight function

7p(05|y7i) p(05|y)
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and where ¢(+|y) is an approximation of the posterior distribution that satisfies
for each y that ¢(f|y) iff 6 € © , 6, is a sample point from ¢ and S is the total
posterior sample size. (The condition on g makes sure that 0 < r(#) < oo for all
6.)

In the case of truncated importance sampling, we instead truncate these
weights and replace r with r. given by

r+(0s) = min(r(0s), 1), (4)
where 7 > 0 is the weight truncation [see Ionides, 2008, for a more elaborate
discussion on the choice of 7].

Proof of Proposition 1

Proposition 1. The estimators eTp\ddiff and &1200 are unbiased with regard to
elpdyg and o .

Proof. We start out by proving unbiasedness for the general estimator. Write
the difference estimator as

elpdygq it = ir = an + % ZZIU(WJ - 7j),

where I;; is the indicator that data point ¢ is chosen as the j'th point of the
subsample. Since E[l;;] = 1/n, the expectation of the double sum is ), (m; — 7;)
and E[eTp\dloo’diﬂr] =), as desired.

Next we prove unbiasedess of &12007(115. We are interested in estimating the
finite sampling variance using the difference estimator. This can be done as

oo = S (i — 7’ )
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We can estimate a and b separately as follows. The first part can be estimated
using the difference estimator with 77 as auxiliary variable. Let t. =Y\ ¢; =
Sl w? — &2 = ty2 — tz2, the we can estimate a as
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From the previous section, it follows directly that
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The second part, b, can then be estimated as

with the expectation

B() = [B() ~ B(u(i)) + 21 B(E:) — 2] )
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Using that l
E(v(i,)) = n? (1 - %) %82) = n? (1 - %) %2 =V(i.). (14)

Combining the results we have that

2
T 1 &
E(ab)—nZﬁ(an) =02, . (15)
=1 =1
O

Remark. We believe this has probably been proven before, and hence this
is probably not a new theoretical result.
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Derivation of oj,, 4if

Based on Eq. 6, 7 and 8, we can construct the estimator for o2  as
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Here, we use that
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that

”(’Ew) = V(elpddiff,loo) )

br = elpddiff,loo )
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