
Derivation of σ2
loo,diff

Proofs
The main quantity of interest is the mean expected log pointwise predictive
density, which we want to use for model evaluation and comparison.

Definition 1 (elpd). The mean expected log pointwise predictive density for a
model p is defined as

elpd =

∫
pt(x) log p(x) dx

where pt(x) = p(x|θ0) is the true density at a new unseen observation x and
log p(x) is the log predictive density for observation x.

We estimate elpd using leave-one-out cross-validation (loo).

Definition 2 (Leave-one-out cross-validation). The loo estimator elpdloo is
given by

elpdloo =
1

n

n∑
i=1

πi, (1)

where πi = log p(yi|y−i) =
∫

log p(yi|θ)p(θ|y−i)dθ.

To estimate elpdloo in turn, we use difference estimator. Definitions follow.

Definition 3. Let π̃i be any approximation of πi. The difference estimator of
elpdloo based on π̃i is given by

êlpdloo,diff =
1

n

 n∑
i=1

π̃i +
n

m

∑
j∈S

(πj − π̃j)

 =
1

n

(
tπ̃ + t̂e

)
,

where S is the subsample set, m is the subsampling size, and the probability of
subsampling observation i is 1/n, i.e. the subsample is uniform with replacement.

One important estimator of πi among others is the importance sampling
estimator

log p̂(yi|y−i) = log

(
1
S

∑S
s=1 p(yi|θs)r(θs)
1
S

∑S
s=1 r(θs)

)
, (2)
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where r(θ) is any suitable weight function such that 0 < r(θ) < ∞ for all
θ ∈ Θ and (θ1, . . . , θS) is a sample from a suitable approximation of the posterior
p(θ|y). We are in particular interested in the weight function

r(θs) =
p(θs|y−i)
p(θs|y)

p(θs|y)

q(θs|y)

∝ 1

p(yi|θs)
p(θs|y)

q(θs|y)
(3)

and where q(·|y) is an approximation of the posterior distribution that satisfies
for each y that q(θ|y) iff θ ∈ Θ , θs is a sample point from q and S is the total
posterior sample size. (The condition on q makes sure that 0 < r(θ) <∞ for all
θ.)

In the case of truncated importance sampling, we instead truncate these
weights and replace r with rτ given by

rτ (θs) = min(r(θs), τ) , (4)

where τ > 0 is the weight truncation [see Ionides, 2008, for a more elaborate
discussion on the choice of τ ].

Proof of Proposition 1

Proposition 1. The estimators êlpddiff and σ̂2
loo are unbiased with regard to

elpddiff and σ2
loo.

Proof. We start out by proving unbiasedness for the general estimator. Write
the difference estimator as

êlpdloo,diff = t̂π =

n∑
i=1

π̃i +
n

m

n∑
i=1

∑
j∈S

Iij(πj − π̃j),

where Iij is the indicator that data point i is chosen as the j’th point of the
subsample. Since E[Iij ] = 1/n, the expectation of the double sum is

∑
i(πi − π̃i)

and E[êlpdloo,diff ] =
∑
i πi as desired.

Next we prove unbiasedess of σ̂2
loo,diff . We are interested in estimating the

finite sampling variance using the difference estimator. This can be done as

σ2
loo =

1

n

n∑
i=1

(πi − π̄)2 (5)

=
1

n

n∑
i=1

π2
i︸ ︷︷ ︸

a

−

(
1

n

n∑
i=1

πi

)
︸ ︷︷ ︸

b

2

(6)
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We can estimate a and b separately as follows. The first part can be estimated
using the difference estimator with π̃2

i as auxiliary variable. Let tε =
∑n
i εi =∑n

i π
2
i − π̃2

i = tπ2 − tπ̃2 , the we can estimate a as

â =
1

n
(tπ̃2 + t̂ε) , (7)

where
t̂ε =

n

m

∑
j∈S

(
π2
j − π̃2

j

)
.

From the previous section, it follows directly that

E(â) =
1

n
tπ2 =

1

n

n∑
i=1

π2
i ,

The second part, b, can then be estimated as

b̂ =
1

n2

[
t̂2e − v(t̂e) + 2tπ̃ t̂π − t2π̃

]
, (8)

with the expectation

E(b̂) =
1

n2

[
E(t̂2e)− E(v(t̂e)) + 2tπ̃E(t̂π)− t2π̃

]
(9)

=
1

n2

[
V (t̂e) + E(t̂e)

2 − V (t̂e) + 2tπ̃tπ − t2π̃
]

(10)

=
1

n2

[
t2e + 2tπ̃tπ − t2π̃

]
(11)

=
1

n2

[
(tπ − tπ̃)2 + 2tπ̃tπ − t2π̃

]
(12)

=
1

n2
t2π =

(
1

n

n∑
i

πi

)2

(13)

Using that

E(v(t̂e)) = n2
(

1− m

n

) E(s2
e)

m
= n2

(
1− m

n

) S2
e

m
= V (t̂e) . (14)

Combining the results we have that

E(â− b̂) =
1

n

n∑
i=1

π2
i −

(
1

n

n∑
i=1

πi

)2

= σ2
loo . (15)

Remark. We believe this has probably been proven before, and hence this
is probably not a new theoretical result.
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Derivation of σ2
loo,diff

Based on Eq. 6, 7 and 8, we can construct the estimator for σ2
loo as

σ2
loo = â− b̂ (16)

=
1

n
(tπ̃2 + t̂ε)︸ ︷︷ ︸

â

− (17)

1

n2

[
t̂2e − v(t̂e) + 2tπ̃ t̂π − t2π̃

]
︸ ︷︷ ︸

b̂

(18)

=
1

n

 n∑
i=1

π̃2
i +

n

m

∑
j∈S

(
π2
j − π̃2

j

)
︸ ︷︷ ︸

â

− (19)

1

n2

[
t̂2e − v(t̂e)

]
︸ ︷︷ ︸

b̂

− (20)

1

n2

[
2tπ̃ t̂π − t2π̃

]
︸ ︷︷ ︸

b̂

(21)

=
1

n

 n∑
i=1

π̃2
i +

n

m

∑
j∈S

(
π2
j − π̃2

j

)
︸ ︷︷ ︸

â

− (22)

1

n2


 n

m

∑
j∈S

(πj − π̃j)

2

− v(t̂π)


︸ ︷︷ ︸

b̂

− (23)

1

n2

2

(
n∑
i=1

π̃i

)
t̂π −

(
n∑
i=1

π̃i

)2


︸ ︷︷ ︸
b̂

(24)

Here, we use that

v(t̂e) = v(t̂π) = V (êlpddiff,loo) ,

that
t̂π = êlpddiff,loo ,
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σ̂2
diff,loo =nσ2

loo (25)

=

n∑
i=1

π̃2
i +

n

m

∑
j∈S

(
π2
j − π̃2

j

)
− (26)

1

n


 n

m

∑
j∈S

(πj − π̃j)

2

− V (êlpddiff,loo)

−
1

n

2

(
n∑
i=1

π̃i

)
êlpddiff,loo −

(
n∑
i=1

π̃i

)2
 .
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