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Abstract

A new method for decision tree induction is presented. Given
a set of predictor variables x = (x1, x2, · · ·, xp) and two out-
come variables y and z associated with each x, the goal is to
identify those values of x for which the respective distribu-
tions of y |x and z |x, or selected properties of those distri-
butions such as means or quantiles, are most different. Con-
trast trees provide a lack-of-fit measure for statistical models
of such statistics, or for the complete conditional distribu-
tion py(y |x), as a function of x. They are easily interpreted
and can be used as diagnostic tools to reveal and then un-
derstand the inaccuracies of models produced by any learn-
ing method. A corresponding contrast boosting strategy is
described for remedying any uncovered errors thereby pro-
ducing potentially more accurate predictions. This leads to a
distribution boosting strategy for directly estimating the full
conditional distribution of y at each x under no assumptions
concerning its shape, form or parametric representation.

Keywords: prediction diagnostics, classification, regression,
boosting, quantile regression, conditional distribution estima-
tion

Significance

Often machine learning methods are applied and results
reported in cases where there is little to no information con-
cerning accuracy of the output. Simply because a computer
program returns a result does not insure its validity. If deci-
sions are to be made based on such results it is important to
have some notion of their veracity. Contrast trees represent
a new approach for assessing the accuracy of many types of
machine learning estimates that are not amenable to standard
validation methods. In situations where inaccuracies are de-
tected boosted contrast trees can often improve performance.
A special case, distribution boosting, provides an assumption
free method for estimating the full probability distribution
of an outcome variable given any set of joint input predictor
variable values.
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1 Introduction

In statistical (machine) learning one has a system under study
with associated attributes or variables. The goal is to estimate
the unknown value of one of the variables y, given the known
joint values of other (predictor) variables x = (x1 · ··, xp) asso-
ciated with the system. It is seldom the case that a particular
set of x—values gives rise to a unique value for y. There are
quantities other than those in x that influence y whose values
are neither controlled nor observed. Specifying a particular
set of joint values for x results in a probability distribution
of possible y-values, py(y |x), induced by the varying values
of the uncontrolled quantities. Given a sample {yi,xi}

N
i=1 of

previous solved cases, the goal is to estimate the distribution
py(y |x), or some of its properties, as a function of the pre-
dictor variables x. These can then be used to predict likely
values of y realized at each x.

Usually only a single property of py(y |x) is used for pre-
diction, namely a measure of its central tendency such as the
mean or median. This provides no information concerning
prediction accuracy at each x. Only collective accuracy over
a set of x-values can be estimated using cross-validation. In
order to estimate individual prediction accuracy at each x

one needs additional properties of py(y |x) such as various
quantiles, or the distribution itself. These can be estimated
as functions of x using maximum likelihood or minimum risk
techniques. Such methods however do not provide a measure
of accuracy (goodness-of-fit) for their respective estimates as
functions of x. There is no way to know how well the results
actually characterize the distribution of y at each x.

Contrast trees can be used to assess lack-of-fit of any es-
timate of py(y |x), or its properties (mean, quantiles), as a
function of x. In cases where the fit is found to be lacking,
contrast boosting applied to the output can often improve
accuracy. A special case of contrast boosting, distribution

boosting, can be used to estimate the full conditional distrib-
ution py(y |x) under no assumptions. Contrast trees can also
be used to uncover concept drift and reveal discrepancies in
the predictions of different learning algorithms.

2 Contrast trees

Contrast trees are close cousins of regression trees (Breiman
et al 1984). A regression tree partitions the space of x - values
into easily interpretable regions defined by simple conjunctive
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rules. The goal is to produce regions in x - space such that
the variation of y values within each is made small. A contrast

tree also partitions the x - space into similarly defined regions,
but with a different purpose. There are two outcome variables
y and z associated with each x. The goal is to find regions
in x - space where the values of the two variables are most
different.

In some applications of contrast trees the outcomes y and
z can be different functions of x, y = f(x) and z = g(x), such
as predictions produced by two different learning algorithms.
The goal of the contrast tree is then to identify regions in x -
space where the two predictions most differ. In other cases the
outcome y may be observations of a random variable assumed
to be drawn from some distribution at x, y ∼ py(y |x). The
quantity z might be an estimate for some property of that dis-
tribution such as its estimated mean Ê(y |x) or p-th quantile
Q̂p(y |x) as a function of x. One would like to identify x -
regions where the estimates z appear to be the least compat-
ible with the actual empirical distribution of y. Alternatively
z itself could be a random variable independent of y (given
x) with distribution pz(z |x) and interest is in identifying re-
gions of x - space where the two distributions py(y |x) and
pz(z |x) most differ.

In these applications contrast trees can be used as diagnos-
tics to ascertain the lack-of-fit of statistical models to data or
to other models. As with other tree based methods the uncov-
ered regions are defined by conjunctive rules based on simple
logical statements concerning the variable values. Thus it
is straightforward to understand the joint predictor variable
values at which discrepancies have been identified. Such infor-
mation may temper confidence in some predictions or suggest
ways to improve accuracy.

In prediction problems z is taken to be an estimate of some
property of the distribution py(y |x), or of the distribution
itself. One way to improve accuracy is to modify the pre-
dicted values z in a way that reduces their discrepancy with
the actual values as represented by the data. Contrast trees
attempt to identify regions of x - space with the largest dis-
crepancies. The z - values within in each such region can then
be modified to reduce discrepancy with y. This produces new
values of z which can then be contrasted with y using an-
other contrast tree. This process can then be applied to the
regions of the new tree thereby producing further modified
z - values. This “boosting” strategy of successively building
contrast trees on the output of previously induced trees can
be continued until the average discrepancy stops improving.

3 Building contrast trees

The data consists of N observations {xi, yi, zi}
N
i=1 each with a

joint set of predictor variable values xi and two outcome vari-
ables yi and zi. Contrast trees are constructed from this data
in an iterative manner. At the Mth iteration the tree parti-

tions the space of x - values into M disjoint regions {Rm}Mm=1
each containing a subset of the data {xi, yi, zi}xi∈Rm . At the
first iteration there is a single region containing the entire
data set. Associated with any data subset is a discrepancy
measure between the y and z values of the subset

dm = D({yi}xi∈Rm , {zi}xi∈Rm). (1)

Choice of a particular discrepancy measure depends on the
specific application as discussed in Section 4.

At the next (M + 1)st iteration each of the regions Rm
defined at the Mth iteration (1 ≤ m ≤ M) is provision-

ally partitioned (split) into two regions R
(l)
m and R

(r)
m (R

(l)
m ∪

R
(r)
m = Rm). Each of these “daughter” regions contains its

own data subset with associated discrepancy measure d
(l)
m and

d
(r)
m (1).
Within each separate region the quality of a split is defined

as the product of two factors

Qm(l, r) = (f (l)m · f (r)m ) ·max(d(l)m , d(r)m )β. (2)

In the first, f
(l)
m and f

(r)
m are the fraction of observations in the

“parent” region Rm associated with each of the two daugh-
ters. This factor discourages highly asymmetric splits in an-
ticipation of further splitting. The second factor attempts
to isolate daughter regions with high discrepancy. The pa-
rameter β regulates the relative influence of the two factors.
Results are insensitive to its value. In all examples below the
default β = 2 was used.

The types of splits considered here are the same as in ordi-
nary regression trees (Breiman et al 1984). Each involves one
of the predictor variables xj . For numeric variables splits are
specified by a particular value of that variable (split point) s.
The corresponding daughter regions are defined by

x ∈ Rm&xj ≤ s =⇒ x ∈ R(l)m (3)

x ∈ Rm&xj > s =⇒ x ∈ R(r)m .

For categorical variables (factors) the respective levels are or-
dered by discrepancy (1). The discrepancy at each respective
level of the factor for the observations in the mth region is
computed. Splits are then considered in this order.

Within each current region Rm all possible splits are per-
formed and the one maximizing (2) is associated with that
region. Then the region whose associated split maximizes
actual improvement

Im = max(d(l)m , d(r)m )− dm (4)

is ultimately chosen to create the two new regions at that it-
eration. These new regions replace the corresponding parent
producing M + 1 total regions. Splitting stops when no esti-
mated improvement (4) is greater than zero, the tree reaches
a specified size or the observation count within all regions is
below a specified threshold.
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Tree size (number of regions) is generally specified by the
user. It involves a trade-off between discrepancy and inter-
pretability. Smaller trees give rise to larger regions defined by
simpler conjunctive rules and are thereby easier to interpret.
Larger trees have the potential to uncover smaller regions of
higher discrepancy defined by more complex rules. Pruning
strategies analogous to those in CART (Breiman et al 1984)
based on cross-validation can also be employed to guide choice
of tree size.

4 Discrepancy measures

By defining different discrepancy measures contrast trees can
be applied to a variety of different problems. Even within a
particular type of problem there may be a number of different
appropriate discrepancy measures that can be used.

When the two outcomes are simply functions of x, y =
f(x) and z = g(x), any quantity that reflects their difference
in values at the same x can be used to form a discrepancy
measure such as

dm =
1

Nm

�

xi∈Rm

| yi − zi |. (5)

Here Nm is the number of observations in the region Rm. If
y is a random variable and z is an estimate for the mean
of its conditional distribution at x, zi = Ê(y |xi), a natural
discrepancy measure is

dm =
1

Nm

�����
�

xi∈Rm

(yi − zi)

����� . (6)

This discrepancy (6) reflects the absolute difference between
the empirical mean of the outcomes {yi}xi∈Rm and that of
the corresponding predictions {zi}xi∈Rm in the region. Al-
ternatively, if z is an estimate for the pth quantile at x,
zi = Q̂p(y |xi), a natural discrepancy measure would be lack-
of-coverage

dm =

����� p−
1

Nm

�

xi∈Rm

I(yi < zi)

����� . (7)

If y ∼ py(y |x) and z ∼ pz(z |x) are both independent ran-
dom variables associated with each x, a discrepancy measure
reflects the distance between their respective distributions.
There are many proposed empirical measures of distribution
distance. Every two—sample test has one. For the examples
below a variant of the Anderson—Darling (Anderson and Dar-
ling 1952) statistic is used. Let {ti} = {yi} ∪ {zi} represent
the pooled (y, z) sample in a region Rm. Then discrepancy
between the distributions of y and z is taken to be

dm =
1

2Nm − 1

2Nm−1�

i=1

���F̂y(t(i))− F̂z(t(i))
���

�
i · (2Nm − i)

(8)

where t(i) is the ith value of t in sorted order, and F̂y and F̂z
are the respective empirical cumulative distributions of y and
z. Note that this discrepancy measure (8) can be employed
in the presence of arbitrarily censored or truncated data sim-
ply by employing a nonparametric method to estimate the
respective CDF’s such as Turnbull (1976) .

Discrepancy measures can be, and often are, customized
to particular applications. In this sense they are similar to
loss criteria in prediction problems. However, in the context
of contrast trees (and boosting) there is no requirement that
they be convex or even differentiable. Moreover, discrepancies
need not be expressible as a sum of terms each involving a
single observation as in (5). Examples are (6) (7) (8).

5 Boosting contrast trees

As indicated above, and illustrated in the examples presented
below and in the Supporting Information, contrast trees can
be employed as diagnostics to examine the lack of accuracy of
predictive models. To the extent that inaccuracies are uncov-
ered, boosted contrast trees can be used to attempt to mitigate
them, thereby producing more accurate predictions. Contrast
boosting derives successive modifications to an initially spec-
ified z, each reducing its discrepancy with y over the data.
Prediction then involves starting with the initial value of z
and then applying the modifications to produce the resulting
estimate.

5.1 Estimation contrast boosting

In this case z is taken to be an estimate of some parameter of

py(y |x). The z - values within each region R
(1)
m of a contrast

tree can be modified z → z(1) = z + δ
(1)
m (x ∈ R

(1)
m ) so that

the discrepancy (1) with y is zero in that region

D({yi}
xi∈R

(1)
m
, {z

(1)
i }

xi∈R
(1)
m
) = 0. (9)

This in turn yields zero average discrepancy between y and
z(1) over the regions defined by the terminal nodes of the cor-
responding contrast tree. However, there may well be other

partitions of the x - space defining different regions {R
(2)
m }M1

for which this discrepancy is not small. These may be uncov-
ered by building a second tree to contrast y with z(1) produc-
ing updates

z(2) = z(1) + δ(2)m (x ∈ R(2)m ). (10)

These in turn can be contrasted with y to produce new regions

{R
(3)
m }M1 and corresponding updates {δ

(3)
m }M1 . Such iterations

can be continued K times until the updates become small.
As with gradient boosting (Friedman 2001) performance ac-
curacy is often improved by imposing a learning rate. At

each step k the computed update δ
(k)
m in each region R

(k)
m is

reduced by a factor 0 < α ≤ 1. That is, δ
(k)
m ← αδ

(k)
m in (10).
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Each tree k in the boosted sequence 1 ≤ k ≤ K partitions

the x - space into a set of regions {R
(k)
m }. Any point x lies

within one region mk(x) of each tree with corresponding up-

date δ
(k)
mk(x)

. Starting with a specified initial value z(x) the

estimate ẑ(x) at x is then

ẑ(x) = z(x) +
K�

k=1

δ
(k)
mk(x)

. (11)

5.2 Distribution contrast boosting

Here y and z are both considered to be random variables in-
dependently generated from respective distributions py(y |x)
and pz(z |x). The purpose of a contrast tree is to identify
regions of x - space where the two distributions most differ.
The goal of distribution boosting is to estimate a (different)
transformation of z at each x, gx(z ), such that the distribu-
tion of the transformed variable is the same as that of y at x.
That is,

pgx(gx(z ) |x) = py(y |x). (12)

Thus, starting with z values sampled from a known distri-
bution pz(z |x) at each x, one can use the estimated trans-
formation ĝx(z ) to obtain an estimate p̂y(y |x) of the y -
distribution at that x. Note that the transformation gx(z ) is
usually a different function of z at each different x.

The z - values within each region R
(1)
m of a contrast tree can

be transformed z(1) = g
(1)
m (z) (x ∈ R

(1)
m ) so that the discrep-

ancy (8) with y is zero in that region. The transformation is
given by

g(1)m (z) = F̂−1y

�
F̂z(z)

�
(13)

where F̂y(y) is the empirical cumulative distribution of y for

x ∈ R
(1)
m and F̂z(z) is the corresponding distribution of z for

x ∈ R
(1)
m . This transformation function is represented by the

quantile-quantile (QQ) plot of y versus z in the region.
As with estimation boosting, the distribution of the mod-

ified (transformed) variable z(1) can then be contrasted with
that of y using another contrast tree. This produces another

region set {R
(2)
m }M1 where the distributions of y and z(1) dif-

fer. This discrepancy (8) can be removed by transforming
z(1) to match the distribution of y in each new region z(2)

= g
(2)
m (z(1)) (x ∈ R

(2)
m ). These in turn can be contrasted with

y producing new regions each with a corresponding transfor-
mation function. Such distribution boosting iterations can
be continued K times until the discrepancy between the dis-
tributions of z(K) and y becomes small in each new region.
As with estimation, moderating the learning rate by shrink-
ing each estimated transformation function towards identity

g
(k)
m (z) ↼ (1− α) z + α g

(k)
m (z) usually increases accuracy at

the expense of computation (more transformations).
Predicting py(y |x) starts with a sample {zi}

n
1 drawn from

the specified distribution of z, pz(z |x), at x. This x lies

within one of the regions mk(x) of each contrast tree k with

corresponding transformation function g
(k)
mk(x)

(·). A given

value of z can be transformed to a estimated value for y,
ŷ = ĝx(z ), where

ĝx(z ) = g
(K)
mK(x)

(g
(K−1)
mK−1(x)

(g
(K−2)
mK−2(x)

· · · g
(1)
m1(x)

(z))). (14)

That is, the transformed output of each successive tree is fur-
ther transformed by the next tree in the boosted sequence.
A different transformation is chosen at each step depending
on the region of the corresponding tree containing the partic-
ular joint values of the predictor variables x. With K trees
each containing M regions (terminal nodes) there are M K

potentially different transformations ĝx(z ) each correspond-
ing to different values of x. To the extent the overall trans-
formation estimate ĝx(z ) is accurate, the distribution of the
transformed sample {ŷi = ĝx(zi )}n1 can be regarded as being
similar to that of y at x, py(y |x). Statistics computed from
the values of ŷ estimating selected properties of its distribu-
tion, or the distribution itself, can be regarded as estimates
of the corresponding quantities for py(y |x).

6 Diagnostics

In this section we illustrate use of contrast trees as diagnos-
tics for uncovering and understanding the lack-of-fit of pre-
dictive models for classification and conditional distribution
estimation. Quantile regression models are examined in the
Supporting Information. All predictive models used for illus-
tration were applied using their respective default procedure
parameter settings.

6.1 Classification

Contrast tree classification diagnostics are illustrated on the
census income data obtained from the Irvine Machine Learn-
ing repository (Kohvai 1996). This data sample, taken from
1994 US census data, consists of observations from 48842 peo-
ple divided into a training set of 32561 and an independent
test set of 16281. The outcome variable y is binary and indi-
cates whether or not a person’s income is greater than $50000
per year. There are 14 predictor variables x consisting of vari-
ous demographic and financial properties associated with each
person. Here we use contrast trees to diagnose the classifica-
tion predictions of gradient boosted regression trees (Fried-
man 2001).

The predictive model produced by the gradient boosting
procedure applied to the training data set produced an error
rate of 13% on the test data. This quantity is the expected
error as averaged over all test set predictions. It may be
of interest to discover certain x - values for which expected
error is much higher or lower. This can be ascertained by
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Figure 1: Misclassification risk (error rate) upper, and obser-
vation count lower, of classification contrast tree regions on
census income data.

contrasting the binary outcome variable y with the model
prediction z.

A natural discrepancy measure for this application is mis-
classification risk (error rate) in each region Rm

dm =
1

Nm

�

i∈Rm

I(yi �= zi). (15)

The goal in applying contrast trees is to uncover regions in x
- space with exceptionally high values of (15). For this pur-
pose the test data set was randomly divided into two parts
of 10000 and 6281 observations respectively. A ten region
contrast tree was built on the 10000 test data set. Figure 1
summarizes these regions using the separate 6281 observation
data set. The upper barplot shows the misclassification risk
of the gradient boosting classifier in each region ordered from
largest to smallest. The lower barplot indicates the observa-
tion count in each respective region. The number below each
bar is simply the contrast tree node identifier for that region.
The horizontal (red) line indicates the 13% average error rate.

As Fig. 1 indicates the contrast tree has uncovered many
regions with substantially higher error rates than the over-
all average and several others with substantially lower error
rates. The lowest error region covers 43% of the test set ob-
servations with an average error rate of 2.7%. The highest
error region covering 5.6% of the data has an average error
rate of 41% .

Each of the regions represented in Fig. 1 are easily de-
scribed. For example, the rule defining the lowest error region
is

Node 4

relationship ∈ {Own-child, Husband, Not-in-family,
Other-relative}

&
education ≤ 12

Predictions satisfying that rule suffer only a 2.7% average
error rate. Predictions satisfying the rule defining the highest
error region

Node 30

relationship /∈ {Own-child, Husband, Not-in-family,
Other-relative}

&
occupation ∈ { Exec-managerial, Transport-moving,

Armed-Forces }
&

education ≤ 12

have a 41% average error rate. Thus confidence in salary
predictions for people in node 4 might be higher than for those
in node 30.

6.2 Probability estimation

The discrepancy measure (15) is appropriate for procedures
that predict a class identity and the corresponding contrast
tree attempts to identify x - values associated with high lev-
els of misclassification. Some procedures such as gradient
boosting return estimated class probabilities at each x which
are then thresholded to predict class identities. In this case
the probability estimate contains information concerning ex-
pected classification accuracy. The closer the respective class
probabilities are to each other the higher is the likelihood
of misclassification. This shifts the issue from classification
accuracy to probability estimation accuracy which can be as-
sessed with a contrast tree.

For binary classification a natural discrepancy for probabil-
ity estimation is (6) where y ∈ {0, 1} is the binary outcome

variable and 0 ≤ z ≤ 1 is its predicted probability �Pr(y = 1).
This measures the difference between the empirical proba-
bility of y = 1 in region Rm and the corresponding average
probability prediction z in that region. The gradient boost-
ing probability estimates were based on the training data set.
A ten terminal node contrast tree was built on the census
income data using the 10000 observation test data set with
corresponding node statistics evaluated on the separate 6281
observation test data set.

The top frame of Fig. 2 shows the empirical probabil-
ity y = 1 (blue) and the average gradient boosting predic-
tion z (red) within each region of the resulting contrast tree.
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Figure 2: Census income data. Upper frame: fraction of posi-
tive observations (blue) and mean probability prediction (red)
for probability contrast tree regions. Lower frame: observa-
tion count in each region.

The bottom frame shows the number of counts in each corre-
sponding region. One sees a general trend of over-smoothing.
The largest probability is being under-estimated whereas the
smaller ones are substantially over-estimated by the gradient
boosting procedure. As above each of these regions is de-
fined by simple rules based on the values of a few predictor
variables.

A convenient way to summarize the overall results of a
contrast tree is through its corresponding lack-of-fit contrast
curve. For each region Rm containing Nm counts, the obser-
vation weighted average of its discrepancy dm and those with
higher discrepancy

d̄m =
�

dj≥dm

djNj/
�

dj≥dm

Nj (16)

is plotted on the vertical axis. The fraction of observations in
those same regions

fm =
1

N

�

dj≥dm

Nj (17)

is plotted along the horizontal axis. The left most point on
each curve thus represents the discrepancy value of the largest
discrepancy region of its corresponding tree. The right most
point gives the discrepancy averaged over all regions. In-
termediate points give average discrepancy over the highest
discrepancy regions containing the corresponding fraction of
observations.
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Figure 3: Census income data. Lack-of-fit contrast curves
comparing accuracy of Pr(y = 1) estimates by logistic gradi-
ent boosting (black), random forests (blue), and probability
gradient boosting (red).

The black curve in Fig. 3 shows the lack-of-fit contrast
curve for the gradient boosting estimates based on a 50 node
contrast tree built in the same manner as the one shown in
Fig. 2. Its error in estimated probability averaged over all test
set predictions is seen to be 0.066 (extreme right). The error
corresponding to the largest discrepancy region (extreme left)
is 0.115. The blue curve is the corresponding lack-of-fit con-
trast curve for random forest probability prediction (Breiman
2001). Its average error is less than one third of that for gra-
dient boosting and its worst error is 50% less.

The contrast tree as represented in Fig. 2 suggests that the
problem with the gradient boosting procedure here is over-
smoothng. It is failing to accurately estimate the extreme
probability values. Gradient boosting for binary probability
estimation generally uses a negative Bernoulli log—likelihood
loss function based on a logistic distribution. The logistic
transformation to modeling on the log-odds scale inhibits the
estimation of extreme probability values. Random forests use
regression trees that model directly on the probability scale
using squared—error loss. This suggests that using a similar
approach with gradient boosting for this problem may im-
prove performance, especially at the extreme values.

The red curve in Fig. 3 shows the corresponding lack-of-fit
contrast curve for direct probability estimation with gradient
boosting using squared—error loss. This change has dramati-
cally improved accuracy of gradient boosting probability es-
timates. Both its average and maximum discrepancies are
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Figure 4: Census income data. Lack-of-fit contrast curves
comparing accuracy of Pr(y = 1) estimates after applying
contrast boosting to the output of logistic gradient boost-
ing (black), random forests (blue), and probability gradient
boosting (red).

seen to be at least four times smaller than those using the
approach based on logistic regression.

Figure 4 shows the corresponding test data results of ap-
plying contrast boosting (Section 5.1) to the training data
output of each of the methods shown in Fig. 3. Comparing
the two figures one sees that the accuracy of logistic gradi-
ent boosting is dramatically improved while that of random
forest is substantially improved. The improvement to proba-
bility gradient boosting using squared-error loss is seen to be
moderate.

Table 1

Classification error rates corresponding to several
probability estimation methods.

Method Error rate
Logistic gradient Boosting 13.0%
Probability gradient Boosting 12.9%
Random Forest 13.6%
Prob. grad. Boost + Contrast 12.8%

Table 1 shows classification error rate for each of the three
original methods plus that of the best contrast boosting re-
sult. They are all seen to be very similar. This illustrates
that prediction error on the random outcome variable can be
a very poor proxy for estimation accuracy of the distribution
mean (Pr(y = 1)). Here the over—smoothing of probabil-
ity estimates caused by modeling log-odds does not change

many class assignments. In some applications accurate es-
timation of extreme probabilities is important, such as with
highly asymmetric misclassification losses. In such cases di-
rectly estimating on the probability scale may be superior to
indirectly estimating on the log-odds scale.

6.3 Conditional distributions

Here we consider the case in which both y and z are considered
to be random variables independently drawn from respective
distributions py(y |x) and pz(z |x). Interest is in contrast-
ing these two distributions as functions of x. Specifically we
wish to uncover regions of x - space where the distributions
most differ. For this we use contrast trees (Section 3) with
discrepancy measure (8).

A well known way to approximate py(y |x) under the as-
sumption of homoskedasticity is through the residual boot-
strap (Efron and Tibshirani 1994). One obtains a loca-
tion estimate such as the conditional median m̂(y |x) and
forms the data residuals ri = yi − m̂(y |xi) for each obser-
vation 1 ≤ i ≤ N . Under the assumption that the condi-
tional distribution of r, pr(r |x), is independent of x (ho-
moskedasticity) one can draw random samples from py(y |xi)
as yi = m̂(y |xi) + rπ(i) where π(i) is random permutation of
the integers i ∈ [1, N ]. These samples can then be used to
derive various regression statistics of interest.

A fundamental ingredient for the validity of residual boot-
strap approach is the homoskedasticity assumption. Here we
test this on the online news popularity data set (Fernandes,
Vinagre and Cortez, 2015) also available from the Irvine Ma-
chine Learning Data Repository. It summarizes a heteroge-
neous set of features about articles published by Mashable
web site over a period of two years. The goal is to pre-
dict the number of shares y in social networks (popularity).
There are N = 39797 observations (articles). Associated with
each are p = 59 attributes to be used as predictor variables
x. These are described at the download web site. Gradient
boosting was used to estimate the median function m̂(y |x),
and {zi}Ni=1 was taken as a corresponding residual bootstrap
sample to be contrasted with y.

Figure 5 shows quantle-quantile (QQ)-plots of y versus z
for the nine highest discrepancy regions of a 50 node contrast
tree. The red line represents equality. One sees that there are
x - values (regions) where the distribution of y is very different
from its residual bootstrap approximation z; homoskedastic-
ity is rather strongly violated. The average discrepancy (8)
over all 50 regions is 0.19.

The outcome variable y (number of shares) is strictly pos-
itive and its marginal distribution is highly skewed toward
larger values. In such situations it is common to model its
logarithm. Figure 6 shows the corresponding results for con-
trasting the distribution of log10(y) with its residual bootstrap
counterpart. Homoskedasticity appears to more closely hold
on the logarithm scale but there are still regions of x - space

7
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Figure 5: QQ—plots of y versus parametric bootstrap z distri-
butions for the nine highest discrepancy regions of a 50 node
contrast tree using online news popularity data. The red line
represents equality.
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Figure 6: QQ—plots of log10(y) versus corresponding paramet-
ric bootstrap z distributions for the nine highest discrepancy
regions of a 50 node contrast tree using online news popularity
data. The red line represents equality.

where the approximation is not good. Here the average dis-
crepancy (8) over all 50 regions is 0.13. A null distribution for
average discrepancy under the hypothesis of homoskedasticity
can be obtained by repeatedly contrasting pairs of randomly
generated log10(y) residual bootstrap distributions. Based on
50 replications, this distribution had a mean of 0.078 with a
standard deviation of 0.003.

7 Distribution boosting — simulated

data

The notion of distribution boosting (Section 5.2) is sufficiently
unusual that we first illustrate it on simulated data where the
estimates p̂y(y |x) can be compared to the true data gener-
ating distributions py(y |x). Distribution boosting applied to
the online news popularity data described in Section 6.3 is
presented in the Supporting Information.

7.1 Data

There are N = 25000 training observations each with a set
of p = 10 predictor variables xi randomly generated from a
standard normal distribution. The outcome variable y |x is
generated from a transformed asymmetric logistic distribu-
tion (Friedman 2018)

y = h(f(x) + η(x)) (18)

with the random component being η(x) = −| ε | · sl(x) with
probability Pl = sl(x)/(sl(x)+su(x)) and η(x) = +| ε |·su(x)
with probability su(x)/(sl(x) + su(x)). Here ε is a standard
logistic random variable. The transformation h(z) is taken to
be

h(z) = sign(z) (0.5 | z | + 1.5 z2). (19)

The untransformed mode f(x) and lower/upper scales
sl(x) / su(x) are each different functions of the ten predictor
variables x. The simulated mode function is taken to be

f(x) =
10�

j=1

cj Bj(xj) / stdxj (Bj(xj) ) (20)

with the value of each coefficient cj being randomly drawn
from a standard normal distribution. Each basis function
takes the form

Bj(xj) = sign(xj) |xj |
rj (21)

with each exponent rj being separately drawn from a uniform
distribution rj ∼ U(0, 2). The denominator in each term
of (20) prevents the suppression of the influence of highly
nonlinear terms in defining f(x).

The scale functions are taken to be sl(x) = 0.2+exp (tl(x))
and su(x) = 0.2 + exp(tu(x)) where the log—scale functions
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Figure 7: Test data discrepancy averaged over the terminal
nodes (regions) of successive contrast trees for the first and
then every tenth iteration for 400 iterations of distribution
boosting on simulated training data. The solid red curve is a
running median smooth.

tl(x) and tu(x) are constructed in the same manner as (20)
(21) but with different randomly drawn values for the 20 para-
meters {cj , rj}

10
1 producing different functions of x. The aver-

age pair-wise absolute correlation between the three functions
is 0.18. The overall resulting distribution p(y |x) (18—21) has
location, scale, asymmetry, and shape being highly depen-
dent on the joint values of the predictors x in a complex and
unrelated way.

7.2 Conditional distribution estimation

Distribution boosting is applied to this simulated data to es-
timate its distribution py(y |x) as a function of x. For each
observation the contrasting random variable z is taken to be
independently generated from the same normal distribution,
z |x ∼ N(ȳ, σ2y) , independent of x. Here ȳ and σ2y are the
mean and variance of the marginal y—distribution. The goal
is to produce an estimated transformation of z, ŷ = ĝx(z), at
each x such that pŷ(ŷ |x) = py(y |x). To the extent the esti-
mate ĝx(z) accurately reflects the true transformation func-
tion gx(z) at each x one can apply it to a sample drawn from
z ∼ N(ȳ, σ2y) to produce a corresponding sample drawn from
the distribution y ∼ py(y |x). This sample can then be used
to plot that distribution or compute the value of any of its
properties.

Figure 7 plots the average terminal node discrepancy (8) for
400 iterations of distribution boosting applied to the training
data, as evaluated on a 25000 observation independent “test”
data set generated from the same joint (x, y) - distribution
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Figure 8: QQ—plots of y versus z (normal) for the nine highest
discrepancy regions of a 10 node contrast tree on the simu-
lated test data set. The red lines represent equality.

(18—21). Results are shown for the first and then every tenth
successive tree. The red line is a running median smooth.
The test set discrepancy is seen to generally decrease with
increasing number of trees. There is a diminishing return
after about 200 iterations (trees).

Note that with contrast boosting average tree discrepancy
on test or even training data does not necessarily decrease
monotonically with successive iterations (trees). Each con-
trast tree represents a greedy solution to a non convex opti-
mization with multiple local optima. As a consequence the
inclusion of an additional tree can, and often does, increase
average discrepancy of the current ensemble. Boosting is con-
tinued as long as there is a general downward trend in average
tree discrepancy.

Lack-of-fit to the data of any model for the distribution
py(y |x) can be assessed by contrasting y with a sample drawn
from that distribution. Figure 8 shows QQ—plots of y ver-
sus initial z (everywhere the same normal) for the nine high-
est discrepancy regions of a 10 node tree contrasting the two
quantities on the test data set. The red lines represent equal-
ity. One sees that py(y |x) is here far from being everywhere
the same normal.

For the distribution boosted model ŷ = ĝx(z) lack-of-fit can
be assessed by contrasting the distributions of y and ŷ with a
contrast tree using the test data set. Figure 9 shows QQ—plots
of y versus ŷ for the nine highest discrepancy regions of a 10
node tree contrasting the two quantities on the test data set.
The red lines represent equality. The transformation ĝx(z)
at each separate x - value was evaluated using the 400 tree
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Figure 9: QQ—plots of y versus ŷ = ĝx(z) for the nine highest
discrepancy regions of a 10 node contrast tree on the simu-
lated test data set. The red lines represent equality.

model built on the training data. The nine highest discrep-
ancy regions shown in Fig. 9 together cover 27% of the data.
They show that while the transformation model fits most of
the test data quite well, it is not everywhere perfect. There
are minor departures between the two distributions in some
small regions. However these discrepancies appear in sparse
tails where QQ—plots themselves can be unstable.

A measure of the difference between the estimated and true
CDFs at each x can be defined as

Diff (x) =

���	 1

100

100�

j=1

(CDFx(uj)−�CDF x(uj) )2 (22)

where CDFx is the true cumulative distribution of y |x com-

puted from (18—21) and �CDFx is the corresponding estimate
from the distribution boosting model. The 100 evaluation
points {uj}

100
1 are a uniform grid between the 0.001 and 0.999

quantiles of the true distribution CDFx.
Figure 10 summarizes the overall accuracy of the distribu-

tion boosting model. The upper left frame shows a histogram
of the distribution of (22) for observations in the test data
set. The 50, 75 and 90 percentiles of this distribution are
respectively 0.0352, 0.0489 and 0.0773 indicated by the red
marks. The remaining plots show estimated (black) and true
(red) distributions for the three observations with (22) equal
to these respective percentiles. Thus 50% of the estimated
distributions are closer to the truth than that shown in the
upper right frame. Seventy five percent are closer than that
shown in the lower left frame, and 90% are closer than that
seen in the lower right frame.
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Figure 10: Upper left: CDF error (22) distribution for sim-
ulated data. Upper right: estimated (black) and true (red)
CDFs for observation with median error. Lower: correspond-
ing plots for 75% and 90% decile errors.

Distribution boosting produces an estimate for the full dis-
tribution of y |x by providing a function ĝx(z) that transforms
a random variable z with a known distribution pz(z |x) to the
estimated distribution p̂y(y |x). One can then easily compute

any statistic Ŝ(x) = S[ p̂y(y |x)], which can be used as an es-
timate for the value of the corresponding quantity S(x) = S[
py(y |x)] on the actual distribution. For some quantities S(x),
an alternative is to directly estimate them by minimizing em-
pirical prediction risk based on an appropriate loss function

Ŝ(x) = argmin
f∈ℑ

1

N

N�

i=1

L(yi, f(xi)) (23)

where ℑ is the function class associated with the learning
method. Here we compare distribution boosting (DB) esti-
mates of the quartiles Qp(x), p ∈ [0.25, 0.5, 0.75], with those
of gradient boosting quantile regression (GB), which uses loss

Lp(y, z) = (1− p) (z − y)+ + p (y − z)+, (24)

on the simulated data set where the truth is known.
Figure 11 shows true versus predicted values for each of the

two methods (rows) on the three quartiles (columns). The red
lines represent a running median smooth and the blue lines
show equality. The average absolute error AAE associated
with each of these plots is

AAE(h, v) = mean(|h− v |)/mean(| v −median(v) |) (25)
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Figure 11: Predicted versus true values for the three quartiles
as functions of x (columns) for gradient boosting quantile
regression (upper row) and distribution boosting (lower row)
on the simulated data. The red lines represent a running
median smooth and the blue lines show equality.

where h is the quantity plotted on the horizontal and v the
vertical axes. The quantile values derived from the estimates
of the full distribution (bottom row) are here seen to be some-
what more accurate than those obtained from gradient boost-
ing quantile regression (top row).

With quantile regression each quantile is estimated sepa-
rately without regard to estimates of other quantiles. Dis-
tribution boosting quantile estimates are all derived from a
common probability distribution and thus have order con-
straints imposed among them. For example, two quantile
estimates have the property Q̂p(x) < Q̂p′(x) for all p < p′ at
any x. These implicit constraints can improve accuracy espe-
cially when the quantile estimates are being used to compute
quantities derived from them.

There is an additional advantage of computing quantities
such as means or quantiles from the estimated conditional
distributions Ŝ(x) = S[ p̂y(y |x)]. As noted in Section 4, dis-
tribution contrast trees can be constructed in the presence of
arbitrary censoring or truncation. This extends to contrast
boosted distribution estimates p̂y(y |x) and any quantities de-
rived from them. This in turn allows application to ordinal
regression which can be considered a special case of interval
censoring (Friedman 2018).

8 Discussion

When a discrepancy measure takes the special form of an av-
erage over individual observation losses, such as (5) or model

residuals (15), one can use an ordinary regression tree (or
other standard learning methods) to directly model the dis-
crepancy as a function of x. This may uncover x - values
corresponding to relatively high discrepancy. However, such
a strategy is not focused on this task but rather on trying to
approximate discrepancy over entire distribution of x - values.
The contrast tree splitting strategy (4) directly seeks high
discrepancy regions regardless of local data density thereby
largely ignoring the x - distribution. Besides increased sen-
sitivity to high discrepancy, this property has the additional
effect of rendering contrast tree based methods more robust
against distribution drift. Standard leaning methods are not
applicable to discrepancy measures that are not simple aver-
ages of single observation loss criterion, such as (6) (7) (8).

The fitting paradigm of contrast trees is somewhat differ-
ent than that of ordinary machine learning. The goal of the
latter is data fitting. That is to capture as much structure
as possible in the relation between y and x. The more struc-
ture captured the better the model, subject to over-fitting
considerations. Over-fitting occurs when the model captures
non generalizable data specific relationships. Contrast trees
attempt to uncover lack-of-fit. The more structure they cap-
ture, the worse the model fits the data.

This reversal of emphasis has consequences for interpreta-
tion. With regular machine learning evaluating the quality of
a model on its own training data generally produces an over
optimistic measure of model quality. With contrast trees this
gives a conservative overly pessimistic assessment of model ac-
curacy, especially for large trees built with small samples. For
small trees and/or large samples the effect is usually small.
Using different data to construct the tree and evaluate its
node statistics eliminates this bias at the cost of increased
variance.

9 Related work

Regression trees have a long history in Statistics and Ma-
chine Learning. Since their first introduction (Morgan and
Songquist 1963) many proposed modifications have been in-
troduced to increase accuracy and extend applicability. See
Loh (2014) for a nice survey. More recent extensions include
Mediboost (Valdes et al 2016) and the Additive Tree (Luna
et al 2019). All of these proposals are focused towards es-
timating the properties of a single outcome variable. There
has been work on using trees for simultaneous estimation of
several outcome variables (Segal and Xiao 2011) but there
seems to have been little to no work related to applications
involving contrasting two such variables.

Although not directly involving trees, Friedman and Fisher
(1999) proposed using recursive partitioning strategies to
identify interpretable regions in x - space within which the
mean of a single outcome y was relatively large (“hot spots”).
With a similar goal Buja and Lee (2001) proposed using or-
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dinary regression trees with a splitting criterion based on the
maximum of the two daughter node means.

Classification tree boosting was proposed by Freund and
Schapire (1997). Extension to regression trees was developed
by Friedman (2001). Since then there has been considerable
research attempting to improve accuracy and extend its scope.
See Mayr et al (2014) for a good summary.

Although boosted contrast trees have not been previously
proposed they are generally appropriate for the same types
of applications as gradient boosted regression trees, such as
classification, regression, and quantile regression. They can
be beneficial in applications where a contrast tree indicates
lack-of-fit of a model produced by some estimation method.
In such situations applying contrast boosting to the model
predictions often provides improvement in accuracy.

Tree ensembles have also been applied to nonparametric
conditional distribution estimation. Meinshausen (2006) used
classical random forests to define local neighborhoods in x -
space. The empirical conditional distribution of y in each
such defined local region around a prediction point x is taken
as the corresponding conditional distribution estimate at x.
Athey, Tibshirani and Wagner (2019) noted that since the re-
gression trees used by random forests are designed to detect
only mean differences the resulting neighborhoods will fail to
adequately capture distributions for which higher moments
are not generally functions of the mean. They proposed mod-
ified tree building strategies based on gradient boosting ideas
to customize random forest tree construction for specific ap-
plications including quantile regression.

Boosted regression trees have been used as components in
procedures for parametric fitting of conditional distributions
and transformations. A parametric form for the conditional
distribution or transformation is hypothesized and the para-
meters as functions of x are estimated by regression tree gra-
dient boosting using negative log—likelihood as the prediction
risk. See for example Mayr et al (2012), Friedman (2018),
Pratola et al (2019), Hothorn (2019) and Mukhopadlhyay &
Wang (2019). Some differences between these previous meth-
ods and the corresponding approaches proposed here include
use of contrast rather than regression trees, and no parametric
assumptions.

The principal benefit of the contrast tree based procedures
is a lack-of-fit measure. As seen in Table 1 of Section 6.2,
and in the Supporting Information, values of negative log—
likelihoods or prediction risk need not reflect actual lack-of-
fit to the data. The values of their minima can depend upon
other unmeasured quantities. The goal of contrast trees as il-
lustrated in this paper is to provide such a measure. Contrast
trees can be applied to assess lack-of-fit of estimates produced
by any method, including those mentioned above. If discrep-
ancies are detected, contrast boosting can be employed to
remedy them and thereby improve accuracy.

10 Summary

Contrast trees as described in Sections 3 and 4 are designed
to provide interpretable goodness-of-fit diagnostics for esti-
mates of the parameters of py(y |x), or the full distribution.
Examples involving classification, probability estimation and
conditional distribution estimation were presented in Section
6. A quantile regression example is presented in the Sup-
porting Information. Two—sample contrast trees for detecting
discrepancies between separate data sets are also described in
the Supporting Information.

Boosting of contrast trees is a natural extension. Given
an initial estimate ẑ(x) from any learning method a contrast
tree can assess its goodness or lack-of-fit to the data. If found
lacking, the boosting strategy attempts to improve the fit by
successively modifying ẑ(x) to bring it closer to the data. As
seen in Fig. 3 this strategy can substantially improve predic-
tion accuracy for some methods. The Supporting Information
provides such an example involving quantile regression.

Contrast boosting the full conditional distribution is illus-
trated on simulated data in Section 7.2 and on actual data in
the Supporting Information. Note that the conditional distri-
bution procedure of Section 5.2 can be applied in the presence
of arbitrarily censored or truncated data by employing Turn-
bull’s (1976) algorithm to compute CDFs and corresponding
quantiles.

Contrast trees and boosting inherit all of the data ana-
lytic advantages of classification and regression trees. These
include handling categorical variables and missing values, in-
variance to monotone transformations of the predictor vari-
ables, resistance to irrelevant predictors, variable importance
measures, and few tuning parameters.

Important discussions with Trevor Hastie and Rob Tibshi-
rani on the subject of this work are gratefully acknowledged.
An R procedure implementing the methods described herein
is available.
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Figure S1: Lack-of-fit contrast curves on simulated data.
Black: constant fit, purple: single CART tree, blue: linear
model, violet: random forest, orange: squared-error and red:
absolute loss gradient boosting, green: truth.

S1 Lack-of-fit estimation

Here contrast tree lack-of-fit estimates are compared with
known truth on simulated data. There are N = 25000 ob-
servations each with p = 10 predictor variables x randomly
generated from a standard normal distribution. The outcome
y is generated from a simple model

y = f(x) + s(x) · ε

with ε a standard normal random variable. The location f(x)
and log-scale log(s(x)) functions are given by (20) (21) with
different randomly generated parameters. The correlation be-
tween the two functions over the data is cor(f(x), s(x)) =
0.06. The signal/noise is IQR(f(x))/(2 · med(s(x))) = 3.
The goal is to estimate the location function f(x).
Lack-of-fit contrast curves (16) (17) for six methods are

shown in Fig. S1. The methods are (top to bottom): black
constant fit (global mean), purple single CART tree, blue
linear least-squares fit, violet random forest, orange squared-

error and red absolute loss gradient boosting. The bottom
green curve represents the lack-of-fit contrast curve for the
true mean function f(x) on these data. All curves were eval-
uated on a separate 25000 observation test data set not used
to train the respective models.

Table S1

RMS estimation error and contrast tree RMS discrepancy
for several methods

Method RMS Error Discrepancy
constant 0.99 0.86

CART tree 0.57 0.34
linear model 0.33 0.23
random forest 0.21 0.13
sqr-error boost 0.15 0.090
abs-error boost 0.11 0.063

truth 0 0.046

Since the data are simulated and truth f(x) is here known
one can directly compute root-mean-squared estimation error

RMSE =

�
mean((f(x)− f̂(x))2)

for each method. This is shown in Table S1 (second column)
for each method (first column). The third column shows the
root-mean-squared discrepancy over the same test observa-
tions calculated from the respective contrast trees for each
method. The discrepancy associated with an observation is
that of the contrast tree region that contains it.
Except for the (usually unknown) true mean function f(x)

itself, empirical contrast tree discrepancy is generally smaller
than RMS error. This is because a finite region contrast tree
cannot capture actual discrepancy in perfect detail. Failure
to capture this structure results in under estimation of dis-
crepancy for all methods (see Section 8). Here discrepancy
as computed on the data and estimation error based on the
truth are seen to track each other fairly well. They are in
the proper order and relative ratios between the two for the
various methods are seen to be similar.
It is important to note that contrast trees are not perfect.

As with any learning method they can sometimes fail to cap-
ture sufficiently complex dependencies on the predictor vari-
ables x. In such situations lack-of-fit may be under estimated.
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Figure S2: Online news data. Upper frame: Empirical value
of the median for observations in each region (blue), along
with the corresponding median of the model predictions (red)
in that region, for a quantile contrast tree. Lower frame:
counts in each region.

Thus contrast trees can reject fit quality but never absolutely
insure it.

S2 Quantile regression example

Use of contrast trees in quantile regression is illustrated on the
online news popularity data set described in Section 6.3. Here
we apply contrast trees to diagnose the accuracy of gradient
boosting estimates of the median and 25th percentile function
of y |x.
The usual quantile regression loss used by gradient boosting

for estimating the pth quantile z is given by (24) where here
p ∈ {0.5, 0.25} and z is the corresponding quantile estimate.
With contrast trees we use (7) as a discrepancy measure. This
quantity can be interpreted as lack-of-coverage or prediction
error on the probability scale. It is the absolute difference
between the target probability p and the empirical probability
Pr(y < z) as averaged over the region.
The data were randomly divided into two parts: a learning

data set of Nl = 20000 and and test data set of Nt = 19644.
The quantile functions were estimated using the former. A
ten region tree to contrast the median of py(y |x) from its
gradient boosting predictions was built using (7) on the test
data set. The results are shown in Fig. S2.
The upper frame shows the empirical (blue) and predicted

(red) median in each of the regions in order of absolute dis-
crepancy (7). The lower frame gives the number of counts in
each corresponding region. One sees that for 85% of the data
(node 20) gradient boosted model predictions of the median
appear to be quite close. In other regions of x -space there
are small to moderate differences.
Figure S3 shows lack-of-fit contrast curves for estimating
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Figure S3: Online news data. Lack-of-fit contrast curves com-
paring conditional median estimates by constant (green), lin-
ear quantile regression (red), gradient boosting (black), and
contrast boosting (blue).

the median of y given x by four methods. The green curve
represents a constant prediction of the global median at each
x - value. The red curve is for linear quantile regression. The
linear model seems only a little better than the constant one.
The black curve represents the gradient boosting predictions
based on (24) which are somewhat better. The blue curve
is the result of applying contrast boosting (Section 5.1) to
the gradient boosting output. Here this strategy appears to
substantially improve prediction.
Standard errors for these quantities can be estimated by

computing them on repeated bootstrap samples drawn from
the data. For the left most points on each curve the boot-
straped errors are respectively 0.015, 0.016, 0.018, and 0.016
(top to bottom). For the right most points the corresponding
errors are 0.0023, 0.0026, 0.0031 and 0.0033. Thus, the larger
differences between the curves seen in Fig. S3 are highly sig-
nificant.
Figure S4 shows lack-of-fit contrast curves for estimating

the conditional first quartile (p = 0.25) as a function of x for
the same four methods. Here one sees that the global con-
stant fit appears slightly better that the linear model, while
the gradient boosting quantile regression estimate is about
twice as accurate. Contrast boosting seems to provide no im-
provement in this case. Bootstrap standard errors on the left
most points of the respective curves are 0.014, 0.0092, 0.020,
and 0.015 (top to bottom). For the right most curves the
corresponding errors are 0.0027, 0.0039, 0.0029 and 0.0030.
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Figure S4: Online news data. Lack-of-fit contrast curves
comparing conditional 25—percentile estimates by constant
(green), linear quantile regression (red), gradient boosting
(black), and contrast boosting (blue).

Table S2

Prediction risk corresponding to the several quantile
regression methods for online news data

Method Median 1st Quartile
Constant 2489.5 678.3
Linear 2488.5 678.4
Gradient Boosting 2481.7 674.1
Contrast Boosting 2479.9 674.1

Table S2 shows quantile regression prediction risk based on
L1 loss (24) for median (p = 0.5) and first quartile (p = 0.25)
using the four methods shown in Figs. S3 and S4. Although
here prediction risk measures lack-of-accuracy of the methods
in the same order as their respective contrast trees, it gives
no indication of their actual relative or absolute lack-of-fit to
the data as seen from their respective contrast curves in Figs
S3 and S4.

S3 Distribution boosting example

Distribution boosting is illustrated using the online news pop-
ularity data described in Section 6.3. The goal is to esti-
mate the distribution py(y |x) of (log10) popularity of news
articles y for given sets of predictor variable values x. Here
we investigate the variation of the final distribution estimate
p̂y(y |x) to different initial z - distributions pz(z |x). For the
same py(y |x), changing the initial pz(z |x) distribution can
substantially change the nature of the target transformation
functions gx(z) to be estimated. This can affect ultimate ac-
curacy of the estimates p̂y(y |x).
Distribution boosting was applied to the 20000 observa-

tion training data set using three different initial pz(z |x).
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Figure S5: Distribution of log10(shares) for the online news
data.

The first was the same normal distribution z ∼ N(ȳ, σ2y)
at every x, where ȳ and σ2y are the mean and variance of
y = log10(popularity). The second initial distribution is the
empirical marginal distribution of y as shown in Fig. S5.
This assumes py(y |x) is independent of x. The third initial
z - distribution is that of the residual bootstrap at each x as
described in Section 6.3. This assumes homoscedasticity on
the log-scale with varying location.

The upper left frame of Fig. S6 shows the distribution
of the average pair-wise difference between the three CDF
estimates on each (test set) observation x, resulting from the
three different beginning z - distributions. Difference between
two CDF estimates is given by (22) with the 100 evaluation
points {uj}1001 being a uniform grid between the minimum of
0.001 quantiles and the maximum of the 0.999 quantiles of
the three distributions.

The 50, 75, and 90 percentiles of the distribution shown
in the upper left frame are respectively 0.028, 0.040, and
0.053. As in Fig. 10 the remaining plots in Fig. S6 show the
three corresponding CDF s for those observations with pair-
wise average difference equal to these respective percentiles.
The green curves display the estimate corresponding to the
Gaussian starting z - distribution, red for the empirical mar-
ginal distribution of Fig. S5, and black for the residual boot-
strap start. The upper right frame shows that for at least
half of the observations the three estimates are fairy similar.
The other half exhibit moderate differences. The residual
bootstrap estimates tend to be different from the other two,
which are usually similar to each other.

Figure S6 shows that different starting z - distributions
give rise to at least slightly different conditional distribution
estimates. In general, different methods produce different an-
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Figure S6: Upper left: distribution of average pair-wise differ-
ence between CDF estimates resulting from the three differ-
ent initial z - distributions for online news data. Upper right:
CDF estimates for parametric bootstrap (black), Gaussian
(green) and empirical marginal (red) starting distributions
for observation with median pairwise difference. Lower: cor-
responding plots for 75% and 90% decile difference.

swers and one would like to ascertain their respective accu-
racies. Contrast trees provide a lack-of-fit measure. With
conditional distribution estimates one can contrast y with
ŷ = ĝx(z) on an independent test data set not involved in
the estimation as was illustrated in Fig. 9. Here we employ
this strategy to evaluate the respective accuracies of the three
conditional distribution estimates obtained by the three dif-
ferent starting z - distributions.

Figure S7 shows QQ — plots of y versus the estimates
ŷ = ĝx(z) based on the residual bootstrap starting z - dis-
tribution. Shown are the nine largest discrepancy regions of
a 50 terminal node contrast tree. These nine regions account
for 25% of the data. This can be compared to Fig. 6 which
shows the corresponding QQ —plots for y versus the original
residual bootstrap z before distribution boosting.

Figure S8 shows the lack-of-fit contrast curves correspond-
ing to the three distribution boosting estimates based on the
three different starting z - distributions. Each line summa-
rizes a different tree contrasting y with one of the correspond-
ing three estimates ŷ = ĝx(z). The green and red curves in
Fig. S8 summarize the results for contrasting y with ĝx(z)
based on the respective Gaussian and empirical marginal dis-
tribution (Fig. S5) starting z - distributions. Their accu-
racies are seen to be similar. The black curve summarizes
the tree depicted in Fig. S7 contrasting y with the estimates
ĝx(z) based on the residual bootstrap starting z - distribution.
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Figure S7: QQ—plots of y versus ŷ = ĝx(z) calculated from
parametric bootstrap start for the nine highest discrepancy
regions of a 50 node contrast tree on the online news test
data set. The red lines represent equality.
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Figure S8: Lack-of-fit contrast curves for three trees contrast-
ing y with ŷ = ĝx(z) based on the different starting z - dis-
tributions: Gaussian (green), empirical marginal (red) and
parametric bootstrap (black).
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These ĝx(z) estimates appear to be somewhat more accurate.
Bootstrap standard errors on the left most points of all three
curves are 0.022. For the right most points the corresponding
errors are 0.0055, 0.0052 and 0.0049.
The average discrepancy of the tree contrasting y and the

residual bootstrap estimated ĝx(z) (black) is 0.081. The cor-
responding averages for the respective Gaussian and empiri-
cal marginal distribution (Fig. S5) starting z - distributions
are 0.10 and 0.092 respectively. These results can be com-
pared with the discrepancies of their initial untransformed z
- distributions. Average discrepancy for contrasting y with
the untransformed residual bootstrap distribution (Fig. 6) is
0.13. The corresponding average discrepancies with y for the
untransformed Gaussian z distribution is 0.26, and that for
the empirical marginal distribution is 0.24. Thus the residual
bootstrap provided a much closer starting point for estimat-
ing py(y |x) ultimately resulting in somewhat more accurate
results.
One can obtain a null distribution for average transformed

discrepancy by repeatedly applying the contrast boosting pro-
cedure with y and z randomly sampled from the same distrib-
ution. In this case py(y |x) and pz(z |x) are the same and any
differences detected by the distribution boosting procedure,
as revealed by a final contrast tree, are caused by the ran-
dom nature of the data and not actual differences between
the respective distributions. Fifty replications of contrast-
ing boosting based on pairs of random samples, each drawn
from from the (same) residual bootstrap distribution, pro-
duced and average tree discrepancy of 0.085 with a standard
deviation of 0.003. Thus there is no evidence here for a sys-
tematic difference between the distribution of the original y
and its estimate ŷ = ĝx(z) based on the residual bootstrap
initial z - distribution.

S4 Two-sample contrast trees

Contrast trees as so far described are applied to a single data
set where each observation has two outcomes y and z, and
a single set of predictor variables x. A similar methodology
can be applied to two—sample problems where there are sepa-
rate predictor variable measurements for y and z. Specifically

the data consists of two samples {x
(1)
i , yi}

N1
1 and {x

(2)
i , zi}

N2
1 .

The predictor values x
(1)
i correspond to outcomes yi, and the

values x
(2)
i correspond to zi. The goal to identify regions in x

- space where the two conditional distributions py(y |x) and
pz(z |x), or selected properties of those distributions, most
differ.
Discrepancy measures for each region Rm of x - space can

be defined in analogy with (1)

dm = D({yi}
x
(1)
i ∈Rm

, {zi}
x
(2)
i ∈Rm

). (25)

Regions and splits are based on the pooled predictor variable

sample {xi}
N
i=1 = { x

(1)
i }

N1
i=1 ∪ {x

(2)
i }N2i=1 with N = N1 +N2.

Tree construction strategy is the same as that described in
Section 3 using (25).
We illustrate two—sample contrast trees using the census

income data set described in Section 6.1. One of the samples
is taken to be the data from the 32650 males, and the other
sample data from the 16192 females. The goal is to investi-
gate gender differences in probability of high salary (greater
than $50K/year, $100K 2020 equivalent) in terms of the other
demographic and financial variables as reflected in this data
set.
The high salary probability averaged over all males in the

data set is 0.30 whereas that for females is 0.11. Thus the
relative odds of high salary for men is almost three times
that for women over the entire data set. Here we use two—
sample contrast trees to investigate whether there are special
demographic and/or financial characteristics for which these
relative odds are different. Trees were built on a random
half sample of 24421 observations and the corresponding node
statistics computed on the other left out half.
We first use two—sample contrast trees to seek regions in

predictor variable x - space for which male/female relative
high salary probability is larger than 3/1. For this we use a
ratio discrepancy measure

dm = mean(yi |x
(1)
i ∈ Rm)/mean(zi |x

(2)
i ∈ Rm) (26)

where {yi,x
(1)
i }

Nm

i=1 represents the Nm = 32650 males and

{zi,x
(2)
i }

Nf

i=1 the Nf = 16192 females. Here yi and zi are

indicators of high (male and female) salary and x
(1)
i ,x

(2)
i are

the corresponding predictor variables.
Figure S9 summarizes results for a ten region contrast

tree using (26). In the top frame the height of blue/red bars
represent the probability of income greater that $50K for the
women/men in the region. In the bottom frame the blue
bars represent the fraction of the 16192 women in the region
whereas red signifies the corresponding fraction of the 32650
men. The blue/red horizontal lines represent the female/male
global average high salary probabilities.
This contrast tree has found several small regions for which

the male/female odds ratio (26) is much greater than its
global average of 3/1. For example region 12 containing 551
observations has a 10.3/1 ratio. Region 22 with 501 observa-
tions has a 4.6/1 ratio. However, in all of the highest ratio
regions the actual male/female probabilities of high salary
are well below their respective global averages. In the higher
probability regions the ratios roughly correspond to the cor-
responding global averages.
We next attempt to uncover regions in x - space where the

female/male high salary odds ratio is much greater than its
global average of 1/3 by using the inverse discrepancy measure

dm =mean(zi |x
(2)
i ∈ Rm)/mean(yi |x

(1)
i ∈ Rm).
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Figure S9: Upper frame: probability of income greater that
$50K for women (blue) and men (red) in regions designed for
relatively large values of the latter. Lower frame: Fraction of
women (blue) and men (red) in each region.
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Figure S10: Upper frame: probability of income greater that
$50K for women (blue) and men (red) in regions designed for
relatively large values of the former. Lower frame: Fraction
of women (blue) and men (red) in each region.

Figure S10 summarizes the regions of the corresponding ten
region contrast tree in the same format as Fig. S9. The tree
has uncovered three regions in which the high salary prob-
ability for women is higher than that for men and much
higher than its global average (blue line). In region 12 the
female/male high salary odds ratio is 2.6/1. In regions 13
and 11 the probabilities are about equal. In region 11 the
overall probability of high salary for both is relatively very
high (0.47). This region contains 57% of the males and only
11% of the females in the data set. The rules defining these
three regions are

Node 12

22 ≤ age< 50
&

martial status = never married
&

hours/week ≤ 34

Node 13

age > 50
&

martial status = never married
&

hours/week ≤ 34

Node 11

age > 22
&

martial status = never married
&

hours/week > 34

This data set was originally constructed for the purpose
of comparing performance of various machine learning algo-
rithms for predicting high salary. There is no information
as to its representativeness, even for 1994. The analysis pre-
sented here is meant to illustrate the variety of the types of
problems to which contrast trees can be applied.
Contrast trees can be used to compare any two samples

based on the same measured quantities. In particular, the two
samples may be taken from the same system under different
conditions or at different times. In these situations contrast
trees can detect the presence of any associated “concept drift”
between the samples, and if detected explain its nature.
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