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Abstract

The goal of regression analysis is to predict the value of a numeric outcome variable y
given a vector of joint values of other (predictor) variables x. Usually a particular x—vector
does not specify a repeatable value for y, but rather a probability distribution of possible
y—values, p(y |x). This distribution has a location, scale and shape, all of which can depend
on x, and are needed to infer likely values for y given x. Regression methods usually as-
sume that training data y-values are perfect numeric realizations from some well behaived
p(y |x). Often actual training data y-values are discrete, truncated and/or arbitrary cen-
sored. Regression procedures based on an optimal transformation strategy are presented
for estimating location, scale and shape of p(y |x) as general functions of x, in the possible
presence of such imperfect training data. In addition, validation diagnostics are presented
to ascertain the quality of the solutions.

Keywords: optimal transformations, heteroscedasticity, censoring, ordinal regression,
quantile regression

Running title: Predicting regression probability distributions

1 Introduction

In regression analysis one has a system under study with associated attributes or variables. The
goal is to estimate the unknown numeric (outcome) value of one of the variables y, given the
known joint values of other (predictor) variables x = (x1 · ··, xp) associated with the system. It
is seldom the case that a particular set of x—values gives rise to a unique value for y. There are
other variables z = (z1, z2, · · ·) that influence y whose values are neither controlled nor observed.
Specifying a particular set of joint values for x results in a probability distribution of possible
y—values, p(y |x), induced by the varying values of z. This distribution has a location f(x), scale
s(x) and shape, all of which can depend on x. Using a training data set of previously solved
cases {yi,xi}Ni=1 in which both the outcome and predictor variable values are jointly observed,
the goal is to produce an estimate p̂(y |x) of the distribution of y given x.
Most regression procedures explicitly or implicitly approximate p(y |x) by a generic (usually

normal) distribution that is symmetric with constant scale, s(x) = s (homoscedasticity). Only

its location function f(x) is estimated from the training data. That estimate f̂(x) can then be
used to estimate the presumed constant scale by

ŝ =
∑

i∈T

h(| yi − f̂(xi) |) (1)
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on a “test” data set T not used to estimate f̂(x). Here the particular function h employed
depends upon the assumed distribution p(y |x). In this setting a y—prediction at a future x—

value is taken to be f̂(x) since this is the most likely value of y under a symmetric distribution
assumption. The uncertainty of all predictions is gauged by ŝ (1). The value of ŝ is often taken
to be a measure of the lack-of-quality of the solution, especially in competitions.
The quantity ŝ (1) reflects the prediction uncertainty averaged over the marginal distribution

of all x—values, p(x). The actual uncertainty for predictions at a particular x is characterized by
s(x), the scale of p(y |x) corresponding to that x—value. It is seldom the case that this uncertainty
is the same or even similar for different x—values. Generally there is substantial variation in
the scale s(x) over the distribution of x (heteroscedasticity). When a predicted value of y is
being used in an actual decision making application (rather than in a competition) knowing its
corresponding lack—of—accuracy can be important information influencing the decision outcome.
It is important to note that the location f(x) and scale s(x) are characteristics (parameters)

of the distribution p(y |x). In particular, the scale function s(x) represents an “irreducible” error
for predictions at x. Obtaining more training data or using more effective learning algorithms
cannot reduce this error. They can only reduce the error in the estimated values of the parameters
f̂(x) and ŝ(x). This latter “reducible” error is usually much smaller than the irreducible error
characterized by the intrinsic scale s(x). The only way to decrease irreducible error is to use a
more informative set of predictor variables x.
Along with location and scale, higher moments can also vary with x giving rise to changing

shape of p(y |x) for different values of x. For example, p(y |x) may be asymmetric with varying
degrees of skewness for different x—values. This will effect inference on likely values of y for a
given x.
Almost all regression procedures implicitly assume that the outcome y is a real valued variable

with the potential to realize any value for which the marginal distribution of y

p(y) =

∫
p(y |x) p(x) dx

has support. For most hypothesized p(y |x) used in regression analysis this implies all real
values y ∈ R. In many applications, however, this ideal is not realized. Recorded y—values may
be restricted to a small distinct set with many ties. The tied values themselves may be unknown.
Only an order relation among them is recorded (ordinal regression). In other applications, one
may only be able to specify (possibly overlapping) intervals that contain each training data y—
value, rather than the actual value itself (censoring). The specified intervals may be open or
closed.
This paper describes an omnibus regression procedure (OmniReg) that can use imperfect

training data such as described above to produce estimates of the location f(x), scale s(x) and
shape of p(y |x) as general functions of x. These can be used to assess the distribution of likely
values of y for new observations for which only the predictor values x are known.
Section 2 presents the basic gradient boosting strategy for jointly estimating the location

f(x) and scale s(x) of a symmetric p(y |x) in the presence of general censoring of the outcome
variable y. Section 3 generalizes the procedure by presenting a method for for constructing
the optimal transformation of y, g(y), on which to perform the corresponding location—scale
estimation. Section 4 outlines diagnostic procedures for checking the consistency of derived
solutions. Section 5 further generalizes the procedure by incorporating asymmetry, as a function
of x, into the transformed p(g(y) |x) solutions. Illustrations using three publicly available data
sets, one censored and two uncensored, are presented in Section 6. Application to ordinal
regression, where only an order relation among the y-values is observed, is discussed in Section
7. Connections of this method to other related techniques are discussed in Section 8. Section
9 outlines the use of the derived distribution estimates p̂(y |x) for point prediction. Section 10
provides a concluding discussion. In the Appendix the procedure is applied to simulated data
where its distribution estimates p̂(y |x) can be compared to the known true generating p(y |x).
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2 Estimation

Following Tobin (1958) we assume that the outcome y is a possibly imperfect measurement of a
random variable y∗ that follows a well behaved probability distribution p(y∗ |x) with support on
the entire real line. In particular, we initially suppose that y∗ for a given x follows an additive
error model

y∗ = f(x) + s(x) · ε (2)

with location f(x) and scale s(x), where both are general functions of x to be estimated from
the training data. The random variable ε follows a standard logistic distribution

ε ∼
exp(−ε)

(1 + exp(−ε))2
. (3)

This distribution has a Gaussian shape near its center and continuously evolves to that of a
Laplace distribution in the tails. This provides robustness to potential outliers while maintaining
power for nearly normally distributed data.

2.1 Data

The data imperfections described above can all be treated as being different aspects of censoring.
The outcome value for a censored observation is unknown; one can only specify an interval
containing its corresponding value y∗ ∈ [a, b]. If a = b the observation is uncensored. If a = −∞
the observation is said to be left censored at b; if b = ∞ it is right censored at a. Otherwise it
is interval censored. An actual data set can consist of a mixture of all of these censored types
with or without the inclusion of uncensored observations. In the case of discrete y—values with
ties, one can consider the observations at each tied value to be interval censored between the
midpoint of the previous and next set of possibly tied values.

2.2 Loss function

We use maximum likelihood based on the logistic distribution (2) (3) to estimate the location f(x)
and scale s(x) functions from the training data {yi,xi}

N
i=1 . The y—value for each observation i

is specified by a lower bound ai and upper bound bi. If ai < bi the probability that y
∗
i ∈ [ai, bi]

is given by

Pr(y∗i ∈ [ai, bi]) =
1

1 + exp((f(xi)− bi)/s(xi))
−

1

1 + exp((f(xi)− ai)/s(xi))
.

If ai = bi, it is given by

Pr(y∗i = bi) =
1

s(xi)

exp((f(xi)− bi)/s(xi))

(1 + exp((f(xi)− bi)/s(xi)))2
. (4)

The loss function then becomes the negative log—likelihood

L(a, b, f(x), s(x)) = I(a = b) [ log(s(x)) + (b− f(x))/s(x) + 2 log(1 + exp((f(x)− b)/s(x))]

−I(a < b) log

[
1

1 + exp((f(x)− b)/s(x))
−

1

1 + exp((f(x)− a)/s(x))

]
. (5)

The function estimates are then

(f̂(x), ŝ(x)) = arg min
f,s∈F

N∑

i=1

L(ai, bi, f(xi), s(xi)) (6)

where F is some chosen class of functions.
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2.3 Implementation

The function class F in (6) employed here consists of linear combinations of decision trees induced
by gradient boosting (Friedman 2001)

f̂(x) =

Kf∑

k=1

T
(f)
k (x) (7)

and

̂log(s(x)) =
Ks∑

k=1

T
(s)
k (x). (8)

Each T
(f)
k (x) and T

(s)
k (x) is a different CARTTM decision tree (Breiman et. al. 1984) using x

as predictors. The trees in each expansion (7) (8) are sequentially induced using the respective
generalized residuals

r̃f (a, b, f | s) = −
∂L(a, b, f, s)

∂f
(9)

and

r̃s(a, b, s | f) = −
∂L(a, b, f, s)

∂ log(s)
(10)

as the outcome with the loss function L(a, b, f, s) is given by (5). At each step the evaluation of
f(x) and s(x) is based on the previously induced trees in the respective sequences. The quantity
log(s(x)) is estimated in (8) because the loss function (5) is not convex in s, but is convex in

log(s). This also enforces the constraint that the estimated scale ŝ(x) = exp( ̂log(s(x))) is always
greater than zero.
After each tree in (7) is built the predicted value in each of its terminal nodes t is taken to

be η · f̃t where f̃t is the solution to the line search
∑

i∈t

r̃f (ai, bi, f̂ (xi) + f̃t | ŝ(xi)) = 0, (11)

and 0 < η << 1 is a small number (learning rate). For the trees in (8) the terminal node
predictions are given by η · log(s̃t) with

∑

i∈t

r̃s(ai, bi, ŝ(xi) · s̃t | f̂(xi)) = 0. (12)

In (11) (12) f̂ (x) and ŝ(x)are the current location and scale function estimates used to induce
the corresponding tree.
The number of treesKf andKs in (7) and (8) respectively are taken to be those that minimize

the negative log—likelihood (6) as evaluated on an independent “test” set of observations not used

to learn f̂ (x) and ŝ(x).
The tree sequences (7) (8) are alternatively induced using an iterative boosting algorithm:

ITERATIVE GRADIENT BOOSTING
Start: ŝ(x) = constant
Loop {

f̂(x) = tree—boost f(x) given ŝ(x)
̂log(s(x)) = tree—boost s(x) given f̂(x)

}Until change < threshold.

Starting with ŝ(x) being a constant function, gradient boosting is applied to estimate a corre-

sponding f̂(x) using (9) (11). Given that f̂(x) boosting is applied to estimate its corresponding
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log(ŝ(x)) using (10) (12). This ŝ(x) is then used to estimate a new f̂(x) and so on. The alter-
nating iterative process continues until the change in both functions on successive iterations is
below a small threshold. Usually only two or three iterations are required.

3 Optimal transformations

The strategy described in Section 2 attempts to capture location f(x) and scale s(x) as func-
tions of the predictor variables x under an additive error assumption (2). However, there is
no guarantee that the actual p(y |x) in any application even approximately has this property.
Violation can result in highly distorted estimates p̂(y |x). While accurate probability estimates
are essential for proper inference, they are especially important for estimation in the presence of
censoring (Section 2.1). Given a censoring interval [a, b], knowledge concerning the corresponding
underlying outcome value y∗ is derived solely from its estimated distribution.
One way to mitigate this problem is by transforming the outcome variable y using a monotonic

function. The goal here is to find a monotonic transformation function g(y) such that (2) at
least approximately holds for the transformed variable. That is

g(y) 	 f(x) + s(x) · ε. (13)

To the extent (13) holds, g(y) represents the best transformation for estimating the corresponding
f(x) and s(x). All inference can be performed on the transformed variable z = g(y) using
the distribution of ε (3). Corresponding p-quantiles referencing the distribution of the original
untransformed variable y, p(y |x), are given by qp(y |x) = g−1[qp(z |x)].

For any given transformation g(y) one can directly solve (6) for its corresponding f̂(x) and
ŝ(x), using the methods described in Section 2.3, by simply taking g(y) to be the outcome
variable in place of y. That is ai → g(ai) and bi → g(bi). Since g(y) is monotonic its cumulative
distribution G(g(y)) for any y must be the same as that of its corresponding untransformed
outcome y, F (y). That is, G(g(y) |x) = F (y |x) at any x so that their respective data averages
are equal

1

N

N∑

i=1

G(g(y) |xi)) =
1

N

N∑

i=1

F (y |xi)). (14)

Given F and G this (14) defines the optimal transformation g(y) .
The right hand side of (14) can be estimated by the empirical marginal cumulative distribu-

tion of y, F̂ (y). By assumption (13) the cumulative distribution of g(y) at each x is

G(g(y) |x) =
1

1 + exp((f(x)− g(y))/s(x))
. (15)

Substituting the corresponding estimates for the distribution parameters one has from (14)

1

N

N∑

i=1

1

1 + exp((f̂(x)− ĝ(y))/ŝ(x))
= F̂ (y). (16)

Given any value for y one can solve (16) for its corresponding estimated transformed value ĝ(y)
using a line search method. Note that ĝ(y) as defined by (16) is only required to be monotonic
and is not restricted to any other function class.
If all of the training data y-values are uncensored, or the censoring intervals are restricted to

non—overlapping bins, then the corresponding F̂ (y) is trivially obtained by ranking the training
data y-values. If not, it can be estimated using Turnbull’s non—parametric self—consistency
algorithm (Turnbull 1976).
These considerations suggest an alternating optimization algorithm to jointly solve for the

functions ĝ(y), f̂(x) and ŝ(x). Starting with an initial guess for ĝ(y) (say ĝ(y) = y), one solves

(5) (6) for the corresponding f̂(x) and ŝ(x) as described in Section 2.3 using the current ĝ(y)
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as the outcome variable. Given the resulting solution location and scale functions one evaluates
a new ĝ(y) using (16). This transformation function replaces the previous one resulting in new

estimates for f̂(x) and ŝ(x) from (5) (6). These in turn produce a new transformation through
(16) and so on. The process is continued until the estimates stop changing, converging to a fixed
point. Usually three to five iterations are sufficient.

4 Diagnostics

No procedure works equally well in all applications. Simply because a program returns a result
does not insure its validity. It is important to assess whether or not the results accurately reflect
their corresponding population quantities by subjecting them to diagnostic consistency checks
or constraints. To the extent these constraints are satisfied they provide necessary, but not
sufficient, evidence for the validity of the model. Those that are violated uncover corresponding
model inadequacies. In this section diagnostics are presented for checking the consistency of the
probability distribution p̂(y |x) estimates.

4.1 Marginal distribution plots

The fundamental premise of the procedure is that given any x, its corresponding transformed
outcome ĝ(y) is a random variable that follows a symmetric logistic distribution with location

f̂(x) and scale ŝ(x). If so, its corresponding cumulative distribution is

Pr(ĝ(y) < z) = 1/(1 + exp((f̂(x)− z)/ŝ(x))). (17)

It is not possible to verify (17) for any single observation x = xi. However it can be tested for
subsets of data. Let S be a subset of observations drawn from a validation data set not used
to obtain the estimates ĝ(y), f̂(x) or ŝ(x). The subset S must be selected using only predictor
variable values x, or quantities derived from them, and not involve the outcome y. Then the
predicted cumulative distribution of ĝ(y) for x ∈ S is

Pr(ĝ(y) < z) =
1

NS

∑

xi∈S

1/(1 + exp((f̂(xi)− z)/ŝ(xi))). (18)

One can compare this to the actual empirical distribution of ĝ(y) for x ∈ S. This can be
computed by sorting the {yi}xi∈S or by using Turnbull’s non—parametric algorithm if there is
censoring present. The size of the subset NS should be large enough to obtain reliable estimates
of the empirical distribution.
The empirical and predicted distributions can be compared with quantile—quantile (Q-Q)

plots. The vertical axis of a Q-Q plot represents the empirical quantiles of the data subset. The
abscissa represents the same quantiles based on the predicted distribution (18). To the extent
that the two distributions are the same, points corresponding to the same quantile value will
tend to be equal and thus lie close to a 45—degree straight line. If the two distributions have
the same shape and scale but differ in location then the corresponding quantiles will lie close
to a line parallel to the diagonal but shifted by the location difference. If the shape of the two
distributions is the same but they differ in scale the corresponding quantiles will lie on a straight
line with a non unit slope reflecting the differing scales. To the extent the shapes of the two
distributions differ the respective quantiles will fail to lie on a straight line.
If the OmniReg model is correct the prediction (18) holds for any x-defined data subset S.

It is not feasible to test it over all possible subsets of the data to look for discrepancies. One
must judiciously choose revealing subsets, perhaps based on domain knowledge. One generic
possibility is to select subsets based on joint values of the estimated location f̂(x) and scale

ŝ(x). That is S = {i | r < f̂(xi) ≤ t & u < ŝ(xi) ≤ v}. This approach is illustrated on the data
example in Section 6.1.
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4.2 Standardized residual plots

The marginal distribution diagnostics described in Section 4.1 can be computed for data con-
taining mixtures of uncensored and any kind of censored outcomes. However if all outcomes in
the validation data set are uncensored, the predicted standardized residuals

r̂(y |x) = (ĝ(y)− f̂(x))/ŝ(x) (19)

can be directly computed and examined. It is these standardized residuals that are central to
inference. Under procedure assumptions, and to the extent that the transformation ĝ(y), location

f̂(x) and scale ŝ(xi) function estimates are accurate, the predicted standardized residuals (19)
follow a standard logistic distribution (3) for any x. As above this can’t be verified for any single
observation x = xi, but it can be tested for groups of data x ∈ S as described in Section 4.1.
These diagnostics are illustrated on the data examples in Sections 6.2 and 6.3.

5 Asymmetry

The optimal transformation strategy (Section 3) attempts to find a monotonic function g(y)
such that (13) approximately holds. To the extent it is successful the transformed distribution
p(g(y) |x)must be symmetric or close to it. Although it often succeeds, there is no guarantee that
such a transformation exists in a particular application. When that happens the procedure can
compromise accuracy of function estimates by attempting to approximate distribution symmetry.
This will likely be reflected in the diagnostic plots described in Sections 4.1 and 4.2.
A way to mitigate this problem is to relax the symmetry requirement on p(g(y) |x) in the

transformed setting. In particular the logistic distribution can be generalized to incorporate
asymmetry by providing different scales on the positive and negative residuals

p(z | f, sl, su) =
2

sl + su

[
I(z ≤ f) exp((f − z)/sl)

(1 + exp((f − z)/sl))2
+
I(z > f) exp((f − z)/su)

(1 + exp((f − z)/su))2

]
. (20)

Here f represents the mode, sl a scale parameter for the negative residuals and su a corresponding
scale for the positive residuals. Figure 1 shows a plot of (20) for f = 0, sl = 2, su = 1.
Note that this definition of an asymmetric logistic distribution is different from the “skew”

logistic distributions proposed by Johnson et. al. (1995). It (20) is faster to compute in that it
only requires the evaluation of a single exponential function, whereas the skew logistic requires
two exponentials and a logarithm. Also, its parameters have a straightforward interpretation.
The iterative gradient boosting strategy of Section 2.3 is easily modified to incorporate this

generalization. The probability density (20) and its cumulative distribution

CDF (z | f, sl, su) =
2 sl

sl + su

{
I(z ≤ f)

1 + exp((f − z)/sl)
+ I(z > f)

[
1

2
+
su
sl

(
1

1 + exp((f − z)/su))
−
1

2

)]}

(21)
simply replace the corresponding symmetric logistic distributions in the formulation of a loss
function L(z | f, sl, su) analogous to (5). Three functions f(x), sl(x) and su(x) are estimated by
gradient boosting:

ASYMMETRIC GRADIENT BOOSTING
Start: ŝl(x) = ŝu(x) = constant
Loop {

f̂(x) = tree—boost f(x) given ŝl(x)& ŝu(x)
̂log(sl(x)) = tree—boost sl(x) given f̂(x)& ŝu(x)
̂log(su(x)) = tree—boost su(x) given f̂(x)& ŝl(x)

}Until change < threshold
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Figure 1: Probability density of asymmetric logistic distribution (20) with mode f = 0, lower
scale sl = 2 and upper scale su = 1.

For the optimal transformation strategy of Section 3, (21) simply replaces (15) in (16).
A limitation of this asymmetric gradient boosting algorithm is that its convergence is quite

slow. This is caused by the strong effect that each scale parameter has on the solution for the
other scale parameter. However in the special case of (20) with uncensored outcomes there is
a trick that dramatically speeds convergence. This approach is based on the symmetric logistic
loss function (5) with a = b = y.

At each x there are estimates for the three functions f̂(x), ŝl(x) and ŝu(x). Associated with

each training observation i is a location fi = f̂(xi) and single scale parameter si. If yi ≤ f̂(xi)
then si = ŝl(xi), otherwise si = ŝu(xi). At each iteration of asymmetric boosting a new location

function f̂(x) is estimated based on all of the training data {yi, fi, si}
N
i=1. Next a new lower

scale function sl(x) is estimated using only the training data with currently negative residuals
{yi, fi, si}yi≤fi . Then a new upper scale function ŝu(x) is estimated using only the training
data with currently positive residuals {yi, fi, si}yi>fi . All estimation is based on the symmetric
logistic loss function (5). This leads to an alternative algorithm for uncensored y:

ASYMMETRIC GRADIENT BOOSTING (2)
Start: ŝl(x) = ŝu(x) = constant
Loop {

f̂(x) = tree—boost f(x) given ŝl(x)& ŝu(x)
̂log(sl(x)) = tree—boost sl(x) given y ≤ f̂(x)
̂log(su(x)) = tree—boost su(x) given y > f̂(x)

}Until change < threshold.

This algorithm uncouples the direct effect of each scale function on the estimation of the
other. They only interact indirectly through their effect on the location function estimate.
Convergence usually requires four to six iterations.
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The diagnostic plots of Section 4.1 are easily generalized to asymmetric error model. The
asymmetric cumulative distribution (21) simply replaces (17). For the standardized residual
plots (Section 4.2) an asymmetrically standardized residual

r̂a(y |x) = I [ĝ(y) ≤ f̂(x)] (ĝ(y)− f̂(x) )/ŝl(x) + I [ĝ(y) > f̂(x)] (ĝ(y)− f̂(x) ) /ŝu(x) (22)

replaces the symmetric one (19).

6 Data examples

In this section the procedures described in the previous sections are illustrated using three data
sets. The first involves censoring in which none of the actual outcome y-values are known. The
other two are well known regression data sets from the Irvine Machine Learning Repository and
involve uncensored outcomes. For all data sets two analyses are performed. In the first, location
f̂(x) and scale ŝ(x) estimates are derived assuming that the underlying variable y∗ follows a
symmetric logistic distribution (2) (3) as described in Section 2, without the application of
any transformation. In the second analysis the procedure described in Section 3 is applied to
jointly estimate the optimal transformation g(y) along with its corresponding location and scale
functions. In addition, an asymmetric analysis (Section 5) is applied to the third data set. All
presented results are based on predictions using a validation data set not involved in model
construction or selection.

6.1 Questionnaire data

This data set contains demographics on people who filled out questionnaires at shopping malls
in the San Francisco Bay Area (Hastie, Tibshirani, and Friedman 2009). The exercise here is
to predict a person’s age given the other demographic information listed on their questionnaire.
The predictor variables are listed in Table 2.

Table 2

Questionnaire predictor variables

1 Occupation
2 Type of home
3 Gender
4 Martial status
5 Education
6 Annual income
7 Lived in Bay Area
8 Dual Incomes
9 Persons in household
10 Persons in household under 18
11 Householder status
12 Ethnic classification
13 Language

Questionnaire age values are specified as being in one of seven intervals as shown in Table 3.

Table 3

Specified age intervals

1 2 3 4 5 6 7
17 and under 18—24 25—34 35—44 45—54 55—64 65 and older
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This outcome can be considered as censored in non overlapping intervals with bounds B =
{0, 17.5, 24.5, 34.5, 44.5, 54.5, 64.5,∞}. There are N = 8856 questionnaires. These are randomly
divided into 5000 observations for model construction, 2000 for selecting the number of trees in
each model (7) (8) , and 1856 for validation.
Figure 2 shows four Q—Q plots of the empirical versus predicted quantiles of the marginal

distribution of age (Section 4.1) based on the untransformed solution. Each plot represents

data within a joint interval of f̂(xi) and ŝ(xi) values. The interval boundaries for f̂(xi) are
obtained by partitioning at its corresponding median (rows — bottom to top). Within each such
location interval separate intervals for ŝ(xi) are constructed using its median evaluated within
that location interval (columns — left to right). Thus the lower left plot is based on the 25%
of the observations with the smallest locations and smallest scales. The top right involves the
25% of the observations with jointly the largest estimated locations and scales. Because of
the censoring this marginal distribution is observable only at the six values that separate the
censoring intervals. In Fig. 2, points representing extreme empirical quantiles based on less than
20 observations are not shown due to their instability. One sees In Fig. 2 that the predicted
quantiles approximately follow the actual empirical quantiles. However there are a few clear
discrepancies in the right plots representing the larger scale estimates.
Figure 3 shows the sequence of transformation solutions for seven iterations of the optimal

transformation procedure described in Section 3. The respective transformations are defined only
at the six values separating the censoring intervals. To aid interpretation lines connecting the
corresponding points representing the same solution are included. Here blue represents the result
of the first iteration, red the last, and black the intermediate ones. After about four iterations
convergence appears to be achieved. The result at the seventh iteration (red) is chosen as the
optimal transformation estimate ĝ(y).
Figure 4 shows Q—Q plots of the empirical distribution of transformed age ĝ(y) versus that

predicted by its corresponding location f̂(x) and scale ŝ(x) functions. The four data subsets are
constructed in the same manner as in Fig. 2. Here in the transformed setting one sees a closer
correspondence with model predictions especially for the larger scale values.
Unlike usual regression procedures that return a single number as a prediction, OmniReg

produces a function representing the predicted distribution of y given x. Figure 5 shows such
predicted functions for x-values of three observations in the validation data set. The left plots
show the distributions in the transformed setting, whereas the right plots reference the original
outcome variable (age). The upper plots show the cumulative distributions and the lower ones
show the corresponding probability density functions. The intervals indicated at the bottom of
each plot represent the actual censoring intervals for the three chosen observations (Table 3).
Perhaps the most useful representation is the predicted CDF of the original untransformed y
(upper right), since from it one can directly read probability intervals for y (age) predictions.

6.2 Online news popularity data

This data set (Fernandes, Vinagre and P. Cortez 2015) is available for download from the Irvine
Machine Learning Data Repository. It summarizes a heterogeneous set of features about articles
published by Mashable web site over a period of two years. The goal is to predict the number of
shares in social networks (popularity). There are N = 39797 observations (articles). Associated
with each are p = 59 attributes to be used as predictor variables x. These are described at
the download web site https://archive.ics.uci.edu/ml/datasets/online+news+popularity#. The
outcome variable for each article is its number of shares. For this analysis these data are randomly
divided into 30000 observations for model construction, 5000 for selecting the number of trees
in each model (7) (8) , and 4797 observations for validation.
The number of shares in these data varies from less than 100 to over 100000 and is heavily

skewed toward larger values. For data of this type it is common to apply a log—transform to
the outcome variable. Figure 6 shows a histogram of y = log10(shares) for these data. There
seems to be a sharp change in the nature of this distribution at 1000 shares. In the first analysis
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Figure 2: Questionnaire data. Q—Q plots of empirical versus predicted quantiles for untrans-
formed Omnireg solution for four data subsets obtained by partitioning the location f̂(x) and
ŝ(x) estimates at their respective medians.
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Figure 3: Solutions at successive iterations of the optimal transformation algorithm on question-
naire data. First is colored blue, two through six black and seventh red.

we directly model y = log10(shares) without performing any further transformation (Section
2). In the second we apply the technique of Section 3 to estimate the optimal transformation
ĝ(log10(shares)).
Since these data are uncensored one can directly analyze the predicted residuals as described

in Section 4.2. Fig. 7 shows nine standardized residual Q—Q plots based on the untransformed
model using nine different subsets of the validation data set. These subsets were constructed
as described in Section 6.1 (Fig. 2), but with partitions at the corresponding 33% quantiles of

f̂(xi) and ŝ(xi) to create nine regions.
Each frame in Fig. 7 displays four Q-Q plots. The black lines represent a comparison of the

estimated standardized residuals to a logistic distribution. For reference, the orange, green and
violet lines show comparisons to the normal, Laplace and slash distributions respectively. The
slash (Rogers and Tukey 1972) is the distribution of the ratio of normal and uniform random
variables and has very heavy tails. The blue line in each plot is the 45—degree diagonal. Here
one sees that the standardized residuals predicted by the model do not closely follow a logistic
distribution (black line) for any of the location—scale defined data subsets. This suggests that
inference based on this model using the log—transformation is highly suspect.
Applying the optimal transformation procedure of Section 3 to the log-transformed data one

obtains the sequence of transformation estimates for each iteration shown in Fig. 8. The first
estimate is colored blue, the seventh red, and the intermediates black. The blue hash marks
below the abscissa delineate 1% intervals of the y-distribution. Convergence appears to occur
after three iterations.
Using the model ĝ(log10(shares)) based on the seventh (red) transformation produces the

corresponding standardized residual plots shown in Fig. 9. Here the predicted residuals very
closely follow a standard logistic distribution (black line) for all data subsets. A slight exception
might be the lower right plot (small location, large scale) where the extreme positive residuals
appear somewhat too large. This diagnostic provides little evidence of overall lack of fit of the
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Figure 4: Questionnaire data. Q—Q plots of empirical versus predicted quantiles for transformed
ĝ(y) OmniReg solution for four data subsets obtained by partitioning the corresponding location

f̂(x) and ŝ(x) estimates at their respective medians.
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Figure 6: Distribution of log10(shares) for the online news data.

transformed model or violation of its assumptions. Of course, one cannot absolutely exclude the
possibility that there are other diagnostics that might demonstrate such evidence.
Figure 10 shows curves representing the model predicted probability distributions of log10(shares)

for x-values of three observations taken from the validation data set. The format is the same
as in Fig. 5. The circles at the bottom of each plot represent the actual realized log10(shares)
for these three chosen observations. Distribution asymmetry and heteroscedasticity are evident
in the untransformed setting (right frames). Prediction probability intervals can be directly
determined from the upper right plot.

6.3 Million Song Data Set

These data are a subset of the Million Song Data Set and are also available for download from
the Irvine Machine Learning Data Repository. It consists of a training data set of 463715 and
a test set of 51630 song recordings. We divide a randomly selected subsample of the training
data into a learning data subset of 50000 observations and one for model selection consisting
of 20000 observations. All diagnostics are performed on the 51630 song test data set. There
are 89 predictor variables measuring various acoustic properties of the recordings. The outcome
variable is the year the recording was made ranging from 1922 to 2011.
Figure 11 shows a histogram of the outcome variable y. There are relatively few songs in the

data set recorded before 1955. Modeling the data without transformations (Section 2) produces
the standardized residual diagnostic plots on the test data set shown in Fig. 12. The data subsets
are constructed in the same manner as for Fig. 7. Again, none of the predicted standardized
residual distributions in any of the data subsets are remotely close to being standard logistic
(black line).
Applying the optimal transformation strategy of Section 3 produces the sequence of transfor-

mation estimates for seven iterations shown in Fig. 13. There is little change after two iterations.
Figure 14 shows the corresponding standardized residual Q—Q plots for the seventh transformed
solution. Although not perfect, these residuals much more closely follow a logistic distribution
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Figure 7: Online news popularity data. Diagnostic Q-Q plots of actual vs. predicted distribution
of untransformed standardized residuals (y − f̂(x))/ŝ(x) for nine data subsets delineated by

joint intervals of the 1/3 quantiles of estimated location f̂(x) and scale ŝ(x). The black, orange,
green and violet lines respectively represent comparisons to logistic, normal, Laplace and slash
distributions.
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Figure 8: Solutions at successive iterations of the optimal transformation algorithm on online
news popularity data. First is colored blue, two through six black and seventh red. The blue
hash marks below the abscissa delineate 1% intervals of the y-distribution.

(black line) than for the untransformed solution (Fig. 12). The residual distributions for some of
the samples are seen to differ mainly for extreme positive values where the data have somewhat
narrower tails.
Figure 14 suggests that the optimal transformation strategy of Section 3 based on the additive

symmetric error model (13) has not produced totally accurate probability estimates. This in
turn suggests trying the asymmetric procedure of Section 5. Figure 15 shows the resulting
diagnostic Q—Q plots when the second asymmetric algorithm of Section 5 is applied to the
original untransformed outcome data. The result is seen to be (at best) no better than the
corresponding symmetric error results (Fig. 12).
Figure 16 shows the sequence of transformations produced by the optimal transformation

strategy of Section 3 used in conjunction with the asymmetric estimation procedure of Section
5. The estimated optimal transformation (red) has the same general shape as the one produced
by the symmetric procedure (Fig. 13) with small to moderate differences mainly at the lower
extreme.
Figure 17 shows the resulting diagnostic plots produced by the asymmetric error model in

its optimally transformed setting. For this diagnostic the respective data subsets represent the
validation data partitioned at the 33% quantiles of their location (mode) estimates f̂(x) (bottom
to top) and the 33% quantiles of the geometric mean of their two scale estimates

√
ŝl(x) ŝu(x)

(left to right). The (asymmetric) standardized residuals (22) are seen to very closely follow a
standard logistic distribution (3) for all data subsets.
Figure 18 shows plots of the lower ŝl(x) (blue) and upper ŝu(x) (red) scale estimates against

corresponding location estimates f̂(x) in the optimal transformed setting. Here the upper scales
are seen to be almost constant (homoscedastic) whereas the lower scales vary by roughly a factor
of four. Neither seem to have any association with the location estimates.
Figure 19 shows the predicted recording year probability distributions for three recordings
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Figure 9: Online news popularity data. Diagnostic Q-Q plots of actual vs. predicted distribution
of optimal transformed standardized residuals (ĝ(y)− f̂(x))/ŝ(x) for nine data subsets delineated

by joint intervals of the 1/3 quantiles of estimated location f̂(x) and scale ŝ(x). The black,
orange, green and violet lines respectively represent comparisons to logistic, normal, Laplace
and slash distributions.
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Figure 10: Predicted probability distributions for three test set observations from the online
news popularity data. Left: transformed setting. Right: original untansformed (log—shares)
setting. Upper: CDF, F̂ (y |x). Lower: PDF, p̂(y |x). Bottom points represent the corresponding
recorded log10(shares) for the three selected observations.
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Figure 11: Distribution of recording year for the million song data set.

in the test data set based on the transformed asymmetric model. The format is the same as
that in Figs. 5 and 10. Unlike the distributions in those figures that are based on symmetric
transformed models, here one sees some asymmetry of the distributions in the transformed
setting. In the original outcome setting (recording year) there is seen to be massive skewness
and heteroscedasticity. The predictive model is pretty certain that the recording indicated by
green was made after 2005. For the blue recording it predicts somewhere between 1990 and 2010.
It reports having little indication as to when the recording in red was made except that it is
likely, but not certainly, before the other two. The circles at the bottom of each plot represent
the actual dates for these three recordings.

7 Ordinal regression

In the examples of Section 6 there is a known measurement scale for the values of the outcome
variable y. Values of y as well as the interval bounds {ai, bi}

N
1 in (5) (6) reference this scale. In

ordinal regression no such measurement scale exists. Only a relative order relation among the
y-values is specified. Usually ordinal regression is applied in the context of many ties so that
there are only a few K unique grouped values such as y ∈ {small, medium, large, extra large}.
For any set of joint predictor variable values x the main goal is to predict p(y ∈ k |x) where
k = 1 · · · K labels the groups. In this sense ordinal regression can be viewed as classification
where there is an order relation among the class labels.
OmniReg with optimal transformations (Sections 2 , 3 and 5) is fundamentally a (general-

ized) ordinal regression procedure. Its solutions depend only on the values of the cumulative
distribution (ranks) of y, F̂ (y) (16). As noted in Section 2.1 tied y-values can be considered as
interval censored with lower bound at the midpoint of its value and the next lower value, and
upper bound the midpoint of its value and the next higher value. The lower bound of the first
group can be taken to be −∞ and the upper bound of the last ∞. This was the strategy used
in Section 6.1 (Table 3).
Note that for the problem analyzed in Section 6.1 there was no fundamental requirement that

the censoring intervals be on the age measurement scale. Any scale that produces the same order
(grouping) could have been used. Changing the measurement scale is equivalent to changing the
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Figure 12: Million song data set. Diagnostic Q-Q plots of actual vs. predicted distribution of
untransformed standardized residuals (y− f̂(x))/ŝ(x) for nine data subsets delineated by joint

intervals of the 1/3 quantiles of estimated location f̂(x) and scale ŝ(x). The black, orange,
green and violet lines respectively represent comparisons to logistic, normal, Laplace and slash
distributions.
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Figure 13: Solutions at successive iterations of the optimal transformation algorithm on million
song data set. First is colored blue, two through six black and seventh red.

starting transformation for the iterative procedure of Section 3. Except for possible numerical
effects the resulting solutions should be essentially equivalent.
Censoring in ordinal regression is easily incorporated with this approach. If it is unknown

which of several adjacent groups contains training observation yi, its lower bound ai is set to
the minimum of the lower bounds over those groups, and its upper bound bi is set to the maxi-
mum of the corresponding group upper bounds. Also, with this approach to ordinal regression
computation does not depend on the number of groups.
The predicted probability of an observation being in the kth group is given by p̂(y ∈ k |x) =

CDF (ĝ(bk))−CDF (ĝ(ak)) where ak and bk are respectively the lower and upper bound specified
for the kth group on the chosen initial measurement scale. CDF (z) is given by (18) for symmetric

models, and (21) for asymmetric models, based on the OmniReg function estimates ĝ(y), f̂(x),
and ŝ(x) or ŝl(x), ŝu(x).

8 Related work

The OmniReg procedure presented here combines approaches from several separate topics each
of which has a long and rich history in Statistics, Econometrics and Machine Learning. The pro-
cedure presented in Section 2 is a straight forward generalization of Tobit analysis (Tobin 1958)
to incorporate logistic errors, general censoring, heteroscedasticity, and general nonparametric
function estimation via boosted tree ensembles. There are many previous works that incorporate
various subsets of these generalizations.

8.1 Censoring

Although various forms of censoring actually occur in many types of applied regression problems,
it has been studied mainly in the context of survival analysis where the outcome variable y is
time to some event. Right censoring occurs when that time exceeds the end of the study. The
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Figure 14: Million song data set. Diagnostic Q-Q plots of actual vs. predicted distribution of
transformed standardized residuals (ĝ(y) − f̂(x))/ŝ(x) for nine data subsets delineated by joint

intervals of the 1/3 quantiles of estimated location f̂(x) and scale ŝ(x). The black, orange,
green and violet lines respectively represent comparisons to logistic, normal, Laplace and slash
distributions.
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Figure 15: Million song data set. Diagnostic Q-Q plots of actual vs. predicted distribution
of untransformed asymmetric standardized residuals (22) for nine data subsets delineated by

joint intervals of the 1/3 quantiles of estimated location f̂(x) and those of the geometric mean√
ŝl(x)ŝu(x) of the scales. The black, orange, green and violet lines respectively represent

comparisons to logistic, normal, Laplace and slash distributions.
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Figure 16: Solutions at successive iterations of the asymmetric optimal transformation algorithm
on million song data set. First is colored blue, two through six black and seventh red.

most popular tool for survival analysis is the Cox proportional hazards model (Cox 1972) which
estimates the hazard function λ(y) up to a multiplicative function of time

λ(y |x) = p(y |x)/(1−CDF (y |x)) = h(y) · exp(f(x)).

Here h(y) is an unknown baseline hazard and the function f(x) is estimated from the data. Cox
originally proposed a linear model f(x) = βtx, but various authors have since presented nonlinear
generalizations. OmniReg (Sections 2 and 3) can be applied to survival data with mixtures of any
type of censoring. Because it estimates p(y |x) it can be used to directly estimate the absolute
hazard λ(y |x).

8.2 Transformations

Transforming an outcome variable y in order to increase its compatibility with regression proce-
dure assumptions has a long history in Statistics. Mosteller and Tukey (1977) proposed a ladder
of reexpressions for different variable types based upon their realizable values. Box and Cox
(1964) proposed the first data driven approach by selecting a power transformation gα(y) = yα

for numeric variables that maximizes the data Gaussian likelihood in the context of homoscedas-
ticity and linear models.
Gifi (1990), and Breiman and Friedman (1985), proposed estimating outcome transformations

for additive modeling by minimizing

N∑

i=1



g(yi)−
p∑

j=1

hj(xij)





2/
N∑

i=1

g2(yi) (23)

jointly with respect to centered functions g(y) and {hj(xj)}
p
1 under a smoothness constraint.

With Gifi (1990) smoothness was imposed by restricting all functions to be in the class of
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Figure 17: Million song data set. Diagnostic Q-Q plots of actual vs. predicted distribution of
transformed asymmetric standardized residuals (22) for nine data subsets delineated by joint

intervals of the 1/3 quantiles of estimated location f̂(x) and geometric mean
√
ŝl(x)ŝu(x) of the

scales estimates. The black, orange, green and violet lines respectively represent comparisons to
logistic, normal, Laplace and slash distributions.
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Figure 18: Million song data. Upper scale estimates ŝu(x) (red) and lower scale estimates ŝl(x)

(blue) vs. mode f̂(x) for asymmetric optimal transformed setting.

monotone splines with a given number and placement of knots. Solving (23) then becomes a
canonical correlation problem implemented by alternating linear least—squares parameter estima-
tion. Breiman and Friedman (1985) directly used nonparametric data smoothers to estimate all
functions also using an alternating approach similar to that used in Section 3. Both approaches
assume an additive homoscedastic model for g(y) as a function of x.
Solutions to (23) maximize the correlation between g(y) and

∑p
j=1 hj(xj) over the joint

distribution p(x, y) of y and x. As a result the solution transformations depend on the marginal
distribution p(x) of the predictor variables x (Buja 1990). A consequence is that the expected
solutions of (23) applied to data arising from the regression model

g∗(yi) =

p∑

j=1

h∗j (xij) + εi

with εi ∼ N(0, σ2) will not generally be g(y) = g∗(y) and {hj(xj) = h∗j (xj)}
p
1. Distributions of

x that tend to exhibit clustering are especially problematic.
In order to alleviate this problem Tibshirani (1988) proposed finding transformations g(y)

and {hj(xj}
p
1 that that minimize

N∑

i=1



g(yi)−
p∑

j=1

hj(xj)





2

where the monotone function g(y) is taken to be the variance stabilizing transformation

V ar



g(y) |

p∑

j=1

hj(xj)



 = constant. (24)

27



50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

C
D

F
 (

 y
 )

Transformed  Outcome

1960 1980 2000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

y

C
D

F
 (

 y
 )

Original  Outcome

50 100 150

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

y

P
D

F
 (

 y
 )

1960 1980 2000

0
.0

0
0

.1
0

0
.2

0
0

.3
0

y

P
D

F
 (

 y
 )

Figure 19: Predicted probability distributions based on the optimally transformed asymmetric
model for three test set observations from the million song data. Left: transformed setting.
Right: original untansformed (year) setting. Upper: CDF, F̂ (y |x). Lower: PDF, p̂(y |x).
Bottom points represent the corresponding dates for the three selected recordings.
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Solutions are obtained by an alternating optimization algorithm.
In the language of this paper (24) will hold if the location function f(x) (13) is additive in x

and the scale function s(x) is independent of f(x). In particular, (24) does not necessarily imply
homoscedasticity s(x) = constant in the transformed setting g(y). For all the examples in this
paper the association between the location and scale estimates for the optimal ĝ(y) happened
to be quite weak but there was still considerable variation in scale, as with for example ŝl(x) in
Fig. 18.
The transformation strategy outlined in Sections 2, 3 and 5 is directly regression based in

that it is conditional on x. The basic assumption is that the standardized residuals (19) (22)
follow a standard logistic distribution (3) at any x irrespective of the distribution of x. Also
note that the estimate ĝ(y) obtained from (16) is automatically monotonic.

8.3 Quantile regression

For known y-values and in the absence of censoring a natural alternative to the procedures
described in Sections 2, 3 and 5 is quantile regression based on gradient boosted trees. One can
estimate the pth quantile function, qp(x), of p(y |x) using the loss function

L(y, qp) = (y − qp) [p I(y ≥ qp) + (p− 1) I(y < qp)]. (25)

Friedman (2001) suggested using (25) in the context of gradient boosting and it has been incor-
porated in many implementations (see Ridgeway 2007 and Pedregosa 2011). Recently, Athey,
Tibshirani, and Wagner (2017) implemented quantile regression in random forests. With boosted
tree quantile regression (25) simply replaces (5) as the loss function in the procedure outlined
in Sections 2.2 and 2.3, and only one function is estimated separately for each quantile p. One
can use this procedure to independently estimate functions qp(x) for several quantiles {pk}

P
1 ,

and then for any x use {qp(x)}
P

1 to approximate the corresponding quantiles of p(y |x). This
approach makes no assumptions concerning a generating model for p(y |x), such as (13) or (20).
It thus may provide useful results in applications where those assumptions are seriously violated.
However, when they are not decreased accuracy can result as illustrated in the simulation study
in Appendix C.

8.4 Direct maximum likelihood estimation

For y-values on a known measurement scale, another natural alternative to the procedure de-
scribed in Sections 2, 3 and 5 is applying direct maximum likelihood such as in GAMLSS (Rigby
and Stasinopoulos 2006). A parameterized probability density for p(y |x) is hypothesized and
then its parameters are fitted as functions of the predictor variables x by maximum likelihood.
Parametric, linear and additive functions are considered. These are fit to data by numerically
maximizing the corresponding (non convex) log—likelihood with respect to the parameters defin-
ing all of the functions of x. The assumed probability density can have parameters controlling
its location, scale, skewness and kurtosis which are all modeled as functions of the predictors in
this manner.
A similar paradigm is used in Sections 2 and 5 based on the two and three parameter logistic

distributions. A difference is that the parameters are taken to be more flexible functions of
x as represented by boosted decision tree ensembles. It is straightforward to generalize the
gradient tree boosting strategy of Section 2 and 5 to other distributions with more that two
or three parameters as functions of the predictor variables x. Whether such added complexity
translates to improved or reduced accuracy will be application dependent. In any application
the diagnostics described in Sections 4.1 and 4.2 may be helpful in assessing model deficiencies.
The central difference between the GAMLSS method and OmniReg lies in the optimal trans-

formation strategy (Section 3). The GAMLSS approach assumes that the hypothesized para-
metric distribution describes p(y |x). OmniReg assumes that there exists some transformation
g(y) for which p(g(y) |x) follows the specified distribution. It then nonparametrically estimates
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that transformation g(y) jointly with its corresponding distribution parameters as functions of x.
This substantially enlarges the scope of application. The data examples of Sections 6.2 and 6.3
illustrate the gains that can be made by this transformation strategy. They also illustrate that
the optimal transformations for a given problem need not be close to any function in commonly
assumed parametric families such as the power family gα(y) = yα.
Arrays of multiple Q—Q plots each based on different regions of the x-space were proposed

by van Buuren and Fredriks (2001). The diagnostic plots of Section 4.2 are a straightforward
generalization. Those of Section 4.1 can be viewed as a generalized version for arbitrarily censored
data.

8.5 Ordinal regression

There is a large literature on ordinal regression (see McCCullagh 1980 and Gutiérrez et. al.

2016). A common method is to apply a sequence of binary linear logistic regressions to separately
estimate the probability of being below each of the successive group boundaries. The probability
of being within each of the groups is then obtained by successive differences between these
estimates. In order to avoid negative values the coefficients of all linear models are constrained
to be the same, with only the intercepts changing.
The approach most similar in spirit to the one here is Messner et. al. (2014). They propose

a statistical model similar to (3) (13). The location f(x) and log-scale functions log(s(x)) are
modeled as linear functions of the predictor variables x by numerical maximum likelihood. The
transformation g(y) is preselected and not systematically fit to the data.

9 Point prediction

The focus of this work is on the estimation of the distribution functions p(y |x). These can be
used to infer likely values of y for given x-vectors. Sometimes the goal of regression is to return
a single value that minimizes the prediction risk at x

h(x) = argmin
h

∫
L(y, h) p(y |x) dy. (26)

Here L(y, h) represents a loss, relevant to the application at hand, for predicting h when the
actual value is y. One way to attempt to solve (26) is

ĥ(x) = arg min
h(x)∈H

N∑

i=1

L(yi, h(xi)). (27)

Here H is a class of functions usually defined by the fitting procedure employed. An alternative
strategy is to use

ĥ(x) = argmin
h

∫
L(y, h) p̂(y |x) dy (28)

where p̂(y |x) is an estimate of p(y |x), for example through (4) (5) (6). For some L(y, h) and
p̂(y |x), (28) can be solved analytically (see Appendix C). Otherwise it can be easily solved by
numerical methods. Note that there is no requirement that L(y, h) be convex in (28). Usually
(27) is used when there is no censoring, and (28) is applied when censoring is present. Which of
the two is best in terms of accuracy in any particular application depends on the specific nature
of that application. If there exists a validation data set V not used for training with known
(uncensored) y-values one can use

CV =
∑

i∈V

L(yi, ĥ(xi)) (29)

to estimate the accuracy of any ĥ(x). Appendix C illustrates situations where estimates based
on (28) are far more accurate than those using (25) (27). An advantage of (28) is that solutions

30



for a variety of loss functions L(y, h), as well as other statistics, can be easily obtained without
having to recompute p̂(y |x).

10 Discussion

The goal of this work (OmniReg) is to provide a general unified procedure that can be used
for predictive inference in a variety of regression problems. These include heteroscedasticity,
asymmetry, ordinal regression, and general censoring.
Censoring has received relatively little attention in machine learning even though it is a

common occurrence in regression problems. Often there are restrictions on the measured values
of the outcome y. Section 6.1 illustrates a case where measurements of a continuous outcome
(age) are restricted to six discrete values (intervals). Another common restriction is where the
observed y-values cannot be negative, such as payout on insurance policy claims. There is
usually a large mass of zero—valued outcomes along with some positive ones. In this case it is
not straight forward to formulate and estimate a corresponding p(y |x). One way (Tobin 1958)
is to consider the observed y-values as censored below zero measurements of a latent variable y∗

with an unrestricted p(y∗ |x). This can then be estimated from the data using the techniques of
Sections 2, 3 and 5.
Formal predictive inference has also received relatively little attention. However, informal

inference is at the heart of prediction. The presumption is that a predicted value f̂(x) is “some-
where close” to the actual outcome y-value. Predictive inference simply quantifies this concept
through an estimated probability distribution. As seen in the data examples of Section 6 the
nature of “somewhere close” can be very different for different predictions in the same problem.
Also this probability distribution can be used to obtain point estimates for any loss function
through (28). As seen in Appendix C these can sometimes be more accurate than corresponding
direct estimates (27).
A central feature of OmniReg is the optimal transformation strategy of Section 3. This

extends the applicability of the method to a much wider class of problems. It is also at the
heart of the ordinal regression strategy of Section 7. As seen in the data examples, a particular
assumed probability distribution p(y |x) (here (4) or (20)) is seldom appropriate for the original
outcome y. However, there is often a corresponding optimal transformation g(y) for which it
is much more appropriate. This optimal transformation may not be close to any member of a
common parametric family as was seen in Figs. 8, 13 and 16.
The basic OmniReg method is indifferent to the technique used to obtain the parameter func-

tion estimates f̂(x), ŝ(x), or ŝl(x), ŝu(x). An iterative strategy based on gradient boosted trees
was used in Sections 2.3, 3 and 5. This seems to work well in a variety of applications. However,
there may be some for which other methods work as well or better. A crucial but delicate ingre-
dient is regularization, especially for the location estimate. An overfitted location estimate f̂(x)
will cause a severe negative bias in the log—scale estimates log(ŝ(x)), or log(ŝl(x)), log(ŝ(x)).
This produces inaccurate (over optimistic) estimates of the corresponding scale functions, which
would be detected by the diagnostics of Section 4. Early stopping based on cross—validation
seems to work well for the estimation method used here. Other methods may require different
regularization strategies.
Employing a different function estimation method changes the function class F in (6) or its

asymmetric counterpart (Section 5). This criterion is minimized with respect to the transfor-
mation function g(y) jointly with the parameter functions f(x), s(x), or sl(x), su(x) all in F .
Thus, the expected solution to (13) for g(y) will depend on the function class F as specified by
the function estimation procedure used. The optimal transformation estimate ĝ(y) will tend to
be biased away from a population optimal transformation towards those that permit more ac-
curate estimation of the corresponding parameters as functions of x, using the chosen regression
method. In this sense the optimal transformation strategy can somewhat compensate for less
than perfect parameter function estimation.
The OmniReg method is also indifferent to the basic probability distribution assumed for
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the error in the transformed setting. The logistic distribution (3) is used here. It has high
relative efficiency for narrow tailed error distributions as well as being highly robust in the
presence of outliers. The strategy outlined in Sections 2 — 5 can clearly be implemented using
any assumed probability distribution. The optimal transformation solutions (Section 3) tend
to be insensitive to particular choices as long as their corresponding loss functions (negative
log—likelihood) are sufficiently robust. Inference in the transformed setting g(y) will however
depend on a chosen distribution. In the absence of censoring the standardized residual plots of
Section 4.2 can be used to compare the actual transformed residuals to a spectrum of potential
candidate distributions as seen in the data examples of Sections 6.2 and 6.3. For censored data,
predicted distributions for the marginal distribution plots (Section 4.1) can be constructed for
any distribution by substituting its cumulative distribution for (18). These can then be compared
to the actual empirical distribution of the transformed data.
An essential ingredient of the OmniReg approach described here is the diagnostic procedures

presented in Section 4. No predictive model should ever be deployed without at least some assur-
ance, beyond that of the fitting procedure itself, that its predictions are valid. In the case of point
predictions, in the absence of censoring, (1) can be used as a diagnostic to assess average error

over all predictions based on f̂(x). There is no such simple approach to assessing the accuracy of
individual probability distribution estimates p̂(y |x). The diagnostic plots described in Section
4.1 for censored data, and Section 4.2 for uncensored data, represent one such approach. They
were able to expose the inadequacies of the untransformed solutions in all of the data examples
of Section 6, and also detect shortcomings in the symmetric transformed solution of Section 6.3.
Besides the procedures described here, these diagnostics can be applied to other methods whose
goal is to estimate p(y |x) and/or its associated parameters.
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Appendix

A Simulated data example

In this section the OmniReg procedure described in Sections 2 and 3 is applied in an idealized
simulated setting where the true transformation g(y), location f(x) and scale s(x) functions
as well as corresponding probability distribution are known. The goal is to judge the extent
to which the corresponding estimates ĝ(y), f̂(x), ŝ(x) and p̂(y |x) obtained by the procedure
accurately reflect the known generating functions when trained on noisy highly censored training
data.
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A.1 Data

There are N = 20000 observations with each set of predictor variables xi randomly generated
from a standard normal distribution. A randomly selected subset of 15000 observations is used
for training and the remaining 5000 for selecting the number of trees in each function estimate
(7) (8).
The generating model for the outcome y is

y = g−1(f(x) + s(x) · ε) (30)

with ε generated from a standard logistic distribution (3) and

g−1(z) = sign(z) (0.2 | z | + 0.8 z2). (31)

The corresponding optimal transformation is

g(y) = sign(y) [
√
3.2| y |+ 0.04− 0.2] / 1.6. (32)

There are p = 10 predictor variables. The simulated location function is taken to be

f(x) =
10∑

j=1

cj Bj(xj) / stdxj (Bj(xj) ) (33)

with the value of each coefficient cj being randomly drawn from a standard normal distribution.
Each basis function takes the form

Bj(xj) = sign(xj) |xj |
rj (34)

with each exponent rj being separately drawn from a uniform distribution rj ∼ U(0, 2). The
denominator in each term of (33) prevents the suppression of the influence of highly nonlinear
terms in defining f(x).
The scale function is taken to be

s(x) = exp (r(x)) (35)

where the log—scale function r(x) is constructed in the same manner as (33) (34) but with different
randomly drawn values for the {cj , rj}

10
1 producing a different function. The correlation of the

two functions over the x-distribution is corx(f(x), s(x)) =− 0.35. In the optimally transformed
setting

z = f(x) + s(x) · ε (36)

the signal-to-noise defined as the ratio of half the interquartile range of f(x) divided by the
median of s(x) is 1.31. Heteroscedasticity in the transformed setting (36) defined as interquartile
range of s(x) divided by twice its median is 0.50.

A.2 Censoring

Two censoring scenarios are investigated. In one the y-values are uncensored. That is the training
data is {yi,xi}

20000
i=1 , with y given by (30). In the other censored scenario the training data are

{ai, bi,xi}
20000
i=1 where [ai, bi] is a random interval containing each yi; specifically ai = yi − uiR

and bi = yi + viR where (ui, vi) ∼ U(0, 1) and R is half the interquartile range of y. Thus each
yi is uniformly randomly located within its interval [ai, bi]. The interval widths | bi − ai | are
themselves random, distributed as a symmetric triangle distribution between zero and the full
interquartile range of y. After this operation, a randomly chosen 25% of the observations have
bi set to ∞ producing random right censored intervals, and 25% of the remaining have ai set
to −∞ producing random left censored intervals. Thus in this scenario all training observations
are censored, 44% left/right and 56% censored in closed intervals of varying sizes.
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A.3 Results

Performance quality is judged by how well the estimated probability of an outcome value y,
p̂ (ĝ(y) | f̂(x), ŝ(x)), predicts its actual probability p (g(y) | f(x), s(x)) in the transformed setting.

Here ĝ(y), f̂(x), and ŝ(x) are the estimated optimal transformation, location, and scale functions
produced by the OmniReg procedure applied to the training data. The quantities g(y), f(x)
and s(x) are the corresponding true functions that generated the data (30). The performance

metric is the fraction of the variance of p (g(y) | f(x), s(x)) explained by p̂ (ĝ(y) | f̂(x), ŝ(x))

R2 = 1−
5000∑

i=1

[
p̂ (ĝ(yi) | f̂(xi), ŝ(xi))− p (g(yi) | f(xi), s(xi))

]2
/

var [p(g(yi) | f(xi), s(xi))]

(37)
over a validation set of 5000 observations (30) not used for training.
Table 1 shows the mean and standard deviation of the distribution of (37) over 25 training

and validation data sets randomly generated from (30). Only the predictor variables x and the
errors ε (30) were regenerated for each trial. The parameters defining the model (33) (34) were
held constant.

Table 1

Probability prediction explained variance
Mean R2 Std. R2

Censored - estimated transformation 0.924 0.0065
Censored - known transformation 0.944 0.0046
Uncensored - estimated transformation 0.962 0.0028
Uncensored - known transformation 0.960 0.0034

The first row of Table 1 shows results for the case where all three function estimates ĝ(y),

f̂(x), and ŝ(x) are jointly derived from training data censored as described in Section A.2.
Results in the second row are also based on censored data but where the true transformation
function (32) is supplied and only the location f̂(x) and scale ŝ(x) estimates are derived from the
data. The last two rows of Table 1 show the corresponding results for training with uncensored
data where the actual value of each yi is supplied. As expected, results for the censored data
are not as accurate as those for which the training data outcome values are known. However the
difference in quality is not large. For uncensored training data, having to estimate the optimal
transformation seems to incur very little loss in accuracy. There is a slight loss for censored
training data.
Figure 20 shows plots of p (g(yi) | f(xi), s(xi)) versus p̂ (ĝ(yi) | f̂(xi), ŝ(xi)) for one trial (out

of 25) in each of the four scenarios in Table 1. The trial chosen in each case is the one with
the median R2 (37) over its 25 replications. The red diagonal lines represent a running median
smooth and the blue diagonal lines represent equality.
Figure 21 shows the sequence of transformation estimates produced by the iterative algorithm

described in Section 3 for the uncensored (lower left) and censored (lower right) data examples
of Fig. 20. The result of the first iteration is colored blue. That for the seventh iteration is in
red. Iterations two through six are colored black. Here the algorithm has basically converged
after four iterations. The green curve represents the true optimal transformation (32) for this
problem. The blue hash marks below the abscissa delineate 1% intervals of the y-distribution.
The estimated transformation produced by the algorithm (red) is seen to be quite close to the
true optimal transformation (green) except perhaps for the extreme upper y-values where data
are very sparse. Results for other trials produce quite similar plots.
The results of this simulation study indicate that when applied to data that meets its

assumptions (30), the OmniReg procedure is able to accurately and reliably estimate p(y |x) in
the presence of a non trivial transformation g(y) (32) and fairly complicated generating functions
f(x) and s(x) (33) (34)(35).

35



0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability

T
ru

e
  

p
ro

b
a

b
il
it
y

Uncensored  −  Known Transform

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability
T
ru

e
  

p
ro

b
a

b
il
it
y

Censored  −  Known Transform

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability

T
ru

e
  

p
ro

b
a

b
il
it
y

Uncensored  −  Estimated Transform

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Predicted probability

T
ru

e
  

p
ro

b
a

b
il
it
y

Censored  −  Estimated Transform

Figure 20: Actual versus predicted probabilities for optimally transformed outcome on data gen-
erated from (30). Upper frames: known transformation p(g(y) |x) vs. p̂(g(y) |x). Lower frames:
estimated transformation p(g(y) |x) vs. p̂(ĝ(y) |x). Left/right frames: uncensored/censored
training data.
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Figure 21: Solutions at successive iterations of the optimal transformation algorithm on simulated
data (30)—(35). First solution is colored blue, two through six black and seventh red. The true
optimal transformtion is colored green. Left/right plots represent uncensored/censored training
data.

B Asymmetric simulation example

The second asymmetric algorithm of Section 5 is here illustrated on simulated data similar to
that used in Appendix A. The sample size and x—distribution are the same. The outcome variable
y is

y = g−1(f(x) + η),

{
η = −sl(x) · | ε |, prob = sl(x)/(sl(x) + su(x))
η = +su(x) · | ε |, prob = su(x)/(sl(x) + su(x)).

(38)

Here ε is a standard logistic random variable (3). The optimal transformation g(y) (32) and
location function f(x) (33) are the same. The lower scale function sl(x) is the same as s(x) (35)
used there. The upper scale function su(x) is independently constructed in the same manner
but with different randomly selected parameter values.
The upper left frame of Fig. 22 shows a scatter plot of su(x) versus sl(x) for this example.

One sees that the lower scale is seen to vary roughly by a factor of 20 while the upper scale varies
by a factor of 15 with little to no association between these two functions. There is also almost no
association between either of them and the location (mode) function f(x). The upper right frame
shows the true versus estimated probabilities using the known optimal transformation (32) in the
same format as Fig. 20. The lower left frame shows the sequence of transformation estimates
for each iteration of the algorithm of Section 3 using the asymmetric cumulative distribution
function (21), in the same format as Fig. 21. The solution estimated transformation (red) is
seen to be quite close to the true (32) optimal transformation (green). The lower right frame
shows the true versus estimated probabilities using the estimated optimal transformation. As
in the case of symmetric errors (Section A.3) one sees little loss of accuracy here in having to
estimate the optimal transformation. Also comparing to Table 1, there appears to be little loss
in accuracy here when estimating general asymmetric probability distributions based on three
functions f(x), sl(x) and su(x).
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Figure 22: Asymmetric simulated data. Upper left: upper su(x) vs. lower sl(x) scale. Upper
right: actual vs. predicted probabilities using true optimal transformtion g(y). Lower left:
sequence of function estimates produced by optimal transformation algorithm; final ĝ(y) (7th)
colored red, true g(y) green. Lower right: actual vs. predicted probabilities using estimated
optimal transformtion ĝ(y).
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C Quantile regression simulation example

Here the use of OmniReg for quantile regression is illustrated and compared to direct quantile
regression (25) (27) in a small simulation study based on the asymmetric data example used in
Appendix B. The true quantile functions of the transformed outcome g(y) for this data are given
by

Qp(x) = f(x) + I

(
p ≤

sl(x)

sl(x) + su(x)

)
sl(x) log

(
p (sl(x) + su(x))

(2− p) sl(x)− p su(x)

)
(39)

+ I

(
p >

sl(x)

sl(x) + su(x)

)
su(x) log

(
p (sl(x) + su(x)) + su(x)− sl(x)

(1− p) ( sl(x) + su(x))

)

where g(y), f(x), sl(x) and su(x) are the transformation, location (mode), lower and upper
scale functions generating the data. For the original outcome variable y corresponding quantile
functions are given by

qp(x) = g−1(Qp(x)). (40)

Three quantile functions are considered: p ∈ {0.25, 0.5, 0.75}. The OmniReg estimated
quantile functions are obtained by simply substituting its corresponding function estimates ĝ(y),

f̂(x), ŝl(x) and ŝu(x) in (39) (40). Quantile regression uses the loss (25) in the boosting strategy
of Section 2.3. Note that the identical function estimation technique (gradient boosted trees)
is used for both methods in this comparison. Lack-of-accuracy is assessed using the robust
prediction error measure

aae =

∑
i∈V | q̂p(xi)− qp(xi) |∑

i∈V |qp(xi)−median(qp(x)) |
(41)

where qp(xi) is the true pth quantile at xi and q̂p(xi) is its estimate. This quantity is computed
over a validation sample V not used for training or model selection.

Table 2

Quantile function prediction error (41).

1st quartile median 3rd quartile
OmniReg: transformed g(y) setting 0.13 0.15 0.17

Quantile reg.: transformed g(y) setting 0.29 0.30 0.32
OmniReg: original y setting 0.18 0.17 0.22
Quantile reg: original y setting 0.58 0.58 0.53

Table 2 shows the prediction error (41) for the two methods, in both the known optimal
transformed g(y) setting and in the original y setting. For the former OmniReg is seen to
provide estimates that are roughly twice as accurate as those for quantile regression. This can
be attributed to the correctness of its model assumptions here as well as the general inefficiency
of L1 loss estimation. The former will not always be the case but these results give an idea of
the gain possible in favorable situations.
For the original outcome y setting, the OmniReg estimates are obtained by substituting its

transformation estimate ĝ(y) in (40) as well as the corresponding location and scale function
estimates in (39). Quantile regression was applied to the y values in the original untransformed
setting. The untransformed quantile function estimates degrade for both methods, but those for
quantile regression are seen to degrade more severely. Here the OmniReg estimates are between
two and a half and three times more accurate than the quantile regression estimates. This
is due to the fact that the quantile functions in the optimally transformed setting, where the
(asymmetric) additive error model (38) more closely holds, are easier to approximate by the
model fitting procedure.
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These results suggest that when OmniReg is successful in finding a transformation where
either (13) or (20) approximately holds its quantile function estimates are likely to be more
accurate than those obtained by nonparametric quantile regression (25). This will not always
be the case. The diagnostics of Section 4 may be useful in identifying such situations.
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