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Objective: The knee adduction moment (KAM) can inform treatment of medial knee osteoarthritis;
however, measuring the KAM requires an expensive gait analysis laboratory. We evaluated the feasibility
of predicting the peak KAM during natural and modified walking patterns using the positions of
anatomical landmarks that could be identified from video analysis.
Method: Using inverse dynamics, we calculated the KAM for 86 individuals (64 with knee osteoarthritis,
22 without) walking naturally and with foot progression angle modifications. We trained a neural
network to predict the peak KAM using the 3-dimensional positions of 13 anatomical landmarks
measured with motion capture (3D neural network). We also trained models to predict the peak KAM
using 2-dimensional subsets of the dataset to simulate 2-dimensional video analysis (frontal and sagittal
plane neural networks). Model performance was evaluated on a held-out, 8-person test set that included
steps from all trials.
Results: The 3D neural network predicted the peak KAM for all test steps with r2( Murray et al., 2012)
2 ¼ 0.78. This model predicted individuals’ average peak KAM during natural walking with r2( Murray
et al., 2012) 2 ¼ 0.86 and classified which 15� foot progression angle modifications reduced the peak
KAM with accuracy ¼ 0.85. The frontal plane neural network predicted peak KAM with similar accuracy
(r2( Murray et al., 2012) 2 ¼ 0.85) to the 3D neural network, but the sagittal plane neural network did not
(r2( Murray et al., 2012) 2 ¼ 0.14).
Conclusion: Using the positions of anatomical landmarks from motion capture, a neural network accu-
rately predicted the peak KAM during natural and modified walking. This study demonstrates the
feasibility of measuring the peak KAM using positions obtainable from 2D video analysis.

© 2021 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Knee osteoarthritis (OA) affects approximately 14million people
in the United States1 and is a leading cause of disability worldwide2.
The medial compartment of the knee is most commonly affected3,
likely because it bears a greater proportion of total knee contact
force compared to the lateral compartment4. Joint loading cannot
be directly measured in vivo in an osteoarthritic knee, so the peak
knee adduction moment (KAM) is a common surrogate measure of
medial knee loading due to its relationship to the medio-lateral
td. All rights reserved.
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distribution of force in the knee5. The peak KAM, which typically
occurs during the first half of the stance phase, is correlated with
the presence6, severity7,8, and progression9 of medial compartment
knee osteoarthritis.

Measurements of the peak KAM enhance clinical decision
making. Measuring the peak KAM during natural walking aids in
diagnosing OA10e12, evaluating a patient's risk of OA progression9,
and predicting surgical outcomes13. Gait modifications such as
increasing trunk lean14,15, avoiding contralateral pelvic drop16,
medializing the knee (medial thrust)17,18, and changing the foot
progression angle19,20 can reduce the peak KAM and pain. However,
personalizing interventions based on how they affect each in-
dividual's peak KAM is critical for maximizing the achievable
reduction in loading and avoiding interventions that cause a
harmful increase in loading18,21e23. Personalized foot progression
angle modifications (toe-in or toe-out), in particular, are an effec-
tive and subtle way to reduce the peak KAM23.

The KAM is calculated using inverse dynamics from ground
reaction forces and kinematics measured in a gait analysis labora-
tory equipped with force plates and a motion capture system
[Fig. 1(A)]. The expensive equipment and technical expertise
necessary to operate a gait laboratory are inaccessible to most cli-
nicians, which excludes potentially valuable KAM measurements
from routine clinical practice. The peak KAM has been calculated
using mobile sensors (inertial measurement units and force-
instrumented shoes) and an ID approach24; however, this method
still requires expensive equipment, limiting its scalability. A
simpler, cheaper way to assess the peak KAM is needed.
Fig. 1

A) The gold standard, laboratory-based workflow for mea
motion capture data is collected and semi-manually pre-p
compute the KAM using inverse dynamics. B) The workflow
13 anatomical landmarks from motion capture (to simulate
trained to predict the peak KAM. C) Our proposed future w
KAM. After collecting 2D video of gait, keypoints (e.g., joint
OpenPose25. A neural network would predict the peak KA
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The ability to predict the peak KAM with 2-dimensional (2D)
video analysis would make these measurements available to cli-
nicians, researchers, and patients using only a video camera.
Recently-developed automated keypoint detection algorithms such
as OpenPose25 extract the positions of anatomical landmarks (e.g.,
joint locations) from 2D video [Fig. 1(C)]. But the small number of
keypoints on each body segment and the imperfect anatomical
accuracy of keypoints (ranging from 14 to 30 mm)26,27 limit their
utility as a replacement for motion capture in an ID analysis. Ma-
chine learning models are a promising solution for predicting
complex biomechanical outputs using low-fidelity inputs like
video-based keypoints28,29.

Machine learning models have been trained to predict the KAM,
but many of these models rely on input features from equipment
that is not readily available in clinical settings, such as force plates,
inertial measurement systems, pressure-sensing insoles, and elec-
tromyography systems30e33. Other models have used kinematic
features such as synthesized images of motion capture trajec-
tories34 and Euler angles35 to predict the KAM curve in healthy
individuals and individuals with alkaptonuria. These models
demonstrate the promise of using kinematics alone to predict the
KAM curve; however, the ability to predict the peak KAM in in-
dividuals with knee OA using kinematic features identifiable from
video analysis remains unknown.

The objective of our study is to evaluate the feasibility of pre-
dicting the peak KAM in individuals with and without knee OA
using keypoints that could be extracted from video. In the absence
of a dataset with synchronized 2D video and joint kinetics, we
suring the knee adduction moment (KAM). After
rocessed, it is combined with force plate data to
for the current study. We use the coordinates of
video keypoints) as inputs into a neural network
orkflow for the automated measurement of the
positions) could be detected automatically using
M using these keypoints as input.
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simulate video-based keypoints using the positions of anatomical
landmarks measured with motion capture from a previously-
collected dataset. Furthermore, we simulate keypoints from 2D
video by projecting 3-dimensional (3D) anatomical landmark po-
sitions onto a 2D plane. Anatomical keypoint detection is a rapidly
maturing field, so evaluating a machine learning model's ability to
predict the peak KAM using motion-capture-based keypoints will
demonstrate the potential for a video-based solution in the future.

We aimed to evaluate the feasibility of predicting the first KAM
peak using machine learning models that use only the positions of
anatomical landmarks as inputs. We evaluated model performance
on two clinical decision-making tasks. The first task was predicting
an individual's first peak KAM during natural walking with a mean
absolute error (MAE) less than 0.5% bodyweight*height (BW*H);
this threshold was chosen because it is the minimum of the clini-
cally-relevant range of 0.5e2.2%BW*H related to diagnosing OA
and evaluating the risk of progression9e12. The second task was
classifying whether a foot progression angle modification increases
or decreases the first peak KAM. To evaluate the feasibility of a
video-based solution that uses a single camera, we compared the
performance of models that use only sagittal or frontal plane
anatomical landmark positions to the model that uses 3D positions.
Methods

Data collection

Eighty-six individuals (64 with medial knee OA and 22 without
OA23) participated in this study after providing written consent in
compliancewith the Stanford University Institutional Review Board
(Table I). We included individuals with and without knee OA to
establish a larger dataset and to train a model that is generalizable
to a broad spectrum of OA severities. While assessing the KAM in
individuals without OA is not currently a part of clinical practice, an
inexpensive screening tool, like the pipeline proposed here
[Fig. 1(C)], could help identify asymptomatic individuals with a
large KAM who may be at risk of developing medial knee OA12.
Inclusion criteria for the medial knee OA group were (1)
KellgreneLawrence grade 1e3 and smaller medial compared to
lateral joint space width assessed from an anterior-posterior
weight-bearing radiograph by a radiologist (GEG); (2) medial pain
of three or higher out of 10 on the numeric rating scale and medial
pain greater than patellofemoral or lateral pain; (3) the ability to
Characteristic Without OA With OA

Number of subjects 22 64
Gender 9F, 13M 43F, 21M
Age (years) 24.7 ± 3.2 64.6 ± 8.81
Height (m) 1.75 ± 0.13 1.68 ± 0.10
Weight (kg) 69.4 ± 15.3 77.2 ± 15.0
BMI (kg/m2) 22.3 ± 2.2 27.2 ± 3.7
Preferred Walking Speed (m/s) 1.15 ± 0.10 1.16 ± 0.13
Kellgren Lawrence grade N/A I: 12, II: 32, III: 20

Table I

Population information for
participants with and without
osteoarthritis (OA). Data are
presentedasmean±standard
deviation
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walk safely for 25 min on a treadmill without ambulatory aids; and
(4) body mass index (BMI) less than 35. Individuals without oste-
oarthritis were included if they had no lower-extremity pain or
history of lower-extremity injury in the past year.

Participants walked on an instrumented treadmill (Bertec Cor-
poration, Columbus, OH, USA) at their self-selected speed in an 11-
camera motion capture volume (Motion Analysis Corporation,
Santa Rosa, CA, USA) with a retro-reflective marker set sufficient to
compute the 3D kinematics of the lower limbs and trunk23. Par-
ticipants first completed a static trial to identify ankle and knee
joint axes and joint centers and then performed bilateral hip cir-
cumduction trials to determine the hip joint centers36. After 5 min
of treadmill familiarization, participants completed a 2-min base-
line trial of natural walking. Participants then received vibrotactile
biofeedback (described in Uhlrich et al.23) that instructed them to
practice toeing-in and toeing-out by 5� and 10� relative to their
natural FPA for a minimum of 1 min per angle. They subsequently
performed four 2-min modification trials where they targeted each
of the FPA modifications. The baseline and modification trials were
used for analysis.

Ground reaction forces and marker positions were low-pass
filtered at 8 Hz using a fourth-order, zero lag, Butterworth filter. The
KAM was calculated using inverse dynamics in MATLAB (Math-
works Corporation, Natick, MA, USA) as the frontal plane compo-
nent of the 3D knee moment expressed in the proximal tibial
reference frame23 and normalized by bodyweight and height. The
peak KAM was defined as the maximum value of the KAM curve
during the first half of the stance phase; the stance phase was
defined as the time during which the vertical ground reaction force
was greater than 30N.

Predictive statistical models

The inputs to our machine learningmodel were the 3D positions
of 13 anatomical landmarks frommotion capture and a binary value
identifying the stance leg [Fig. 1(B)]. From the motion capture
marker set, we selected a subset of anatomical landmarks that are
similar to the keypoints tracked using 2D video analysis algorithms
like OpenPose25. The anatomical landmarks chosen included four
from each lower extremity (2nd metatarsal head, posterior calca-
neus, lateral malleolus, lateral femoral epicondyle), four pelvic
landmarks (right and left anterior superior iliac spine and posterior
superior iliac spine), and the C7 vertebrae.We defined themidpoint
of the posterior superior iliac spine markers as the origin of the
anatomical landmark positions to make these input positions in-
dependent of the participant's location in the laboratory frame.
Positions were then normalized by participant height. Additionally,
the medio-lateral positions of left steps were reflected across the
body midline, so that all data appeared to be from the right leg,
making the input more consistent37. Since our goal was to predict
the first peak KAM, which occurs during the first half of the stance
phase, we sampled the input positions 8 times during the first half
of the stance phase. This sample rate was sufficient to capture the
frequency content of the 8Hz-lowpass-filtered inputs during the
stance phase, which lasts less than 1 s. The final input matrix for
each step was of size 40 � 8 ((13 markers $ three dimensions þ one
leg binary) $ eight timesteps).

Participants were randomly divided 80%-10e10% into training,
development, and test sets, such that all of a participant's data
resided in only one set. The training set consisted of 91,245 steps
from 70 individuals (18 without OA, 52 with OA), the development
set consisted of 9,810 steps from eight individuals (2 without OA, 6
with OA), and the test set consisted of 11,675 steps from eight in-
dividuals (2 without OA, 6 with OA). The performance of the model
on the development set was used to select the model architecture
t the knee adduction moment in patients with osteoarthritis using
and Cartilage, https://doi.org/10.1016/j.joca.2020.12.017



Fig. 2

The predicted peak knee
adduction moment (KAM)
from the neural network (NN)
using 3D anatomical land-
mark positions as input (3D
neural network) vs. the peak
KAM calculated from inverse
dynamics (ID) plotted against
the y ¼ x line. Presented data
are for test subjects from the
baseline and foot progression
angle modification trials. Each
point represents a single step,
and a single color represents
the steps from both legs of a
subject.
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and hyperparameters. The test set was used only to evaluate the
accuracy of the final model.

Models were trained in Python (version 3.6.8) using Keras
(version 2.2.4) with one GPU (NVIDIA GeForce GTX 960). We
evaluated the following architectures: linear regression, a con-
volutional neural network (three 1-dimensional convolutional
layers, three fully connected layers)38, a long short-term memory
network (2 long short-term memory layers, one fully connected
layer)39, and a fully connected neural network (10 hidden layers
with 100 neurons each). Neural network (NN) weights were
initialized with Xavier initialization40, and Adam gradient
descent41 was used to minimize the root-mean-squared-error. The
final layer of each model had a single neuron with linear activation
to output the single peak KAM value. We selected a fully connected
NN architecture due to its superior performance on the develop-
ment set (Table S1, Supplemental Information). We refer to this
model as the 3D NN, as its inputs are 3D anatomical landmark
positions.

We used lasso regression42 to reduce redundant information in
the flattened input vector before training the 3D NN (glmnet
package43 in R44). To select the lambda value for lasso regression,
we performed 10 runs of 10-fold cross-validation using the training
set. We used the one-standard-error rule for selecting lambda: for
each run, we selected the lambda value that yielded a prediction
error that was one standard error greater than the minimum pre-
diction error, thereby removing more features than the lambda that
minimized prediction error.We then removed all but one binary leg
feature from the flattened input vector. The input vector size was
reduced from 320 to 299 features.

After a random search, we selected the following 3D NN
hyperparameters based on model performance on the develop-
ment set: one hidden layer (tested 1e20), 800 neurons in the
hidden layer (tested 0e1,000), and 0.01 probability of dropout
(tested 0e0.25). Neurons in the hidden layer used a rectified linear
unit activation function45, while the output neuron had a linear
activation function. To reduce overfitting, we used early stopping
with five epochs of patience and used model weights from the
epoch with the best development-set performance.

To identify which anatomical landmark positions were most
influential on the peak KAM predictions, we computed the saliency
of the input features. In general, saliency analysis identifies how
changes in each input feature relate to changes in the output by
computing the partial derivative of the output with respect to each
input feature46. For this analysis, we trained a model with the same
architecture and input features as the 3D NN but without lasso
regression in order to account for every feature at each timestep.
We averaged saliency (Python Keras-vis package47) over 2000 ex-
amples randomly selected from the test set, then averaged over all
timesteps for each of the 39 anatomical landmark positions (Eq.
(1)):

Saliencyxi ¼ meank

 
meanj

 �����vKAMðjÞ

vxðj;kÞi

�����
!!

(1)

where xi ¼ 1:39 input positions, j ¼ 1:2000 examples, and k ¼ 1:8
timesteps. Finally, we normalized the saliency value for each
feature by the saliency value of the most salient feature (Eq. (2)).

Saliencyxi;norm¼ Saliencyxi
maxi

�
Saliencyxi

� (2)

We then evaluated the performance of our models on the clin-
ical decision-making tasks. To test a model's ability to predict an
individual's baseline peak KAM during natural walking, we pre-
dicted the peak KAM for all steps during the baseline trial,
Please cite this article as: Boswell MA et al., A neural network to predic
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computed the average value for an individual leg, then compared
this value to the average of the peak KAM values from ID. We
analyzed both legs for the eight individuals in the test set, yielding
16 conditions. To test the model's ability to identify changes in the
peak KAM from varying degrees of foot progression angle modifi-
cations, we identified steps for which individuals toed-in or toed-
out by 5 ± 2.5�, 10 ± 2.5�, or 15 ± 2.5�. For each modification, there
were 32 possible conditions (8 subjects, two legs, two angles), but
not all legs achieved the target angles, leaving between 20 and 31
conditions for analysis. Changes in the peak KAM were computed
by subtracting a leg's average baseline peak KAM from the peak
KAM from amodified step, using KAM values from either the NN or
ID.

For our final aim, we simulated 2D video input by using only
sagittal or frontal plane anatomical landmark positions as model
inputs. We removed the anterior-posterior landmark positions (in
the laboratory frame) for the frontal plane NN and the medio-lateral
components for the sagittal plane NN. There were 209 inputs for
these planar models (13 markers $ two dimensions $ eight
timesteps þ one leg binary). We used the same model architecture
t the knee adduction moment in patients with osteoarthritis using
and Cartilage, https://doi.org/10.1016/j.joca.2020.12.017



Fig. 3

The top five most salient features (features that, when changed, have the greatest effect on the predicted
peak KAM) normalized by the most salient feature for the 3D, frontal plane, and sagittal plane neural net-
works (left). The positions and Cartesian coordinate directions of the most salient features (right) where x
corresponds to the anterior-posterior direction, y to medio-lateral, and z to superior-inferior.
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and training procedures for the planar models as the 3D NN,
excluding lasso regression.
Analytical statistics

All statistical analyses were performed in MATLAB. We evalu-
ated model performance using r2 (Pearson's correlation coefficient)
and the mean absolute error (MAE; Eq. (3)):

MAE¼ 1
m

Xm

i¼1

����yi � byi���� (3)

where m ¼ number of examples; yi ¼ ID peak KAM; and byi ¼ NN-
predicted peak KAM. As a supplemental analysis, we added three
types of virtual noise to the dataset to simulate various sources of
error in video-based keypoint identification, with error magnitudes
(14e30 mm) based on the previously-reported accuracy of pose
recognition algorithms26,27 (details in Table S2).

To estimate the uncertainty in our performance estimates based
on test-set subject selection, we used percentile bootstrapping48 to
compute 95% confidence intervals (CI) for r2 and MAE. For all
bootstrapped distributions, we trained one model and resampled
(10,000 times) the subjects in the test set with replacement from
the eight subjects allocated to the test set, then calculated the test
statistics for each resampled set. When evaluating model
Fig. 4

The peak knee adduction
moment (KAM) estimated by
the 3D neural network (NN)
and inverse dynamics (ID)
from the baseline (natural
walking) trial. Data are aver-
aged over all baseline steps
for each leg of each subject
(represented by a color) in the
test set plotted against the
y ¼ x line.
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performance on all steps in the test set (Figs. 2 and 6), we down-
sampled the test set to have an equal number of steps (400,
randomly selected) for each leg, which gave each individual an
equal effect on the test statistic, regardless of walking speed or step
frequency. We computed the sample r2 and MAE from this down-
sampled test set. To evaluate if our model predicted the baseline
peak KAMwith MAE less than 0.5%BW*H (Fig. 4), we computed the
average baseline peak KAM for each leg in the test set and
computed the 95% CI from a bootstrapped distribution with per-
subject resampling.

Results

The 3D NN predicted the first peak KAM for all steps in the test
set (Fig. 2) with r2 ¼ 0.78 (95% CI ¼ [0.44, 0.89]) and MAE ¼ 0.53%
BW*H (95% CI ¼ [0.39, 0.67]). The training set performed with
r2 ¼ 0.88 and the development set with r2 ¼ 0.72. The saliency
analysis (Fig. 3) showed that for the 3D NN, the peak KAM predic-
tion was most sensitive to changes in positions of the swing and
stance-leg anterior superior iliac spines (anterior-posterior), the
stance-leg knee (medio-lateral), the C7 vertebrae (medio-lateral),
and the swing-leg anterior superior iliac spine (anterior-posterior).
From the supplemental virtual noise simulation (Table S2), the 3D
NN performance did not degrade substantially with constant error
added to a coordinate across all subjects or with 14 mm of error
that changed on a subject-by-subject basis. Model performance did
degrade with 30 mm of subject-by-subject noise and any magni-
tude of noise that changed randomly at each timestep.

The 3D NN predicted the average peak KAM during baseline
(natural) walking with r2 ¼ 0.86 (95% CI ¼ [0.62, 0.94]) and
MAE ¼ 0.37%BW*H (95% CI ¼ [0.23, 0.51]) (Fig. 4). The MAE con-
fidence interval minimally overlapped with our most stringent
clinically-meaningful accuracy threshold of 0.5%BW*H. Predictions
of the baseline peak KAM were, on average, 0.31%BW*H (95%
CI ¼ [0.10, 0.51]) greater than the ID values (Bland Altman analysis
in Fig. S1) with an absolute error range of 0.02e1.09%BW*H. The 3D
NN classified if 5�, 10�, and 15� toe-in or toe-out gait modifications
increased or reduced the peak KAM with accuracies of 0.65, 0.71,
and 0.85, respectively (Fig. 5, Table II).

The frontal plane NN predicted the peak KAM for all steps in the
test set [Fig. 6(A)] with r2 ¼ 0.85 (95% CI ¼ [0.56, 0.91]) and
MAE ¼ 0.49%BW*H (95% CI ¼ [0.39, 0.59]), which was not statis-
tically different from the performance of the 3D NN. The frontal
plane NN predicted the average peak KAM during baseline walking
with r2 ¼ 0.86 (95% CI ¼ [0.49, 0.96]) and MAE ¼ 0.40%BW*H (95%
CI ¼ [0.23, 0.59]), and predicted the change in KAM resulting from
5�, 10�, and 15� FPA modifications with accuracy of 0.58, 0.79, and
0.80, respectively (Table II).

The sagittal plane NN predicted the peak KAM for all steps in the
test set [Fig. 6(B)] with r2 ¼ 0.14 (95% CI ¼ [0.02, 0.45]) and
MAE ¼ 0.85%BW*H (95% CI ¼ [0.63, 1.06]), which was less accurate
than the frontal plane NN and had minimal confidence-interval
overlap with the 3D NN.

Discussion

The purpose of this study was to evaluate the feasibility of using
video to predict the peak KAM in individuals with andwithout knee
OA during walking. To do this, we trained machine learning models
to predict the peak KAM using the positions of anatomical land-
marks from motion capture that are similar to those that could be
measured with video analysis in the future. We found that a NN
that uses 3D positions accurately predicted the peak KAM for
peoplewith andwithout knee OA (r2¼ 0.78). This model accurately
predicted individuals’ peak KAM during natural walking as well as
t the knee adduction moment in patients with osteoarthritis using
and Cartilage, https://doi.org/10.1016/j.joca.2020.12.017



Fig. 5

The average change in the peak knee adduction moment (KAM) estimated by the 3D neural network (NN) vs
inverse dynamics (ID) for 5�, 10�, and 15� foot progression angle modifications for each leg of each subject
in the test set. The accuracy (acc.) of classification is increases with increasing degrees of foot progression
angle modification.
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changes in peak KAM that resulted from large (15�) FPA modifica-
tions, suggesting that it performs well enough to inform clinical
decision making in many cases. A NN that only uses frontal plane
positions also predicted the peak KAM accurately, suggesting that it
might be feasible to use a front-facing camera and video analysis
tools to estimate the peak KAM in the future.

The 3D and frontal plane NNs predicted the peak KAM with
r2 ¼ 0.78 and r2 ¼ 0.85, which is similar to previous techniques that
predicted the peak KAMwith a reduced set of inputs compared to a
full gait analysis laboratory. The 95% CI around the performance of
our models overlap with the performance of machine learning
approaches that used inertial measurement units (r2 ¼ 0.71)32 or
Fig. 6

The performance of neural networks that use planar project
A) The frontal plane neural network predicts the peak KAM
(r2 ¼ 0.85). B) The sagittal plane neural network is less a
neural networks. Presented data are for test subjects
modification trials. A point represents a single step, and a
of a subject.

Please cite this article as: Boswell MA et al., A neural network to predic
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anthropometric measures and force plate data (r2 ¼ 0.59)30 as well
as an ID approach that used instrumented force shoes and inertial
measurement units (r2 ¼ 0.80)24. Other studies have predicted the
KAM curve during walking using a reduced set of inputs34,35,49, but
it is worth noting that predicted curves that are highly correlated
with the reference curve do not always yield accurate peak pre-
dictions. For example, Favre et al. predicted the KAM curve with
r2 ¼ 0.94, but the peak KAM extracted from the curve was less
accurate (r2 ¼ 0.59)30, demonstrating the importance of evaluating
model performance on clinically-meaningful outcome metrics, like
the peak KAM. Although our models do not directly enable mobile
measurements, the frontal plane NN demonstrates the feasibility of
ions of anatomical landmark positions as inputs.
with similar accuracy to the 3D neural network

ccurate (r2 ¼ 0.14) than the 3D or frontal plane
from the baseline and foot progression angle
single color represents the steps from both legs
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predicting the peak KAM from a limited set of anatomical landmark
positions that are identifiable from 2D video. Secondarily, the
model could serve as the basis for a transfer learning approach that
uses keypoints from front-facing video as inputs.

The 3D input positions that the saliency analysis identified as
most influential for KAM predictions correspond with kinematic
changes that have been shown to affect the KAM. First, the supe-
rior-inferior positions of the posterior superior iliac spines relates
to contralateral pelvic drop, which increases the KAM16. Second,
the medial position of the stance-limb knee relates to the frontal-
plane knee angle. Medializing the knee is a suggested mechanism
for KAM-reducing interventions such as medial-thrust gait17, toe-in
gait50, and variable stiffness shoes51. Third, the medio-lateral po-
sition of the C7 vertebrae relates to the trunk-sway angle. Trunk-
sway influences the KAM by altering the medio-lateral position of
the center of mass15. Finally, the anterior-posterior position of the
swing-leg knee could relate to stride length. A slower walking
speed or decreased stride length can reduce the peak KAM10,17.
Some of the salient features in the frontal and sagittal planemodels
were different from the 3Dmodel's salient features in these planes,
which may be explained by the redundancy of input features,
complex nonlinear relationships between features, and the sto-
chastic nature of model training. Even small perturbations to input
data can lead to dramatically different saliency results, and thus,
Accuracy Sensitivity Specificity Precision

3D Neural Network
5� FPA modification 0.65 0.59 0.78 0.87
10� FPA
modification

0.71 0.70 0.75 0.87

15� FPA
modification

0.85 0.73 1.0 1.0

Frontal Plane Neural Network
5� FPA modification 0.58 0.68 0.33 0.71
10� FPA
modification

0.79 0.90 0.50 0.80

15� FPA
modification

0.80 1.0 0.73 0.73

Table II

The performance of the 3D
and frontal plane neural
networks in classifying
whether changes in foot
progression angle (FPA) in-
crease or reduce the peak
knee adduction moment
(Fig. 5). A reduction in peak
KAM was considered a
positive result. For example,
sensitivity represents the
number of cases that the
neural network predicted as
a reduction in the peak KAM
divided by the number of
cases that ID identified as a
reduction in the peak KAM.
Both models predict the ef-
fects of larger FPA modifi-
cations more accurately
than small modifications

Osteoarthritis
andCartilage
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different interpretations of the model52, so the relationships be-
tween gait modifications and the salient features remains
speculative.

Both the 3D and frontal plane NNs performed with sufficient
accuracy to inform clinical decision making in most cases. The
models predicted the peak KAM during natural walking with
MAE¼ 0.37e0.49%BW*H, which is accurate enough to evaluate the
risk of OA progression (differences between the peak KAM of pro-
gressors and non-progressors is 2.1%BW*H)9. Our models also
predicted the baseline peak KAMwith sufficient accuracy to classify
between patients who are likely or unlikely to benefit from a high
tibial osteotomy (individuals with a 2.2%BW*H lower pre-surgical
peak KAM had better post-surgical outcomes)13,53. Additionally,
our models classified whether 15� FPA modifications increased or
reduced the peak KAM with an accuracy of 0.80e0.85. However,
they were less accurate in predicting smaller 5� and 10� modifi-
cations, potentially due to subtler changes to both input kinematics
and the output peak KAM. Notably, toeing-in typically reduces the
first peak KAM50, but it is not effective for all individuals23; the 3D
NN correctly identified the five of the six legs that reduced the first
peak KAM by toeing-in by 15� and the four of the five that did not. If
a future video-based model performs with similar accuracy, any
clinician with a smartphone would be able to make clinically-
actionable biomechanical measurements without purchasing
expensive equipment.

It is important to identify the limitations of this study. First,
machine learning models may not generalize well to conditions not
represented in the training data. Our models were trained on in-
dividuals with and without knee OA, with a BMI below 35, who
were walking with varying FPAs. Thus, our models will likely lose
accuracy when predicting the peak KAM for new populations per-
forming different activities. Fortunately, we trained accurate
models with a reasonably-sized dataset (n ¼ 86), suggesting that
new models predicting different parameters can likely be trained
using pre-existing datasets. Second, the inputs to our models were
motion capture marker positions that were very similar, but not
identical to the positions commonly used in video pose-recognition
algorithms (e.g., lateral femoral epicondyle vs knee joint center).
However, model performance did not change dramatically when a
constant offset was added to the motion capture positions
(Table S2), indicating that the models may not be sensitive to the
small differences in the definitions of anatomical landmarks be-
tween motion capture and video-based keypoints. Finally, our
models do not directly facilitate mobile measurement of the peak
KAM since they rely on anatomical landmark positions frommotion
capture rather than keypoints from video. The robustness of our
pipeline to several sources of error that may arise from video
keypoints (Table S2) adds confidence that a video-based approach
may be feasible. Nonetheless, the performance of our models
trained on motion capture positions will likely exceed the accuracy
of a similar model trained with a similarly-sized dataset of video
keypoints. Even with a slight decrease in performance, an inex-
pensive, video-based solution would provide clinical value
compared to other mobile solutions that require equipment that
costs thousands of dollars24,30,54.

In summary, we developed a model to predict the first peak
KAM in individuals with andwithout knee OAusing the positions of
anatomical landmarks. Our model accurately predicts the peak
KAM during natural walking as well as changes in the KAM that
result from gait modifications. Since anatomical landmark positions
projected onto a plane are similar to the output from 2D video
keypoint detection algorithms, our results support the feasibility of
predicting the peak KAM from a 2D frontal plane video as a
promising next step. These results support the utility of computer
vision and machine learning as tools that can bring biomechanical
t the knee adduction moment in patients with osteoarthritis using
and Cartilage, https://doi.org/10.1016/j.joca.2020.12.017
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measurements into the clinic or home. We envision that models
like the ones presented here will soon enable scientists to easily
monitor joint loading in large cohorts and clinicians to prescribe
personalized treatments for musculoskeletal pathologies.
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