Skip to content
This repository
Fetching contributors…

Octocat-spinner-32-eaf2f5

Cannot retrieve contributors at this time

file 194 lines (148 sloc) 5.981 kb
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
Release History
===============

0.4.2
-----

This is a bug-fix release, that affects mainly Big-Endian machines.

*Bug Fixes*

* discrete_model.MNLogit fix summary method
* tsa.filters.hp_filter don't use umfpack on Big-Endian machine (scipy bug)
* the remaining fixes are in the test suite, either precision problems
  on some machines or incorrect testing on Big-Endian machines.



0.4.1
-----

This is a backwards compatible (according to our test suite) release with
bug fixes and code cleanup.

*Bug Fixes*

* build and distribution fixes
* lowess correct distance calculation
* genmod correction CDFlink derivative
* adfuller _autolag correct calculation of optimal lag
* het_arch, het_lm : fix autolag and store options
* GLSAR: incorrect whitening for lag>1

*Other Changes*

* add lowess and other functions to api and documentation
* rename lowess module (old import path will be removed at next release)
* new robust sandwich covariance estimators, moved out of sandbox
* compatibility with pandas 0.8
* new plots in statsmodels.graphics
  - ABLine plot
  - interaction plot


0.4.0
-----

*Main Changes and Additions*

* Added pandas dependency.
* Cython source is built automatically if cython and compiler are present
* Support use of dates in timeseries models
* Improved plots
  - Violin plots
  - Bean Plots
  - QQ Plots
* Added lowess function
* Support for pandas Series and DataFrame objects. Results instances return
  pandas objects if the models are fit using pandas objects.
* Full Python 3 compatibility
* Fix bugs in genfromdta. Convert Stata .dta format to structured array
  preserving all types. Conversion is much faster now.
* Improved documentation
* Models and results are pickleable via save/load, optionally saving the model
  data.
* Kernel Density Estimation now uses Cython and is considerably faster.
* Diagnostics for outlier and influence statistics in OLS
* Added El Nino Sea Surface Temperatures dataset
* Numerous bug fixes
* Internal code refactoring
* Improved documentation including examples as part of HTML

*Changes that break backwards compatibility*

* Deprecated scikits namespace. The recommended import is now::

      import statsmodels.api as sm

* model.predict methods signature is now (params, exog, ...) where before
  it assumed that the model had been fit and omitted the params argument.
* For consistency with other multi-equation models, the parameters of MNLogit
  are now transposed.
* tools.tools.ECDF -> distributions.ECDF
* tools.tools.monotone_fn_inverter -> distributions.monotone_fn_inverter
* tools.tools.StepFunction -> distributions.StepFunction


0.3.1
-----

* Removed academic-only WFS dataset.
* Fix easy_install issue on Windows.

0.3.0
-----

*Changes that break backwards compatibility*

Added api.py for importing. So the new convention for importing is::

    import statsmodels.api as sm

Importing from modules directly now avoids unnecessary imports and increases
the import speed if a library or user only needs specific functions.

* sandbox/output.py -> iolib/table.py
* lib/io.py -> iolib/foreign.py (Now contains Stata .dta format reader)
* family -> families
* families.links.inverse -> families.links.inverse_power
* Datasets' Load class is now load function.
* regression.py -> regression/linear_model.py
* discretemod.py -> discrete/discrete_model.py
* rlm.py -> robust/robust_linear_model.py
* glm.py -> genmod/generalized_linear_model.py
* model.py -> base/model.py
* t() method -> tvalues attribute (t() still exists but raises a warning)

*Main changes and additions*

* Numerous bugfixes.
* Time Series Analysis model (tsa)

  - Vector Autoregression Models VAR (tsa.VAR)
  - Autogressive Models AR (tsa.AR)
  - Autoregressive Moving Average Models ARMA (tsa.ARMA)
    optionally uses Cython for Kalman Filtering
    use setup.py install with option --with-cython
  - Baxter-King band-pass filter (tsa.filters.bkfilter)
  - Hodrick-Prescott filter (tsa.filters.hpfilter)
  - Christiano-Fitzgerald filter (tsa.filters.cffilter)

* Improved maximum likelihood framework uses all available scipy.optimize solvers
* Refactor of the datasets sub-package.
* Added more datasets for examples.
* Removed RPy dependency for running the test suite.
* Refactored the test suite.
* Refactored codebase/directory structure.
* Support for offset and exposure in GLM.
* Removed data_weights argument to GLM.fit for Binomial models.
* New statistical tests, especially diagnostic and specification tests
* Multiple test correction
* General Method of Moment framework in sandbox
* Improved documentation
* and other additions


0.2.0
-----

*Main changes*

 * renames for more consistency
   RLM.fitted_values -> RLM.fittedvalues
   GLMResults.resid_dev -> GLMResults.resid_deviance
 * GLMResults, RegressionResults:
   lazy calculations, convert attributes to properties with _cache
 * fix tests to run without rpy
 * expanded examples in examples directory
 * add PyDTA to lib.io -- functions for reading Stata .dta binary files
   and converting
   them to numpy arrays
 * made tools.categorical much more robust
 * add_constant now takes a prepend argument
 * fix GLS to work with only a one column design

*New*

 * add four new datasets

   - A dataset from the American National Election Studies (1996)
   - Grunfeld (1950) investment data
   - Spector and Mazzeo (1980) program effectiveness data
   - A US macroeconomic dataset
 * add four new Maximum Likelihood Estimators for models with a discrete
   dependent variables with examples

   - Logit
   - Probit
   - MNLogit (multinomial logit)
   - Poisson

*Sandbox*

 * add qqplot in sandbox.graphics
 * add sandbox.tsa (time series analysis) and sandbox.regression (anova)
 * add principal component analysis in sandbox.tools
 * add Seemingly Unrelated Regression (SUR) and Two-Stage Least Squares
   for systems of equations in sandbox.sysreg.Sem2SLS
 * add restricted least squares (RLS)


0.1.0b1
-------
 * initial release
Something went wrong with that request. Please try again.