Skip to content


Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP


Weights #505

jseabold opened this Issue · 5 comments

2 participants


Make sure weights are correctly handled throughout the models. This includes GLM, RLM, ANOVA, and the discrete choice models. I think it also might make sense to have weights objects. It might also be interesting to see how far we can get with those provided by PySAL, but I haven't spoken with their developers since the summer. Many of their estimators are just duplicating ours. We should make it easy for them to use our code.


I just read this a few days ago

Carroll, Raymond J., and David Ruppert. "Robust estimation in heteroscedastic linear models." The annals of statistics (1982): 429-441.

There are also articles for RLM, M-estimation, with AR(1) and with spatial errors.

So far I don't know what (prior) heteroscedasticity weights would mean in discrete models and the same models in GLM.


to check what matlab has:
robust option in curvefit
and robust regression without a weights options (wfun is our norms M)


Stata and SAS use weights for loglikeobs w_i * loglike_i
Stata poisson only mentions fweights and pweights (and iweights), but doesn't have aweights.
Stata glm also has aweights but not clear how it's used

more on robust:
Some papers use weighted likelihood to discount influential observations, x outliers
Trimmed MLE uses 0-1 weights for loglike to cut outliers. (same as subset selection in this case).


to the last point: importance weights for Poisson and GLM, question on stackoverflow

GEE has weights, #2090

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.