diff --git a/lib/node_modules/@stdlib/stats/base/dists/poisson/README.md b/lib/node_modules/@stdlib/stats/base/dists/poisson/README.md index eee4ecf6770a..f8cae2dacec0 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/poisson/README.md +++ b/lib/node_modules/@stdlib/stats/base/dists/poisson/README.md @@ -111,10 +111,42 @@ y = dist.pmf( 2.3 ); ```javascript -var objectKeys = require( '@stdlib/utils/keys' ); var poisson = require( '@stdlib/stats/base/dists/poisson' ); -console.log( objectKeys( poisson ) ); +/* +* Let's take a customer service center example: average rate of customer inquiries is 3 per hour. +* This situation can be modeled using a Poisson distribution with λ = 3 +*/ + +var lambda = 3; + +// Mean can be used to calculate the average number of inquiries per hour: +console.log( poisson.mean( lambda ) ); +// => 3 + +// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean: +console.log( poisson.stdev( lambda ) ); +// => ~1.7321 + +// Variance can be used to calculate the variability of the number of inquiries: +console.log( poisson.variance( lambda ) ); +// => 3 + +// PMF can be used to calculate specific number of inquiries in an hour: +console.log( poisson.pmf( 4, lambda ) ); +// => ~0.1680 + +// CDF can be used to calculate probability upto certain number of inquiries in an hour: +console.log( poisson.cdf( 2, lambda ) ); +// => ~0.4232 + +// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed. +console.log( poisson.quantile( 0.8, lambda ) ); +// => 4 + +// MGF can be used for more advanced statistical analyses and generating moments of the distribution. +console.log( poisson.mgf( 1.0, lambda ) ); +// => ~173.2690 ``` diff --git a/lib/node_modules/@stdlib/stats/base/dists/poisson/examples/index.js b/lib/node_modules/@stdlib/stats/base/dists/poisson/examples/index.js index e382436ef33a..645008c52358 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/poisson/examples/index.js +++ b/lib/node_modules/@stdlib/stats/base/dists/poisson/examples/index.js @@ -18,7 +18,39 @@ 'use strict'; -var objectKeys = require( '@stdlib/utils/keys' ); var poisson = require( './../lib' ); -console.log( objectKeys( poisson ) ); +/* +* Let's take a customer service center example: average rate of customer inquiries is 3 per hour. +* This situation can be modeled using a Poisson distribution with λ = 3 +*/ + +var lambda = 3; + +// Mean can be used to calculate the average number of inquiries per hour: +console.log( poisson.mean( lambda ) ); +// => 3 + +// Standard deviation can be used to calculate the measure of the spread of inquiries around the mean: +console.log( poisson.stdev( lambda ) ); +// => ~1.7321 + +// Variance can be used to calculate the variability of the number of inquiries: +console.log( poisson.variance( lambda ) ); +// => 3 + +// PMF can be used to calculate specific number of inquiries in an hour: +console.log( poisson.pmf( 4, lambda ) ); +// => ~0.1680 + +// CDF can be used to calculate probability upto certain number of inquiries in an hour: +console.log( poisson.cdf( 2, lambda ) ); +// => ~0.4232 + +// Quantile can be used to calculate the number of inquiries at which you can be 80% confident that the actual number will not exceed. +console.log( poisson.quantile( 0.8, lambda ) ); +// => 4 + +// MGF can be used for more advanced statistical analyses and generating moments of the distribution. +console.log( poisson.mgf( 1.0, lambda ) ); +// => ~173.2690