diff --git a/lib/node_modules/@stdlib/stats/ztest/README.md b/lib/node_modules/@stdlib/stats/ztest/README.md index d858564ef02b..5263016e334c 100644 --- a/lib/node_modules/@stdlib/stats/ztest/README.md +++ b/lib/node_modules/@stdlib/stats/ztest/README.md @@ -35,24 +35,18 @@ var ztest = require( '@stdlib/stats/ztest' ); The function performs a one-sample z-test for the null hypothesis that the data in [array][mdn-array] or [typed array][mdn-typed-array] `x` is drawn from a normal distribution with mean zero and known standard deviation `sigma`. ```javascript -var normal = require( '@stdlib/random/base/normal' ).factory; +var normal = require( '@stdlib/random/array/normal' ); -var rnorm = normal( 0.0, 2.0, { - 'seed': 5776 -}); - -var arr = new Array( 300 ); -var i; -for ( i = 0; i < arr.length; i++ ) { - arr[ i ] = rnorm(); -} +// Create an array of random numbers: +var arr = normal( 300, 0.0, 2.0 ); +// Test whether true mean is equal to 0.0: var out = ztest( arr, 2.0 ); /* e.g., returns { 'rejected': false, 'pValue': ~0.155, - 'statistic': -1.422, + 'statistic': ~-1.422, 'ci': [~-0.391,~0.062], // ... } @@ -90,16 +84,13 @@ The `ztest` function accepts the following `options`: By default, the hypothesis test is carried out at a significance level of `0.05`. To choose a different significance level, set the `alpha` option. ```javascript -var table; -var out; -var arr; +var arr = [ 2, 4, 3, 1, 0 ]; -arr = [ 2, 4, 3, 1, 0 ]; - -out = ztest( arr, 2.0, { +var out = ztest( arr, 2.0, { 'alpha': 0.01 }); -table = out.print(); + +var table = out.print(); /* e.g., returns One-sample z-test @@ -132,19 +123,16 @@ table = out.print(); To test whether the data comes from a distribution with a mean different than zero, set the `mu` option. ```javascript -var out; -var arr; - -arr = [ 4, 4, 6, 6, 5 ]; +var arr = [ 4, 4, 6, 6, 5 ]; -out = ztest( arr, 1.0, { +var out = ztest( arr, 1.0, { 'mu': 5.0 }); /* e.g., returns { 'rejected': false, - 'pValue': 1, - 'statistic': 0, + 'pValue': 1.0, + 'statistic': 0.0, 'ci': [ ~4.123, ~5.877 ], // ... } @@ -154,22 +142,19 @@ out = ztest( arr, 1.0, { By default, a two-sided test is performed. To perform either of the one-sided tests, set the `alternative` option to `less` or `greater`. ```javascript -var table; -var out; -var arr; - -arr = [ 4, 4, 6, 6, 5 ]; +var arr = [ 4, 4, 6, 6, 5 ]; -out = ztest( arr, 1.0, { +var out = ztest( arr, 1.0, { 'alternative': 'less' }); -table = out.print(); + +var table = out.print(); /* e.g., returns One-sample z-test Alternative hypothesis: True mean is less than 0 - pValue: 1 + pValue: 1.0 statistic: 11.1803 95% confidence interval: [-Infinity,5.7356] @@ -185,7 +170,7 @@ table = out.print(); Alternative hypothesis: True mean is greater than 0 - pValue: 0 + pValue: 0.0 statistic: 11.1803 95% confidence interval: [4.2644,Infinity] @@ -204,38 +189,28 @@ table = out.print(); ```javascript -var normal = require( '@stdlib/random/base/normal' ).factory; +var normal = require( '@stdlib/random/array/normal' ); var ztest = require( '@stdlib/stats/ztest' ); -var rnorm; -var arr; -var out; -var i; - -rnorm = normal( 5.0, 4.0, { - 'seed': 37827 -}); -arr = new Array( 500 ); -for ( i = 0; i < arr.length; i++ ) { - arr[ i ] = rnorm(); -} +// Create an array of random numbers: +var arr = normal( 500, 5.0, 4.0 ); -// Test whether true mean is equal to zero: -out = ztest( arr, 4.0 ); +// Test whether true mean is equal to 0.0: +var out = ztest( arr, 4.0 ); console.log( out.print() ); /* e.g., => One-sample z-test Alternative hypothesis: True mean is not equal to 0 - pValue: 0 + pValue: 0.0 statistic: 28.6754 95% confidence interval: [4.779,5.4802] Test Decision: Reject null in favor of alternative at 5% significance level */ -// Test whether true mean is equal to five: +// Test whether true mean is equal to 5.0: out = ztest( arr, 4.0, { 'mu': 5.0 }); diff --git a/lib/node_modules/@stdlib/stats/ztest/examples/index.js b/lib/node_modules/@stdlib/stats/ztest/examples/index.js index 64e5812f5f0f..31c5048639fa 100644 --- a/lib/node_modules/@stdlib/stats/ztest/examples/index.js +++ b/lib/node_modules/@stdlib/stats/ztest/examples/index.js @@ -18,27 +18,17 @@ 'use strict'; -var normal = require( '@stdlib/random/base/normal' ).factory; +var normal = require( '@stdlib/random/array/normal' ); var ztest = require( './../lib' ); -var rnorm; -var arr; -var out; -var i; +// Create an array of random numbers: +var arr = normal( 500, 5.0, 4.0 ); -rnorm = normal( 5.0, 4.0, { - 'seed': 37827 -}); -arr = new Array( 500 ); -for ( i = 0; i < arr.length; i++ ) { - arr[ i ] = rnorm(); -} - -// Test whether true mean is equal to zero: -out = ztest( arr, 4.0 ); +// Test whether true mean is equal to 4.0: +var out = ztest( arr, 4.0 ); console.log( out.print() ); -// Test whether true mean is equal to five: +// Test whether true mean is equal to 5.0: out = ztest( arr, 4.0, { 'mu': 5.0 }); diff --git a/lib/node_modules/@stdlib/utils/nonenumerable-properties-in/lib/main.js b/lib/node_modules/@stdlib/utils/nonenumerable-properties-in/lib/main.js index 87ec784f74bf..f7fbff668376 100644 --- a/lib/node_modules/@stdlib/utils/nonenumerable-properties-in/lib/main.js +++ b/lib/node_modules/@stdlib/utils/nonenumerable-properties-in/lib/main.js @@ -25,6 +25,7 @@ var getOwnPropertyNames = require( '@stdlib/utils/property-names' ); var getPrototypeOf = require( '@stdlib/utils/get-prototype-of' ); var hasOwnProp = require( '@stdlib/assert/has-own-property' ); var isNonEnumerable = require( '@stdlib/assert/is-nonenumerable-property' ); +var Object = require( '@stdlib/object/ctor' ); // MAIN //