Docker-based environments orchestration
Pull request Compare This branch is 254 commits behind signalfx:master.
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Failed to load latest commit information.

MaestroNG, an orchestrator of Docker-based deployments

Build Status

The original Maestro was developed as a single-host orchestrator for Docker-based deployments. Given the state of Docker at the time of its writing, it was a great first step towards orchestration of deployments using Docker containers as the unit of application distribution.

Docker having made significant advancements since then, deployments and environments spanning across several hosts are becoming more and more common and are in the need for some orchestration.

Based off ideas from the original Maestro and taking inspiration from Docker's links feature, MaestroNG makes the deployment and control of complex, multi-host environments using Docker containers possible and easy to use. Maestro of course supports declared dependencies between services and makes sure to honor those during environment bring up.

See a demo

What is Maestro?

MaestroNG is, for now, a command-line utility that allows for automatically managing the orchestrated deployment and bring up of a set of service instance containers that compose an environment on a set of target host machines.

Each host machine is expected to run a Docker daemon. Maestro will then contact the Docker daemon of each host in the environment to figure out the status of the environment and what actions to take based on the requested command.


MaestroNG requires Docker 0.6.7 or newer on the hosts as it makes use of the container naming feature and bug fixes in NAT port forwarding.

You'll also need the following Python modules, although these will be automatically installed by setuptools if you follow the instructions below.

  • PyYAML (you may need to install this manually, e.g. apt-get install python-yaml)
  • A recent docker-py


You can install Maestro via Pip:

$ pip install --user --upgrade git+git://


The orchestration features of Maestro obviously rely on the collaboration of the Docker containers that you are controlling with Maestro. Maestro basically takes care of two things:

  1. Controlling the start (and stop) order of services during environment bring up and tear down according to the defined dependencies between services.
  2. Passing extra environment variables to each container to pass all the information it may need to operate in that environment, in particular information about its dependencies.

Let's first look at how environments and services are described, then we'll discuss what information Maestro passes down to the containers through their environment.

Environment description

The environment is described using YAML. The format is still a bit in flux but the base has been set and should remain fairly stable. It is named and composed of three main sections: the registries that define authentication credentials that might be needed to pull the Docker images for the defined services from their registries, the ships, hosts that will execute the Docker containers, and the services, which define what service make up the environment, the dependencies between these services and the instances of each of these services that need to run. Here's the outline:

name: demo
  # Auth credentials for each registry that needs them (see below)
  # Ships definitions (see below)
  # Services definition (see below)

The registries define for each Docker registry Maestro might need to pull images from the authentication credentials needed to access them (see below Working with image registries). For each registry, the full registry URL, a username and a password are required, and depending on the registry the email might be as well. For example:

    registry: https://my-private-registry/v1/
    username: maestro
    password: secret

The ships are simple to define. They are named (but that name doesn't need to match their DNS resolvable host name), and need an ip address/hostname. If the Docker daemon doesn't listen its default port of 4243, the docker_port can be overriden:

  vm1.ore1:   {ip:}
  vm2.ore2:   {ip:, docker_port: 4244}
  controller: {ip:}

Services are also named. Their name is used for commands that act on specific services instead of the whole environment, and is also used in dependency declarations. Each service must define the Docker image its instances will be using, and of course a description of each instance. It can also define environment variables that will apply to all of that service's instances.

Each service instance must at least define the ship its container will be placed on (by name). Additionally, it may define:

  • port mappings, as a map of <port name>: <port or port mapping spec> (see below for port spec syntax);
  • volume mappings, as a map of <destination in container>: <source from host>;
  • environment variables, as a map of <variable name>: <value>.
  • whether the container should run in privileged mode, as a boolean privileged: true | false (Defaults to false).
    image: zookeeper:3.4.5
        ship: vm1.ore1
        ports: {client: 2181, peer: 2888, leader_election: 3888}
        privileged: true
          /var/lib/zookeeper: /data/zookeeper
        ship: vm2.ore1
        ports: {client: 2181, peer: 2888, leader_election: 3888}
          /var/lib/zookeeper: /data/zookeeper
    image: kafka:latest
    requires: [ zookeeper ]
        ship: vm2.ore1
        ports: {broker: 9092}
          /var/lib/kafka: /data/kafka
          BROKER_ID: 0

Port mapping syntax

Maestro supports several syntaxes for specifying port mappings. Unless the syntax supports and/or specifies it, Maestro will make the following assumptions:

  • the exposed and external ports are the same (exposed means the port bound to inside the container, external means the port mapped by Docker on the host to the port inside the container);
  • the protocol is TCP (/tcp);
  • the external port is bound on all host interfaces using the address.

The simplest form is a single numeric value, which maps the given TCP port from the container to all interfaces of the host on that same port:

# 25/tcp ->
ports: {smtp: 25}

If you want UDP, you can specify so:

# 53/udp ->
ports: {dns: 53/udp}

If you want a different external port, you can specify a mapping by separating the two port numbers by a colon:

# 25/tcp ->
ports: {smtp: "25:2525"}

Similarly, specifying the protocol (they should match!):

# 53/udp ->
ports: {dns: "53/udp:5353/udp"}

You can also use the dictionary form for any of these:

  # 25/tcp ->
    exposed: 25
    external: 25

  # 53/udp ->
    exposed: 53/udp
    external: 5353/udp

If you need to bind to a specific interface or IP address on the host, you need to use the dictionary form:

# 25/tcp ->
    exposed: 25
    external: [, 25 ]

  # 53/udp ->
    exposed: 53/udp
    external: [, 5353/udp ]

Note that YAML supports references, which means you don't have to repeat your ship's IP address if you do something like this:

  demo: {ip: &demoip, docker_port: 4243}

        exposed: 25/tcp
        external: [ *demoip, 25/tcp ]

Port mappings and named ports

When services depend on each other, they most likely need to communicate. If service B depends on service A, service B needs to be configured with information on how to reach service A (its host and port).

Even though Docker can provide inter-container networking, in a multi-host environment this is not possible. Maestro also needs to keep in mind that not all hosting and cloud providers provide advanced networking features like multicast or bridged frames. This is why Maestro makes the choice of always using the host's external IP address and relies on traditional layer 3 communication between containers.

There is no performance hit from this, even when two containers on the same host communicate, and it enables inter-host communication in a more generic way regardless of where the two containers are located. Of course, it is up to you to make sure that the hosts in your environment can communicate with each other.

Note that even though Maestro allows for fully customizable port mappings from the container to the host (see Port mapping syntax) above, it is usually recommended to use the same port number inside and outside the container. It makes it slightly easier for troubleshooting and some services (Cassandra is one example) assume that all their nodes use the same port(s), so the port they know about inside the container may need to be the external port they use to connect to one of their peers.

One of the downsides of this approach is that if you run multiple instances of the same service on the same host, you need to manually make sure they don't use the same ports, through their configuration, when that's possible.

Finally, Maestro uses named ports, where each port your configure for each service instance is named. This name is the name used by the instance container to find out how it should be configured and on which port(s) it needs to listen, but it's also the name used for each port exposed through environment variables to other containers. This way, a dependent service can know the address of a remote service, and the specific port number of a desired endpoint. For example, service depending on ZooKeeper would be looking for its client port.

How Maestro orchestrates and service auto-configuration

The orchestration performed by Maestro is two-fold. The first part is providing a way for each container to learn about the environment they evolve into, to discover about their peers and/or the container instances of other services in their environment. The second part is by controlling the start/stop sequence of services and their containers, taking service dependencies into account.

With inspiration from Docker's links feature, Maestro utilizes environment variables to pass information down to each container. Each container is guaranteed to get the following environment variables:

  • SERVICE_NAME: the friendly name of the service the container is an instance of. Note that it is possible to have multiple clusters of the same kind of application by giving them distinct friendly names.
  • CONTAINER_NAME: the friendly name of the instance, which is also used as the name of the container itself. This will also be the visible hostname from inside the container.
  • CONTAINER_HOST_ADDRESS: the external IP address of the host of the container. This can be used as the "advertised" address when services use dynamic service discovery techniques.

Then, for each container of each service that the container depends on, a set of environment variables is added:

  • <SERVICE_NAME>_<CONTAINER_NAME>_HOST: the external IP address of the host of the container, which is the address the application inside the container can be reached with accross the network.
  • For each port declared by the dependent container:
    • <SERVICE_NAME>_<CONTAINER_NAME>_<PORT_NAME>_PORT, containing the external, addressable port number.

Each container of a service also gets these two variables for each instance of that service so it knows about its peers. It also gets the following variable for each port defined:

  • <SERVICE_NAME>_<CONTAINER_NAME>_<PORT_NAME>_INTERNAL_PORT, containing the exposed (internal) port number that is, most likely, only reachable from inside the container and usually the port the application running in the container wants to bind to.

With all this information available in the container's environment, each container can then easily know about its surroundings and the other services it might need to talk to. It then becomes really easy to bridge the gap between the information Maestro provides to the container via its environment and the application you want to run inside the container.

You could, of course, have your application directly read the environment variables pushed in by Maestro. But that would tie your application logic to Maestro, a specific orchestration system; you do not want that. Instead, you can write a startup script that will inspect the environment and generate a configuration file for your application (or pass in command-line flags).

To make this easier, Maestro provides a set of helper functions available in its maestro.guestutils module. The recommended (or easiest) way to build this startup script is to write it in Python, and have the Maestro package installed in your container.

Guest utils helper functions

To make use of the Maestro guest utils functions, you'll need to have the Maestro package installed inside your container. You can easily achieve this by adding the following to your Dockerfile (select the version of Maestro that you need):

ENV DEBIAN_FRONTEND noninteractive
RUN apt-get update
RUN apt-get -y install python python-pip git
RUN pip install git+git://

This will install the latest available version of Maestro. Feel free to change that to any other version of Maestro you like or need.

Then, from your startup script (in Python), do:

from maestro.guestutils import *

And you're ready to go. Here's a summary of the functions available at your disposal that will make your life much easier:

  • get_environment_name() returns the name of the environment as defined in the description file. Could be useful to namespace information inside ZooKeeper for example.
  • get_service_name() returns the friendly name of the service the container is a member of.
  • get_container_name() returns the friendly name of the container itself.
  • get_container_host_address() returns the IP address or hostname of the host of the container. Useful if your application needs to advertise itself to some service discovery system.
  • get_container_internal_address() returns the IP address assigned to the container itself by Docker (its private IP address).
  • get_port(name, default) will return the exposed (internal) port number of a given named port for the current container instance. This is useful to set configuration parameters for example.

Another very useful function is the get_node_list function. It takes in a service name and an optional list of port names and returns the list of IP addresses/hostname of the containers of that service. For each port specified, in order, it will append :<port number> to each host with the external port number. For example, if you want to return the list of ZooKeeper endpoints with their client ports:

get_node_list('zookeeper', ports=['client']) -> ['', '']

Other functions you might need are:

  • get_specific_host(service, container), which can be used to return the hostname or IP address of a specific container from a given service, and
  • get_specific_port(service, container, port, default), to retrieve the external port number of a specific named port of a given container.
  • get_specific_exposed_port(service, container, port, default), to retrieve the exposed (internal) port number of a specific named port of a given container.

Working with image registries

When Maestro needs to start a new container, it will do whatever it can to make sure the image this container needs is available; the image full name is specified at the service level.

Maestro will first check if the target Docker daemon reports the image to be available. If the image is not available, or if the -r flag was passed on the command-line (to force refresh the images), Maestro will attempt to pull the image.

To do so, it will first analyze the name of the image and try to identify a registry name (for example my-private-registry/my-image:tag, the address of the registry is my-private-registry) and look for a corresponding entry in the registries section of the environment description file to look for authentication credentials, if they are needed to access the images from that registry.

If credentials are found, Maestro will login to the registry before attempting to pull the image.

Passing extra environment variables

You can pass in or override arbitrary environment variables by providing a dictionary of environment variables key/value pairs. This can be done both at the service level and the container level; the latter taking precedence:

    image: ...
      FOO: bar
      ship: host
        FOO: overrides bar
        FOO_2: bar2

Additionally, Maestro will automatically expand all levels of YAML lists in environment variable values. The following are equivalent:

  FOO: This is a test
  BAR: [ This, [ is, a ], test ]

This becomes useful when used in conjunction with YAML references to build more complex environment variable values:

  DEFAULT_JVM_OPTS: &jvmopts [ '-Xms500m', '-Xmx2g', '-showversion', '-server' ]


  JVM_OPTS: [ *jvmopts, '-XX:+UseConcMarkSweep' ]


Once installed, Maestro is available both as a library through the maestro package and as an executable. Note that if you didn't install Maestro system-wide, you can still run it with the same commands as long as your PYTHONPATH contains the path to your maestro-ng repository clone. To run Maestro, simply execute the main Python package:

$ python -m maestro -h
usage: maestro [-h] [-f [FILE]] [-c CMD] [-r] [-F] [-n LINES] [-o]
               [{status,fullstatus,start,stop,clean,logs}] [thing [thing ...]]

Docker container orchestrator.

positional arguments:
                        orchestration command to execute
  thing                 container(s) or service(s) to act on

optional arguments:
  -h, --help            show this help message and exit
  -f [FILE], --file [FILE]
                        read environment description from FILE (use - for
  -c CMD, --completion CMD
                        list commands, services or containers in environment
                        based on CMD
  -r, --refresh-images  force refresh of container images from registry
  -F, --follow          follow logs as they are generated
  -n LINES              Only show the last LINES lines for logs
  -o, --only            only affect the selected container or service

By default, Maestro will read the environment description from the standard input so if you run Maestro without arguments it will appear to not do anything and just be "stuck". You can also use the -f flag to specify the path to the environment file. The two following commands are identical:

$ python -m maestro < demo.yaml
$ python -m maestro -f demo.yaml

The first positional argument is a command you want Maestro to execute. The available commands are status, fullstatus, start, stop and logs. They should all be self-explanatory. Service dependency is always honored for all commands. Note that if services don't have any dependencies (or have the same dependencies), their start order might not always be the same.

You can also pass one or more service names or container names on which to execute the command, to restrict the action of the command to just these services or containers (or any combination of both). Note that Maestro will do its best to examine the state of the system and not perform any action unless it's really necessary.

You can force Maestro to operate only on the containers and services that were explicitely given on the command-line by using the -o flag.

Finally, if started without any arguments, default to the status command on all containers, thus showing the state of the environment.

Examples of Docker images with Maestro orchestration

For examples of Docker images that are suitable for use with Maestro, you can look at the following repositories: