
Categorical Realizability
by

Tom de Jong

Lecture notes and exercises for the
Midlands Graduate School (MGS)

8–12 April 2024, Leicester, UK

Com
putability

Ca
te
go
rie
s

Logic

School of Computer Science
University of Nottingham

January–March 2024

To Jaap van Oosten,
in recognition of his contributions to the teaching of mathematical logic.

Abstract

Realizability, as invented by Kleene, is a technique for elucidating the computational
content of mathematical proofs. In this course we study realizability from a categorical
perspective. Starting from an abstract and general model of computation known as
a partial combinatory algebra (pca), we construct the category of assemblies over it.
Intuitively, an assembly is a set together with computability data and an assembly map
is a function of sets that is computable. Here, the notion of computability is prescribed
by the pca. Through the framework of categorical logic, the assemblies give rise to the
realizability interpretation of logic, which we spell out in detail.

The central theme of this course is the interplay between category theory, logic and
computability theory. While some familiarity with basic category theory (e.g. (co)limits
and adjunctions) is required for some parts of the notes, the course hopefully offers
plenty to those unfamiliar with category theory.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Acknowledgements

It is my pleasure to express my sincere thanks to Jaap van Oosten—to whom I have
dedicated these notes—for teaching an excellent course on category theory [vOos16]
and introducing me to realizability when I was a master’s student in mathematics at
Utrecht University back in 2015–2018.

I thank Rahul Chhabra, Stefania Damato, Johnson He, Vincent Rahli, Alyssa Renata,
Jingjie Yang and Mark Williams for pointing out or fixing typos. I am grateful to Josh
Chen for volunteering to be a teaching assistant for the course. For the illustration on the
title page I adapted tikz code fromAboAmmar’s answer on TEX StackExchange [Abo14].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Contents

Abstract ii

Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Aims . 1
1.2 Exercises . 2
1.3 References . 2
1.4 Further reading . 3

2 Models of computation: partial combinatory algebras 4
2.1 Basic examples of pcas . 5
2.2 Basic programming in pcas . 6
2.3 More examples of pcas . 9
2.4 List of exercises . 10

3 Categories of assemblies 11
3.1 Morphisms of assemblies . 12
3.2 Categorical constructions . 13

3.2.1 Cartesian closure and equalizers 13
3.2.2 Coproducts and coequalizers 15
3.2.3 Natural numbers object . 16
3.2.4 Dependent products and sums 16

3.3 Relation to the category of sets . 17
3.4 Epimorphisms and monomorphisms . 19

3.4.1 Regular epimorphisms . 19
3.4.2 Regular monomorphisms . 21

3.5 From pcas to assemblies, functorially 21
3.6 List of exercises . 22

4 The realizability interpretation of logic 23
4.1 Categorical logic in a nutshell . 24
4.2 Categorical logic in categories of assemblies 26

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

v Contents

4.2.1 The Heyting prealgebra of realizability predicates 27
4.2.2 The realizability interpretation of logic 29
4.2.3 Revisiting (regular) epis and monos 30

4.3 Two-element assemblies as classifiers 31
4.3.1 Double negation stable realizability predicates 31
4.3.2 Decidable realizability predicates 33
4.3.3 Semidecidable realizability predicates 35

4.4 Very first steps in synthetic computability theory 37
4.5 List of exercises . 38

5 Epilogue: towards realizability toposes 40

Bibliography 42

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Chapter 1

Introduction

Realizability originates with Kleene [Kle45] in the context of proof theory and sought
to make a precise connection between intuitionistic (constructive) mathematics and
computability theory. This led to an effective interpretation of intuitionistic number
theory using computability theory, somewhat reminiscent to—but predating!—the
Curry–Howard correspondence.

In the 1980’s, Hyland introduced the effective topos: a category whose logic is
governed by Kleene’s realizability. Intuitively, the effective topos presents us with an
alternative world of mathematics where—unlike in the category of sets and functions—
“everything is computable”. Actually, the effective topos is an instance of a general
class of categories known as realizability toposes as originally developed by Hyland,
Johnstone and Pitts [HJP80; Pit81].

Every realizability topos is parametrized by an abstract model of computation,
known as a partial combinatory algebra (pca). Classical computability theory based
on partial Turing computable functions on natural numbers gives a pca known as
Kleene’s first model and the resulting realizability topos is Hyland’s effective topos.
While Hyland’s topos is perhaps the best understood example, many other choices of
pcas are possible with interesting realizability toposes as a result [vOos08].

A beautiful aspect of Hyland’s discovery is that it enables us to study the interplay
between category theory, logic and computability theory. A typical application of
realizability categories is to provide semantics to (polymorphic) type theories like
System F (which has no direct set-theoretic semantics [Rey84]); see also Section 1.4.
Realizability has also found practical application in the form of extracting programs
from mathematical proofs, see e.g. [BMSS11].

1.1 Aims

We hope that these notes provide a self-contained and accessible introduction to the
categorical aspects of realizability for graduate students in theoretical computer science.
More generally, we hope the reader will appreciate these notes as a testament of the

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

1.2. Exercises 2

deep connections between category theory, logic and computability theory.
The notion of a realizability topos is fairly involved and for this reason we focus on

the simpler categories of assemblies instead (although we include a brief epilogue on
realizability toposes). While the category of assemblies lacks some features of a topos
it provides more than enough structure for our present purposes. Besides, one should
arguably first have a good grasp on the assemblies before studying realizability toposes.

Outline of these notes

• Chapter 2 introduces partial combinatory algebra (pcas) as abstract models of
computation and illustrate them with various examples. Some familiarity with
basic computability theory and topology is helpful, but certainly not required.

• Chapter 3 describes the category of assemblies and assembly maps over a fixed
but arbitrary pca. Intuitively, an assembly is a set together with computability
data and an assembly map is a function of sets that is computable. Here, the
notion of computability is prescribed by the pca.
We explore the categorical structure of this category and some familiarity with
basic category theory—say (co)limits and adjunctions—is necessary in most places,
although I am hopeful that those unfamiliar with category theory can still benefit
from this chapter and are perhaps inspired to learn some category theory.

• Finally, in Chapter 4, we turn to the logical aspects of the category of assemblies.
We spell out the realizability interpretation of first order logic that the assemblies
give rise to. We illustrate the connections between category theory, logic and
computability theory by studying certain realizability predicates from these three
perspectives. For example, the semidecidable predicates can be characterized
(1) categorically, as pullbacks of a certain two-element assembly; (2) computably,
as computably enumerable subsets; and (3) logically, as those predicates which
are presented by a binary sequence. Finally, we exploit these connections by
describing a simple result from synthetic computability theory.

1.2 Exercises

The exercises are interspersed in the text, but each chapter ends with a list of its
exercises for reference. There are 33 exercises in total.

1.3 References

In preparing these notes I have mainly used the standard textbook [vOos08] by van
Oosten, as well as Bauer’s excellent lecture notes [Bau23]. In a few places, e.g. Proposi-
tion 3.24, I have also consulted Streicher’s notes [Str18]. The presentation of logic in
the category of assemblies using realizability predicates owes a lot to Bauer’s treatment,
although I turned to [vOos08, Section 3.2.7] for Exercises 4.29 to 4.32, and included
some additions in the form of Sections 4.2.3 and 4.4. In notation and terminology I have
stayed close to Bauer’s notes as I admire its readability.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3 Chapter 1. Introduction

1.4 Further reading

Natural candidates for further reading are the aforementioned notes by Bauer [Bau23]
and Streicher [Str18], as well as the standard textbook by van Oosten [vOos08].

The categorical semantics of (polymorphic) type theories using realizability is treated
in a variety of works, such as Reus’s tutorial paper [Reu99], Streicher’s notes [Str18],
Amadio and Curien’s textbook [AC98] and Jacobs’s textbook [Jac99]; see also the
references listed on [vOos08, p. 193].

Those looking to learn more about general models of (higher-order) computability
can consult Longley and Normann’s comprehensive textbook [LN15].

To those interested in the history of realizability we recommend Troelstra’s proof-
theoretic survey [Tro98] and van Oosten’s essay [vOos02] for its categorical aspects.

If you are interested in the formalization of mathematics, then you should look at
Chhabra’s ongoing Cubical Agda development [Chh23]1.

1With the caveat that the combinatory algebras are assumed to be total—at least for the moment.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Chapter 2

Models of computation:
partial combinatory algebras

The starting ingredient in categorical realizability is a general model of computation
known as a partial combinatory algebra, or pca for short. The desire for a general model
of computation is motivated by the many possible interesting examples. Moreover, in
the next chapter, we construct the category of assemblies over an arbitrary pca. The
construction itself works generally and is insensitive to any particular choice of pca.
However, the choice of pca is reflected in the logical principles that the resulting category
validates. Thinking of categories of assemblies as worlds of computable mathematics,
we can thus build different worlds by varying our notion of pca.

Having said all this, in these notes we have chosen to work with the untyped notion
of a pca. The typed notion, as developed by Longley1 in his PhD thesis [Lon95], is more
general and moreover has the advantage that it can capture (idealized) typed functional
programming languages (such as PCF [Plo77; dJon23]). We only treat untyped pcas for
simplicity and refer the interested reader to Bauer’s more comprehensive notes [Bau23].

Definition 2.1 (Partial combinatory algebra (pca), K, S). A partial combinatory
algebra (pca) is a set A together with a partial operation A ×A ⇀ A, denoted by
juxtaposition, (a, b) ↦→ a b, such that there exist elements K and S satisfying:

(i) (K a) b = a for all elements a, b ∈ A,
(ii) ((S f) g) is defined for all elements f, g ∈ A, and
(iii) ((S f) g) a ≃ (f a) (g a) for all elements f, g, a ∈ A.

The symbol ≃ is Kleene equality and means: either both sides are undefined, or both
are defined and are equal elements of A. In particular, in (i), the operation K a must
be defined for all elements a ∈ A.

1Fun fact: John Longley is also the author of the recent Castles in the Air—an introduction to the
world of mathematical logic cast in the form of a fantasy novel—as well as a semi-professional pianist.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

5 Chapter 2. Models of computation: partial combinatory algebras

We think of the elements of a pca as codes for programs that can also act as input.
Accordingly, we pronounce a b as “a applied to b” and think of this as: apply the program
with code a to input b.

In this light, the element K, which we call the k-combinator, acts as a parameterized
constant program: it takes an input a and then always outputs a on any input b.

The element S, which we call the s-combinator2, acts as parameterized application:
it takes two codes for programs f and g and an input a and then applies f a to g a.

Notation 2.2. We will economize on parentheses and write a b c for (a b) c. We
will always use the teletype font for arbitrary elements of a pca to reinforce the
idea that these should be thought of as (codes of) programs. For fixed programming
constructs, we will use this bold font instead.

The point of the k- and s-combinators is that they provide us with a (very minimal)
programming interface which we will explore in Section 2.2. We prefer to give two
examples first to strengthen our intuition for pcas.

2.1 Basic examples of pcas

To help build some intuition for pcas, we now consider three basic examples. The
first example is a triviality, but we include it here because the category of assemblies
(see Chapter 3) over it is equivalent to the familiar category of sets.

Example 2.3 (The trivial pca). The trivial pca is the singleton set {★} with applica-
tion map (★,★) ↦→ ★. Of course, K ≔ ★ and S ≔ ★.

Example 2.4 (Untyped 𝜆-calculus as a pca, Λ). Write Λ for the closed terms of the
untyped 𝜆-calculus quotiented by the equivalence relation generated by 𝛽-reduction.
(E.g., for a closed 𝜆-term 𝑡 , we identify (𝜆𝑥.𝑥)𝑡 and 𝑡 .) With 𝜆-calculus application
the set Λ forms a pca with K and S given by the equivalence classes of 𝜆𝑥𝑦.𝑥 and
𝜆𝑥𝑦𝑧.(𝑥𝑧) (𝑦𝑧), respectively.

The application function of Λ is actually total, i.e. it is defined on any two inputs. An
example of a pca with a genuine partial application—which is also the prime example
of a pca—is Kleene’s first model [Kle45]:

Example 2.5 (Kleene’s first model, K1). We define a partial application function on
the set of natural numbers N: for natural numbers 𝑛 and𝑚 we take 𝑛𝑚 to be 𝜑𝑛 (𝑚),
where 𝜑− denotes a Turing computable enumeration of the Turing computable partial
functions on the natural numbers.
The existence of the k- and s-combinators follows from Kleene’s 𝑆𝑚𝑛 -theorem in
computability theory, see e.g. [Bau23, Section 2.5.1 and Theorem 2.1.5] for details.
We write K1 for this partial combinatory algebra and return to it in Chapter 4.

2The letters k and s come from Moses Schönfinkel’s combinatory logic [Sch24]. They respectively
come from the German words Konstanzfunktion (constant function) and Verschmelzungfunktion (merge
function). Of course, Verschmelzungsfunktion starts with a v, but Schönfinkel had to avoid confusion as
there was also a swap-arguments combinator called the Vertauschungsfunktion.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

2.2. Basic programming in pcas 6

2.2 Basic programming in pcas

The k- and s-combinators of a pca provide an interface for writing basic programs. For
example, if we put3 I ≔ SKK then I acts as the identity combinator: I a = SKK a =

K a(K a) = a for any element a of our pca.
While theoretically possible, it is very inconvenient to program everything directly

in terms of K and S. Therefore, we will define something resembling 𝜆-abstraction for
our pca, allowing us to write the clearer I ≔ ⟨𝑥⟩. 𝑥 instead.

Definition 2.6 (Terms). We fix a countably infinite set of variables, typically denoted
by 𝑥,𝑦, 𝑧,𝑢, 𝑣,𝑤, 𝑥0, 𝑥1, . . ., and inductively define the set of terms over a pca A:

(i) a variable is a term,
(ii) an element of A is a term,
(iii) given two terms 𝑠 and 𝑡 , we may form a new term denoted by 𝑠 𝑡 .

A term without variables is called closed.

Notation 2.7. If 𝑡 is a term, then we write 𝑡 [a1/𝑥1, . . . , an/𝑥𝑛] for the closed term
obtained by substituting the element ai ∈ A for the variable 𝑥𝑖 (which may or may
not occur in 𝑡).

Definition 2.8 (Defined terms). A closed term 𝑟 is defined if, when we interpret all
subterms of 𝑟 of the form 𝑠 𝑡 as 𝑠 applied to 𝑡 in A, all these applications are defined.
We extend this to terms with variables: such a term 𝑡 is defined if for all possible
substitutions of all variables in 𝑡 by elements ofA, the resulting closed term obtained
via substitution is defined.

For example, the terms KS I and S𝑥 𝑦 are defined.

Notation 2.9. We extend Kleene equality from closed terms to all terms over A:
given two terms 𝑠 and 𝑡 whose variables are among 𝑥1, . . . , 𝑥𝑛 , we write 𝑠 ≃ 𝑡 if for
all a1, . . . , an ∈ A, we have

𝑠 [a1/𝑥1, . . . , an/𝑥𝑛] ≃ 𝑡 [a1/𝑥1, . . . , an/𝑥𝑛]

as closed terms.

We now define something resembling 𝜆-abstraction for pcas.

Definition 2.10 (“𝜆-abstraction” in a pca, ⟨𝑥⟩. 𝑡). For a variable 𝑥 and a term 𝑡 , we
define a new term, denoted by ⟨𝑥⟩. 𝑡 , by recursion on terms:

• ⟨𝑥⟩. 𝑥 B I = SKK,
• ⟨𝑥⟩. 𝑦 B K𝑦 if 𝑦 is a variable different from 𝑥 ,
• ⟨𝑥⟩. a B K a for a ∈ A,
• ⟨𝑥⟩. (𝑡1 𝑡2) B S(⟨𝑥⟩. 𝑡1) (⟨𝑥⟩. 𝑡2).

3Note that this indeed defines an element of A by Definition 2.1(ii).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

7 Chapter 2. Models of computation: partial combinatory algebras

Exercise 2.11 (Combinatory completeness). Prove that for every variable 𝑥 and
term 𝑡 , the following properties of ⟨𝑥⟩. 𝑡 hold:

(i) The variables of ⟨𝑥⟩. 𝑡 are exactly those of 𝑡 minus 𝑥 .
(ii) The term ⟨𝑥⟩. 𝑡 is defined.
(iii) For all a ∈ A, we have (⟨𝑥⟩. 𝑡) a ≃ 𝑡 [a/𝑥].

Notation 2.12. We write ⟨𝑥𝑦⟩. 𝑡 for the term ⟨𝑥⟩. (⟨𝑦⟩. 𝑡) and similarly for more
variables.

Suppose we have a term 𝑡 featuring only the variables 𝑥 ,𝑦 and 𝑧, e.g., 𝑡 B 𝑧 K𝑥 (K𝑦).
We think of 𝑡 as a partial function A ×A ×A ⇀ A, taking three inputs a, b and c that
we may substitute in 𝑡 for 𝑥 , 𝑦 and 𝑧, respectively, and that results in the term cK a(K b)
which has no variables. Combinatory completeness says that terms can be internalized
in a pca. Indeed, we can represent 𝑡 inA as ⟨𝑥𝑦𝑧⟩. 𝑡 . Note that this is indeed an element
of A by virtue of Exercise 2.11(ii) and the fact that ⟨𝑥𝑦𝑧⟩. 𝑡 is a closed term.

Remark 2.13. While similar to 𝜆-abstraction, we deliberately do not use the 𝜆-symbol,
because it might suggest that ⟨𝑥⟩. 𝑡 obeys the 𝛽-law when substituting terms, but due
to the partial nature of the application map, this need not be the case [vOos08, p. 4].

It is now time to make use of combinatory completeness to construct some more
combinators. Wewill do this in verymuch the sameway as one encodes these constructs
in the untyped 𝜆-calculus.

Booleans and conditional

We define the booleans as the closed terms

true B ⟨𝑥𝑦⟩. 𝑥 and false B ⟨𝑥𝑦⟩. 𝑦,

and the conditional as the closed term

if ≔ ⟨𝑥⟩. 𝑥 .

Note that for arbitrary a, b ∈ A, we can calculate:

if true a b = true a b = a and if false a b = false a b = b .

Pairing and projection

We define the closed terms

pair B ⟨𝑥𝑦𝑧⟩. 𝑧𝑥𝑦, fst B ⟨𝑤⟩.𝑤 true and snd B ⟨𝑤⟩.𝑤 false.

Exercise 2.14. For all elements a, b ∈ A, prove that:

(i) pair a b is defined.
(ii) fst (pair a b) = a and snd (pair a b) = b hold.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

2.2. Basic programming in pcas 8

Fixed points

We also have the fixed point combinators which are traditionally denoted by Y and Z:

Y B WW with W ≔ ⟨𝑥𝑦⟩. 𝑦 (𝑥 𝑥 𝑦)
Z B UU with U ≔ ⟨𝑥𝑦𝑧⟩. 𝑦 (𝑥 𝑥 𝑦) 𝑧

These combinators satisfy:

Y f ≃ f (Y f), Z f is defined and Z f a ≃ f (Z f) a

for all elements f, a ∈ A.

Curry numerals and fundamental arithmetic

For each natural number 𝑛 ∈ N, we define the corresponding Curry numeral n
inductively by:

0 ≔ I and n + 1 ≔ pair false n .

Exercise 2.15. Define closed terms succ, pred and iszero such that for any natural
number 𝑛 ∈ N the following equations hold:

succ n = n + 1, pred 0 = 0, pred n + 1 = n,

iszero 0 = true and iszero n + 1 = false .

Primitive recursion

The following primitive recursion combinator for Curry numerals will come in useful
when we consider the natural numbers object in the category of assemblies later.

Exercise 2.16. Construct a closed term primrec such that for all f, a ∈ A and 𝑛 ∈ N
it satisfies:

primrec a f 0 = 𝑎 and primrec a f n + 1 ≃ f n (primrec a f n)

Hint: The essential ingredients are a zero test, predecessor and repeated application
which are provided by iszero, pred and Z, respectively.

As a final remark, we note that any nontrivial pca is necessarily infinite, as the
following exercise shows:

Exercise 2.17. Prove that the following are equivalent for any pca A:

(i) The booleans true and false are distinct elements of A.
(ii) The Curry numerals n in A are all distinct.
(iii) The pca A is not the trivial pca.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

9 Chapter 2. Models of computation: partial combinatory algebras

2.3 More examples of pcas

In this section we will present a few more examples of partial combinatory algebras. To
motivate and introduce them, we offer the following informal explanation. Suppose we
have a device which transforms the pitch of incoming audio. We might represent the
incoming and outgoing audio as streams of bits, so that mathematically speaking, our
in- and output are elements of {0, 1}N, i.e. functions from the set of natural numbers N
to the two-element set {0, 1}. Our bit-stream transforming device is then a function
{0, 1}N → {0, 1}N. Since we don’t want to wait forever on the output of our device,
it seems reasonable that we assume it to start outputting after having only received
finitely many bits. Thus, the output depends on a finite amount of the input only. Our
device should therefore not be any old function {0, 1}N → {0, 1}N, but rather one whose
output depends on a finite amount of input only. This can be made mathematically
precise by equipping the set {0, 1}N with a topology and by restricting our attention to
continuous functions on such topologized sets.

For an introduction to and motivation of topology from a computer science perspec-
tive, Smyth’s [Smy92] and Escardó’s [Esc04] monographs, and Vickers’s book [Vic96]
are warmly recommended.

While Turing computable functions, or equivalently, Kleene’s partial recursive func-
tions, provide the foundation for computability theory with (encodings of) finite objects,
an established theory of computability over infinite objects is Weihrauch’s Type Two Ef-
fectivity (TTE) [Wei00]. This is a theory of computable analysis and becomes especially
relevant when we are interested in exact real number computation. Its connections to
realizability were explored in the PhD theses of Lietz [Lie04] and Bauer [Bau00] via
Kleene’s second model and its recursive variant (Examples 2.19 and 2.23 below).

We will be brief in our explanations of these partial combinatory algebras and
hope that the interested reader will take the above paragraphs and the examples as an
invitation to explore the fascinating connections between topology and computability,
for instance by consulting Bauer’s aforementioned notes on realizability [Bau23] and
the references above.

Our first example is due to Scott [Sco76] and gives the powerset of the natural
numbers the structure of a pca.

Example 2.18 (Scott’s graph model, S). We make the powerset P (N) of the natural
numbers into a pca that we denote by S .
The idea behind application on P (N) is that when we apply a subset𝑈 to a subset𝑉 ,
then𝑈 can only use a finite amount of 𝑉 to determine whether to include a number
or not. We now make this idea formal.
We first fix bijections

[−,−] : N × N→ N and enum: N � Pfin(N)

where the latter enumerates all finite subsets of natural numbers. We then define the
application map P (N) × P (N) → P (N) as

(𝑈 ,𝑉) ↦→ {𝑛out ∈ N | ∃(𝑛in ∈ N).[𝑛in, 𝑛out] ∈ 𝑈 and enum(𝑛in) ⊆ 𝑉 }.

Thus, the “program”𝑈 encodes a list of input-output pairs where the input number
encodes a finite subset of the argument 𝑉 .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

2.4. List of exercises 10

If we equip P (N) with the Scott topology whose basic opens are finite subsets of N,
then one can show that the application map is continuous. In fact, any continuous
function 𝐹 : P (N)𝑘 → P (N) can be represented in P (N) by encoding the graph of 𝐹 .
(The details are spelled out in [dJon18, Example 2.3.4].) Under this correspondence it
becomes easy to construct the elements K and S making P (N) into a pca.

The application in the above example is actually a total operation. An analogous
pca whose application is genuinely partial is due to Kleene [KV65]:

Example 2.19 (Kleene’s second model, K2). Somewhat similar to the above example,
we can define an application on the set NN of functions on N that makes it into
a pca K2, known as Kleene’s second model. The encodings required for the appli-
cation map are a bit involved, see e.g. [Bau23, p. 30 and Section 2.1.2] or [vOos08,
Section 1.4.3], but we point out that this pca is closely related to continuous functions
NN → NN where we equip NN with the Baire topology.

Another example comes from domain theory [AC98] and is also due to Scott [Sco72]:

Example 2.20 (Scott’s domain model of the untyped 𝜆-calculus). The carrier of
this pca is Scott’s domain 𝐷∞ which is a model of the untyped 𝜆-calculus via the
isomorphism Φ : 𝐷∞ � 𝐷∞

𝐷∞ of domains. The map Φ sends an element 𝜎 ∈ 𝐷∞ to a
Scott continuous function Φ(𝜎) : 𝐷∞ → 𝐷∞. We define application on 𝐷∞ as:

(𝜎, 𝜏) ↦→ Φ(𝜎) (𝜏).

Finally, we mention that Scott’s graph model and Kleene’s second model have
effective variations that are examples of elementary sub-pcas.

Definition 2.21 (Elementary sub-pca). An elementary sub-pca of a pca A is a
subset A# ⊆ A that is closed under the application of A and moreover contains the
elements K and S from A.

Example 2.22 (Scott’s r.e. graph model, Sre). We get an elementary sub-pca Sre of S
by restricting ourselves to the recursively enumerable subsets of N.

Example 2.23 (Kleene’s recursive secondmodel,Krec
2). We get an elementary sub-pca

Krec
2 of K2 by restricting ourselves to the total recursive functions N→ N.

For even more examples of pcas, see [vOos08, Section 1.4].

2.4 List of exercises

1. Exercise 2.11: On the fundamental properties of ⟨𝑥⟩. 𝑡 .
2. Exercise 2.14: On the properties of the pairing and projection combinators.
3. Exercise 2.15: On fundamental arithmetic in a pca.
4. Exercise 2.16: On primitive recursion in a pca.
5. Exercise 2.17: On nontriviality of a pca.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Chapter 3

Categories of assemblies

In this chapter we describe the category of assemblies over a fixed but arbitrary pca. In
particular, we show that the category has many desirable properties, for example it
is (locally) cartesian closed and has finite colimits. In fact, the category has sufficient
structure to support an interpretation of first order logic as we explore in Chapter 4.

Roughly speaking, the category of assemblies has sets with computability data as
objects and computable functions between such sets as morphisms. The category of
assemblies as a whole may be thought of as a world of computable mathematics.

Definition 3.1 (Assembly). An assembly over a pca A is a set 𝑋 together with a
relation ⊩ between A and 𝑋 such that for all 𝑥 ∈ 𝑋 , there exists at least one element
a ∈ A with a ⊩ 𝑥 .

The relation a ⊩ 𝑥 is pronounced as “a realizes 𝑥” and we also say that a is a
realizer of 𝑥 . We think of a as an implementation of 𝑥 ∈ 𝑋 in the pca. The requirement
on assemblies is that each element of the set must have at least one implementation.

Notation 3.2 (|𝑋 |, ⊩𝑋). Given an assembly 𝑋 , we will write |𝑋 | for its underlying
set and ⊩𝑋 for its relation between A and |𝑋 |.

Example 3.3 (Assembly of booleans, 2). The assembly of booleans, denoted by 2,
is defined as

|2| B {0, 1} with realizers false ⊩2 0 and true ⊩2 1,

where we recall the booleans false and true from Section 2.2.

Example 3.4 (Assembly of natural numbers,N). The assembly of natural numbers,
denoted by N, is defined as

|N| B N and n ⊩N 𝑛 for each 𝑛 ∈ N,

where we recall from Section 2.2 that n is the 𝑛th Curry numeral.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.1. Morphisms of assemblies 12

Example 3.5. Taking Kleene’s first model as our pca, A = K1, we can consider the
assembly 𝑋 of Turing computable functions:

|𝑋 | B {𝑓 : N→ N | 𝑓 is Turing computable} and 𝑚 ⊩𝑋 𝑓 ⇐⇒ 𝜑𝑚 = 𝑓

where we recall K1 and 𝜑− from Example 2.5. We remark that each 𝑓 ∈ |𝑋 | has
infinitely many realizers.
Notice that, with this realizability relation, we cannot let |𝑋 | be the set of all functions
from N to N, because then the set of realizers of a noncomputable function would be
empty, which is not allowed by the definition of an assembly.

In the literature, assemblies over K1 are sometimes referred to as 𝜔-sets.

3.1 Morphisms of assemblies

As mentioned in the opening paragraphs of this chapter, we wish to organize the
assemblies into a category whose morphisms are “computable” functions between
the underlying sets of assemblies. The computability requirement is made precise by
requiring the existence of a tracker which we define now.

Definition 3.6 (Track). For assemblies 𝑋 and 𝑌 , we say that an element t ∈ A
tracks a function 𝑓 : |𝑋 | → |𝑌 | if for all 𝑥 ∈ |𝑋 | and a ∈ A, if a ⊩𝑋 𝑥 , then t a is
defined and t a ⊩𝑌 𝑓 (𝑥).

Notation 3.7. We will shorten the above to: “t a ⊩𝑌 𝑓 (𝑥) for all 𝑥 ∈ |𝑋 | and a ⊩𝑋 𝑥”.
That is, we implicitly quantify over a and we implicitly assume that t a is defined
when we write t a ⊩𝑌 𝑓 (𝑥).

Definition 3.8 (Assembly map). An assembly map from an assembly 𝑋 to an
assembly 𝑌 is a function 𝑓 : |𝑋 | → |𝑌 | that is tracked by some element.

The existence of a tracker is a required property of an assembly map and not part
of the data, so an assembly map is (unlike an assembly) not a pair of a function and a
tracker; it is just a function for which there exists some tracker.

Proposition 3.9. Assemblies and assembly maps form a category with composition
given by composition of functions on underlying sets.

Proof. We need to verify that composition is well defined, i.e., that if 𝑓 : 𝑋 → 𝑌 and
𝑔 : 𝑌 → 𝑍 are assembly maps, then 𝑔 ◦ 𝑓 : |𝑋 | → |𝑍 | is tracked. Let tf and tg track
𝑓 and 𝑔, respectively. We claim that ⟨𝑥⟩. tg(tf(𝑥)) tracks 𝑔 ◦ 𝑓 . Indeed, the closed
term ⟨𝑥⟩. tg(tf(𝑥)) is defined by construction, and if a ⊩𝑋 𝑥 , then

(⟨𝑥⟩. tg(tf(𝑥))) a = tg(tf a) ⊩𝑍 𝑔(𝑓 (𝑥))

by choice of tf and tg. Moreover, for each assembly𝑋 , we have an identity morphism
on𝑋 given by the identity on |𝑋 | and tracked by I. Finally, associativity of composition
holds because composing functions of sets is associative.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

13 Chapter 3. Categories of assemblies

Notation 3.10 (AsmA). We write AsmA for the category of assemblies over a pca A.

Example 3.11. For the trivial pca A = {★} we recover the familiar category Set of
sets and functions as AsmA.

Example 3.12. A paradigmatic example of a function that is not tracked is obtained
by taking A B K1 and considering the characteristic function of the Halting set:

𝑓 : |N| → |2| with 𝑓 (𝑛) B 1 if 𝜑𝑛 (𝑛) is defined and 𝑓 (𝑛) B 0 otherwise.

The existence of a tracker for this function says exactly that the Halting set is
computable, which it (famously) isn’t.

Remark 3.13 (Relative categories of assemblies). An interesting variation on the
category of assemblies is obtained if we start with a pcaA and an elementary sub-pca
A# (recall Definition 2.21 and Examples 2.22 and 2.23). While we still ask that the
realizers of elements of sets come from the larger pcaA, we now require the trackers
of assembly maps to come from the smaller sub-pca A# instead. The requirements
on an elementary sub-pca guarantee that this is again a category which we call the
relative category of assemblies.
Especially in the typical examples (2.22 and 2.23) where A = K2 and A# = Krec

2 ,
or A = S and A# = Sre, the idea of the relative categories of assemblies is nicely
captured by Bauer’s [Bau06; Bau23, p. 36 and 45] slogan

Topological data — computable functions!

3.2 Categorical constructions

This section shows that the category of assemblies has a rich categorical structure. In par-
ticular, we will construct finite (co)products, exponentials (in slices) and (co)equalizers
of assemblies. This structure is important for the interpretation of first order logic in
assemblies (Chapter 4).But besides this, presenting the required constructions provides
excellent opportunities for improving our understanding of the category of assemblies.

3.2.1 Cartesian closure and equalizers
We start by showing that the category of assemblies is cartesian closed and has equaliz-
ers. The description of the latter will prove useful in our study of regular monomor-
phisms of assemblies (Section 3.4.2).

Proposition 3.14 (Terminal object). The terminal object 1 in AsmA is given by

|1| ≔ {★} and a ⊩1 ★ for all a ∈ A.

Proof. As in Set.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.2. Categorical constructions 14

The pairing and projection combinators from Section 2.2 are essential in the con-
struction of finite products of assemblies.

Proposition 3.15 (Products). The product 𝑋 ×𝑌 of two assemblies 𝑋 and 𝑌 is given by

|𝑋 × 𝑌 | ≔ |𝑋 | × |𝑌 | and pair a b ⊩𝑋×𝑌 (𝑥,𝑦) for a ⊩𝑋 𝑥 and b ⊩𝑌 𝑦.

Proof. The projection maps 𝜋1 : 𝑋 × 𝑌 → 𝑋 and 𝜋2 : 𝑋 × 𝑌 → 𝑌 are given by
(𝑥,𝑦) ↦→ 𝑥 and (𝑥,𝑦) ↦→ 𝑦, and tracked by fst and snd, respectively. Moreover,
every pair of assembly maps 𝑓 : 𝑍 → 𝑋 and 𝑔 : 𝑍 → 𝑌 induces an assembly map
⟨𝑓 , 𝑔⟩ : 𝑍 → 𝑋 × 𝑌 given by 𝑧 ↦→ (𝑓 (𝑧), 𝑔(𝑧)) and tracked by ⟨𝑢⟩. pair(tf𝑢) (tg𝑢)
when tf and tg track 𝑓 and 𝑔, respectively.

So far, the underlying sets of the terminal object and product of two assemblies
have been exactly as in Set, e.g. |𝑋 × 𝑌 | is the product of the two sets |𝑋 | and |𝑌 | in
Set. A notable exception to this is the exponential (a.k.a. “internal hom”): the object
of morphisms between two assemblies. It would not make sense for the carrier of the
exponential of assemblies 𝑋 and 𝑌 to consist of all functions from |𝑋 | to |𝑌 |, because
(a) the exponential is usually similar to the hom-set of morphisms from 𝑋 to 𝑌 , and
(b) it would not be clear what the realizers of an arbitrary function between carriers
should be. Instead, the exponential is given by assembly maps only.

Proposition 3.16 (Exponentials). The exponential 𝑌𝑋 of two assemblies 𝑋 and 𝑌 is
given by��𝑌𝑋 �� ≔ the set of assembly maps from 𝑋 to 𝑌 and t ⊩𝑌𝑋 𝑓 if t tracks 𝑓 .

Proof. The evaluation morphism ev: 𝑌𝑋 ×𝑋 → 𝑌 given by (𝑓 , 𝑥) ↦→ 𝑓 (𝑥) is tracked
by ⟨𝑢⟩. fst𝑢 (snd𝑢). Moreover, every 𝑔 : 𝑍 × 𝑋 → 𝑌 induces a unique assembly map
𝑔 : 𝑍 → 𝑌𝑋 making the diagram

𝑌𝑋 × 𝑋 𝑌

𝑍 × 𝑋

ev

𝑔𝑔× id𝑋

commute. Indeed, there is a unique assignment 𝑔(𝑧) ≔ (𝑥 ↦→ 𝑔(𝑧, 𝑥)) and this
assignment is tracked by ⟨𝑢⟩. (⟨𝑣⟩. tg(pair𝑢 𝑣)) when tg tracks 𝑔.

Thus, we conclude that the category AsmA is cartesian closed.
Finally, we construct equalizers in AsmA. Their description will come in useful

when we study regular monomorphisms in Section 3.4.2. We also note that we obtain
an explicit construction of pullbacks when combined with the construction of products.

Proposition 3.17 (Equalizers). The equalizer 𝐸 of two assembly maps 𝑓 , 𝑔 : 𝑋 → 𝑌 is
given by

|𝐸 | ≔ {𝑥 ∈ |𝑋 | | 𝑓 (𝑥) = 𝑔(𝑥)} and a ⊩𝐸 𝑥 if a ⊩𝑋 𝑥 .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

15 Chapter 3. Categories of assemblies

Proof. On the level of underlying sets, this is as in the category of sets, so it suffices
to show that the relevant functions are tracked. The inclusion 𝑖 : |𝐸 | → |𝑋 | is tracked
by I. Given an assembly map ℎ : 𝐷 → 𝑋 such that 𝑓 ◦ℎ = 𝑔 ◦ℎ, the map ℎ : |𝐷 | → |𝑋 |
factors uniquely through 𝑖 via 𝑘 : |𝐷 | → |𝐸 | which is tracked by any tracker of ℎ.

3.2.2 Coproducts and coequalizers
We now move on to colimits in the category of assemblies.

Proposition 3.18 (Initial object). The initial object 0 in AsmA is given by |0| ≔ ∅
with the empty realizability relation.

Proof. As in Set.

Proposition 3.19 (Coproducts). The coproduct 𝑋 + 𝑌 of two assemblies 𝑋 and 𝑌 is
given by

|𝑋 + 𝑌 | ≔ |𝑋 | + |𝑌 | and left a ⊩𝑋+𝑌 inl(𝑥) for a ⊩𝑋 𝑥,

right b ⊩𝑋+𝑌 inr(𝑦) for b ⊩𝑌 𝑦,

where
left B pair false and right B pair true .

Notice that the disjointness of the coproduct is witnessed by tagging the realizers
with booleans.
Exercise 3.20. Prove Proposition 3.19.
Warning: Carefully check that the closed terms you give for the trackers are defined
and thus give elements of the pca as required.

While there are several interesting assemblies whose carrier is the set {0, 1} (as we
will see in Chapter 4), the following exercise justifies the notation 2 for the assembly of
booleans as defined in Example 3.3.

Exercise 3.21. Show that 1 + 1 � 2.

Finally, we construct coequalizers in AsmA. Their description will be useful in our
study of regular epimorphisms (Section 3.4.1).

Proposition 3.22 (Coequalizers). The coequalizer 𝐶 of assembly maps 𝑓 , 𝑔 : 𝑋 → 𝑌

is given by

|𝐶 | ≔ |𝑌 |/∼ and a ⊩𝐶 [𝑦] if a ⊩𝑌 𝑦
′ for some 𝑦′ ∼ 𝑦,

where ∼ is the least equivalence relation on |𝑌 | generated by 𝑓 (𝑥) ∼ 𝑔(𝑥) for all 𝑥 ∈ |𝑋 |.

Proof. On the level of underlying sets, this is as in the category of sets, so it suffices
to show that the relevant functions are tracked. The quotient map 𝑞 : |𝑌 | → |𝑌 |/∼
is tracked by I. Given an assembly map ℎ : 𝑌 → 𝑍 such that ℎ ◦ 𝑓 = ℎ ◦ 𝑔, the map

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.2. Categorical constructions 16

ℎ : |𝑌 | → |𝑍 | factors uniquely through 𝑞 via 𝑘 : |𝑌 |/∼ → |𝑍 | with 𝑘 ([𝑦]) ≔ ℎ(𝑦).
Moreover, the function 𝑘 is tracked by any tracker of ℎ.

3.2.3 Natural numbers object
The notion of natural numbers can be captured categorically via a universal property
which is due to Lawvere [Law63]. In a category C, a natural numbers object (nno) is
an object 𝑁 equipped with morphisms 𝑧 : 1 → 𝑁 (“zero”) and 𝑠 : 𝑁 → 𝑁 (“successor”)
such that for all triples (𝑋, 𝑥 : 1 → 𝑋, 𝑓 : 𝑋 → 𝑋) there is a uniquemorphism 𝑟 : 𝑁 → 𝑋

(defined by “recursion”) making the diagram

𝑁 𝑁

1 𝑋 𝑋

𝑠

𝑟 𝑟
𝑧

𝑥 𝑓

commute.
Exercise 3.23.

(i) Exhibit N as a nno in Set.
(ii) Exhibit N (from Example 3.4) as a nno in AsmA.

Hint: Use Exercise 2.16.

Looking ahead to Chapter 4 we note that if we wish to interpret arithmetic in the
category of assemblies, then its natural numbers object serves as the interpretation of
the sort of natural numbers.

3.2.4 Dependent products and sums
For the purposes of these lecture notes, a proof sketch of the following result suffices.
We discuss the significance of the result below.

Proposition 3.24. For every morphism 𝑓 : 𝑋 → 𝑌 of assemblies, the pullback functor
𝑓 ∗ : AsmA/𝑌 → AsmA/𝑋 has both a left adjoint

∑
𝑓 and a right adjoint

∏
𝑓 .

Proof sketch. We only describe the constructions and leave the verification of the
details to the interested reader. The left adjoint

∑
𝑓 takes an object 𝑔 : 𝑍 → 𝑋 of

AsmA/𝑋 to the object 𝑓 ◦ 𝑔 of AsmA/𝑌 . On morphisms it is the identity.
The right adjoint

∏
𝑓 is more involved. Given an object 𝑔 : 𝑍 → 𝑋 of AsmA/𝑋 , we

consider the assembly 𝑃 of “fiberwise maps”. It is given by

|𝑃 | ≔ {(𝑦, 𝑠) | 𝑠 : 𝑓 −1(𝑦) → 𝑍 such that ∀(𝑥 ∈ |𝑓 −1(𝑦) |) . 𝑠 (𝑥) ∈ |𝑔−1(𝑥) |},
where

|𝑓 −1(𝑦) | ≔ {𝑥 ∈ |𝑋 | | 𝑓 (𝑥) = 𝑦} with realizers a ⊩𝑓 −1 (𝑦) 𝑥 if a ⊩𝑋 𝑥,

(and similarly for 𝑔−1(𝑥)), and for realizers, we put

pair b t ⊩𝑃 (𝑦, 𝑠) if b ⊩𝑌 𝑦 and t tracks 𝑠 .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

17 Chapter 3. Categories of assemblies

Now, 𝑃 defines an object of AsmA/𝑌 by considering the first projection 𝜋1 : 𝑃 → 𝑌

which is tracked by fst. This projection map is the value of
∏

𝑓 (𝑔). Given a morphism

𝑍 𝑊

𝑋

𝑘

𝑔 ℎ

in AsmA/𝑋 , we define
∏

𝑓 (𝑘) :
∏

𝑓 (𝑔) →
∏

𝑓 (ℎ) as a function on sets by (𝑦, 𝑠) ↦→
(𝑦, 𝑘 ◦ 𝑠). This assignment can be shown to be tracked because 𝑘 and 𝑠 are.

The above proposition is equivalent to the fact that the category AsmA is locally
cartesian closed, i.e. that each slice category AsmA/𝑋 is cartesian closed. One may check
that the exponential 𝑔𝑓 of two objects 𝑓 , 𝑔 ∈ AsmA/𝑋 is given by

∏
𝑓 (𝑓 ∗(𝑔)).

The functors
∑
𝑓 and

∏
𝑓 also satisfy the so-called Beck–Chevalley condition [Str18,

Theorem 4.4], which we don’t spell out here. Intuitively, this condition expresses that∏
and

∑
preserve substitution which is given by pullback (see e.g. [Bau12] for an

informal explanation of the latter).
The adjoints allow us to interpret Martin-Löf dependent type theory, where, as

the notation suggests, dependent sums and products are interpreted using
∑

and
∏
,

respectively. The interested reader may consult [See84; Jac99; Str91] to learn more. We
implicitly rely on (a slight variation of) Proposition 3.24 for the interpretation of first
order logic in the category of assemblies in Chapter 4, where we only need the adjoints
for 𝑓 a projection map. But our presentation in Chapter 4 will spell things out in more
concrete terms, so understanding Proposition 3.24 in detail is not strictly required.

3.3 Relation to the category of sets

We introduce an adjunction

AsmA Set
Γ

∇

⊣

relating the categories of sets and assemblies.

Definition 3.25 (Forgetful functor, Γ). The forgetful functor

Γ : AsmA → Set

is defined by taking an assembly𝑋 to its underlying set |𝑋 | and amorphism 𝑓 : 𝑋 → 𝑌

of assemblies to the map of sets 𝑓 : |𝑋 | → |𝑌 |.

Exercise 3.26. Show that Γ is naturally isomorphic to the global sections functor:

AsmA → Set

𝑋 ↦→ AsmA(1, 𝑋)
𝑓 : 𝑋 → 𝑌 ↦→ post-composition with 𝑓

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.3. Relation to the category of sets 18

To get a functor ∇ : Set → AsmA we need a procedure for turning a set 𝑋 into an
assembly ∇𝑋 . Of course, it makes sense to let |∇(𝑋) | be the set 𝑋 , but what should
the realizers be? In general, there is no reason why an element 𝑥 of an arbitary set 𝑋
should have an “implemention” in the pca A. In light of this, one might be tempted to
say that there are no realizers of 𝑥 . This is not a good idea for two reasons:

(1) It does not define an assembly, because, by definition, every element should have
at least one realizer.

(2) Even if the definition of assembly did allow for an empty set of realizers, then the
tracking requirement on assembly maps would mean that there are no assembly
maps 2 → ∇{0, 1} which does not make sense if ∇{0, 1} is an assembly with no
computational data.

The solution is to say that all elements of A are actually realizers of 𝑥 ∈ |∇(𝑋) |.
The idea is that ∇(𝑋) carries no meaningful computational data, because all elements
have the same set of realizers, so from this perspective all elements of the assembly
look alike and computationally speaking we can’t tell them apart.

Definition 3.27 (∇). We define a functor

∇ : Set → AsmA

by mapping a set 𝑋 to the assembly with carrier 𝑋 and a ⊩𝑋 𝑥 for all elements a ∈ A.
A map of sets 𝑓 : 𝑋 → 𝑌 gets send to 𝑓 and is tracked by I.

Exercise 3.28. Prove that Γ is left adjoint to ∇.

Notation 3.29 (𝜂). We write 𝜂 for the unit of the adjunction Γ ⊢ ∇, i.e. for each
assembly 𝑋 , we have an assembly map

𝜂𝑋 : 𝑋 → ∇|𝑋 |

given by the identity on |𝑋 | and tracked by (for example) I.

In particular, we have an assembly map ∇2 : 2 → ∇{0, 1}. We do not expect a map
in the reverse direction as it would mean that we can compute the relevant boolean
(true or false) without receiving any relevant computational input. Indeed, we have:

Exercise 3.30. Show that there are no assembly maps 𝑓 : ∇{0, 1} → 2 in AsmA
unless the pca A is trivial.
Hint: Use Exercise 2.17.

To complete the section, the following exercises ask you to check that the functors
Γ and ∇ do not have other adjoints.

Exercise 3.31. Show that ∇ does not have a right adjoint when A is nontrivial.

Exercise 3.32 (cf. [Zoe18, Lemma 5.1.7]). We assume that the pca A is nontrivial.
The aim of these exercises is to conclude that Γ does not have a left adjoint.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

19 Chapter 3. Categories of assemblies

(i) Show that, for any object 𝑋 ∈ AsmA, there are at most |A|-many arrows from
𝑋 to 2.

(ii) Use the above to prove that the A-indexed coproduct of copies of 1 does not
exist in AsmA.

(iii) Conclude that Γ does not have a left adjoint.

The functor ∇ plays an important role in classifying regular monomorphisms and
recovering classical logic within realizability logic as explained in Chapter 4.

3.4 Epimorphisms and monomorphisms

Epimorphisms and monomorphisms and their regular counterparts will be very impor-
tant to the logical side of the category of assemblies (see Chapter 4), but studying them
also provides excellent opportunities for improving our understanding and intuition of
assemblies in general.

Proposition 3.33 (Characterization of epis and monos). For an assembly map 𝑓 , we
have the following equivalences:

(i) 𝑓 : 𝑋 → 𝑌 is an epimorphism if and only if 𝑓 : |𝑋 | → |𝑌 | is surjective;
(ii) 𝑓 : 𝑋 → 𝑌 is a monomorphism if and only if 𝑓 : |𝑋 | → |𝑌 | is injective.

Proof. Surjectivity is clearly sufficient to force an assembly map to be epi. For the
converse, we use that Γ preserves epimorphisms as it is a left adjointa. Thus, if
𝑓 : |𝑋 | → |𝑌 | is an epi, then Γ(𝑓) must be an epi in Set, i.e. a surjection.
For the characterization of monomorphisms, injectivity is again clearly sufficient.
Conversely, it follows from our construction of products and equalizers that Γ pre-
serves monomorphisms (use the dual of a). Thus, if 𝑓 : |𝑋 | → |𝑌 | is a mono, then
Γ(𝑓) must be a mono in Set, i.e. an injection.

aIn any category, a morphism 𝑓 is an epi if and only if the square
𝑋 𝑌

𝑌 𝑌

𝑓

𝑓 id
id

is a pushout. Since

left adjoints preserve colimits (and identities), they also preserve epimorphisms.

At first sight, it is perhaps surprising that being an epimorphism or monomorphism
depends solely on the underlying function of an assembly map with the realizers playing
no role. The situation is very different for regular epimorphisms and monomorphisms.

3.4.1 Regular epimorphisms
Recall that a morphism 𝑓 : 𝑋 → 𝑌 is a regular epimorphism if it fits in a coequalizer
diagram

𝑍 𝑋 𝑌
𝑔

ℎ

𝑓

for some morphisms 𝑔 and ℎ.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.4. Epimorphisms and monomorphisms 20

Exercise 3.34 (Characterization of regular epimorphisms). Prove that an assembly
map 𝑓 : 𝑋 → 𝑌 is a regular epimorphism if and only if 𝑓 : |𝑋 | → |𝑌 | is surjective and
there exists an element s ∈ A such that for all 𝑦 ∈ |𝑌 | and 𝑏 ⊩𝑌 𝑦, we have s b ⊩𝑋 𝑥
for some 𝑥 ∈ |𝑋 | with 𝑓 (𝑥) = 𝑦.

The element s in Exercise 3.34 effectively witnesses the surjectivity of 𝑓 .

Exercise 3.35. Give an example of an epimorphism in AsmA which is not regular
(for a nontrivial pca A).

Proposition 3.36. The regular epimorphisms in AsmA are stable under pullback along
arbitrary assembly maps.

Proof. Consider a pullback diagram

𝑋 ×𝑍 𝑌 𝑌

𝑋 𝑍

⌟

𝜋2

𝜋1 𝑔

𝑓

with 𝑔 a regular epimorphism. We must show that 𝜋1 is also a regular epi. From the
description of equalizers and products we can compute that

|𝑋 ×𝑍 𝑌 | ≔ {(𝑥,𝑦) | 𝑓 (𝑥) = 𝑔(𝑦)} with realizers
pair a b ⊩𝑋×𝑍𝑌 (𝑥,𝑦) for a ⊩𝑋 𝑥 and b ⊩𝑌 𝑦.

By assumption and Exercise 3.34 there exists an element 𝑠 ∈ A such that for every
𝑧 ∈ |𝑍 | and c ⊩𝑍 𝑧 we have s c ⊩𝑌 𝑦 for some 𝑦 ∈ |𝑌 | with 𝑔(𝑦) = 𝑧. Now if t tracks
𝑓 and we put

s’ ≔ ⟨𝑢⟩. pair𝑢 (s(t𝑢)),
then for every 𝑥 ∈ |𝑋 | and a ⊩𝑋 𝑥 we have s’ a ⊩𝑋×𝑍𝑌 (𝑥,𝑦) for some 𝑦 ∈ |𝑌 | with
𝑔(𝑦) = 𝑓 (𝑥). Hence, 𝜋1 is a regular epi by Exercise 3.34, as desired.

The importance of Proposition 3.36 is that, together with Proposition 3.24, it gives
the category of assemblies enough structure to interpret first order logic as we explore
in the next chapter.

We recall that in the category of sets, every function 𝑓 : 𝐴 → 𝐵 factors as a regular
epimorphism (= surjection) followed by a monomorphism (= injection):

𝐴 𝐵

im(𝑓)𝑓

𝑓

where im(𝑓) ≔ {𝑏 ∈ 𝐵 | ∃(𝑎 ∈ 𝐴).𝑓 (𝑎) = 𝑏}.
The same is true in any category with finite limits and pullback stable regular

epimorphisms. For the category of assemblies it is also straightforward to calculate the
factorization directly, as we ask you to verify:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

21 Chapter 3. Categories of assemblies

Exercise 3.37. Given an assembly map 𝑓 : 𝑋 → 𝑌 , show how to factor it in AsmA
as a regular epimorphism followed by a monomorphism.

3.4.2 Regular monomorphisms
There is also a nice characterization of regular monomorphisms which, as we explain in
the next chapter, represent classical (or more precisely, ¬¬-stable) subsets of assemblies.

Recall that a morphism 𝑓 : 𝑋 → 𝑌 is a regular monomorphism if it fits in an
equalizer diagram

𝑋 𝑌 𝑍
𝑓 𝑔

ℎ

for some morphisms 𝑔 and ℎ.

Exercise 3.38 (Characterization of regular monomorphisms). Prove that an assembly
map 𝑓 : 𝑋 → 𝑌 is a regular monomorphism if and only if 𝑓 : |𝑋 | → |𝑌 | is injective
and there exists an element i ∈ A such that i b ⊩𝑋 𝑥 for all 𝑥 ∈ |𝑋 | and b ⊩𝑌 𝑓 (𝑥).

Notice that the element i in Exercise 3.38 acts like an effective witness of left-
cancellability of 𝑓 : from a realizer of 𝑓 (𝑥) we can effectively find a realizer of 𝑥 .

Exercise 3.39. Give an example of a monomorphism in AsmA which is not regular
(for a nontrivial pca A).

3.5 From pcas to assemblies, functorially

In this chapter we constructed a category of assemblies AsmA over an arbitrary pca A.
The construction A ↦→ AsmA is actually functorial in a suitable sense. To make this
precise, we need a category of pcas. On first thought, one might think that a suitable
notion of a morphism between pcas A and B is a map on the underlying sets of the
pcas that preserves application. This turns out not to be an appropriate notion of
morphism however. It would be if a pca should be thought of as an algebraic gadget,
but it shouldn’t: for example, the application map is associative if and only if the pca is
trivial [vOos08, Proposition 1.3.1].

Instead, an appropriate notion of morphism, due to Longley [Lon95], is that of an
applicative morphism (re-branded to simulation in [Bau23]). For lack of space, we will
not go into the details here and instead give some relevant pointers to the literature.

The intuition is that a morphism between pcas from A to B should assign to each
program a ∈ A one or more programs in B that simulate a in B. Moreover, similar to the
requirement that assembly maps are tracked, the simulation should have an effective
witness in the pca B. With applicative morphisms between them we get a category of
pcas. In fact, this category is preorder-enriched, so we even get a 2-category.

Now, one can show that every applicative morphism 𝛾 : A → B gives rise to a
functor 𝐹𝛾 : AsmA → AsmB. The induced functor 𝐹𝛾 is regular (i.e. it preserves finite
limits and regular epis) and is a so-called 𝑆-functor : it is the identity on underlying sets
and functions. In fact, every such functor arises from an applicative morphism. In the
end, we actually get an equivalence of 2-categories [vOos08, Theorem 1.6.2] between:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

3.6. List of exercises 22

• the 2-category of pcas with applicative morphisms and their preorders, and
• the 2-category of categories of assemblies with regular 𝑆-functors between them
and (necessarily unique) natural transformations between the functors.

3.6 List of exercises

1. Exercise 3.20: On the universal property of coproducts.
2. Exercise 3.21: On the assembly of booleans as the coproduct 1 + 1.
3. Exercise 3.23: On natural numbers objects.
4. Exercise 3.26: On the forgetful functor Γ and the global sections functor.
5. Exercise 3.26: On Γ being a left adjoint to ∇.
6. Exercise 3.30: On the nonexistence of assembly maps ∇{0, 1} → 2.
7. Exercise 3.31: On the nonexistence of a right adjoint to ∇.
8. Exercise 3.32: On the nonexistence of a left adjoint to Γ.
9. Exercise 3.34: On characterizing the regular epimorphisms.
10. Exercise 3.35: On an example of an epimorphism which is not a regular.
11. Exercise 3.37: On factoring an assembly map as a regular epi followed by a mono.
12. Exercise 3.38: On characterizing the regular monomorphisms.
13. Exercise 3.39: On an example of a monomorphism which is not a regular.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Chapter 4

The realizability interpretation of
logic

In this chapter we explore some of the logical aspects of the category of assemblies
over a pca. The theory of categorical logic informs us that any sufficiently structured
category supports an interpretation of logic. For example, in a regular category we can
interpret a fragment of first order logic known as regular logic, while we can interpret
higher order logic in a topos. We include a brief introduction to categorical logic in
Section 4.1, but for a proper treatment we refer the reader to the textbooks [FS90] (first
order logic), [LS86; MM94] (higher order logic), or the lecture notes [vOos16] (regular
logic) and [Str04] (higher order logic). The key point is this:

Categorical logic gives us a uniform way of interpreting logic in any suffi-
ciently structured category.

Following Bauer’s exposition in [Bau23] we describe how to interpret logic in the
category of assemblies via the notion of a realizability predicate on an assembly. We em-
phasize that this is not some ad-hoc interpretation. Rather, it is a convenient unfolding
of the uniform interpretation given to us by categorical logic. The structure established
on the category of assemblies in Chapter 3 allows us to interpret full first order logic.

Having said all of this, the reader who finds themselves ill at ease with categorical
logic can find solace in the fact that the particular—realizability—interpretation of logic
is spelled out in more elementary terms in Section 4.2 and Section 4.2.2 in particular.

After establishing that the logic in the category of assemblies is given by realizability
predicates, Section 4.3 isolates three particular classes of such predicates by logical
means. These are the ¬¬-stable, decidable and semidecidable realizability predicates.
In assemblies over Kleene’s first model these are shown to respectively correspond to
ordinary (classical) subsets, computable subsets and computably enumerable subsets.

Finally, Section 4.4 illustrates the intimate connections between logic, computabil-
ity and categories via synthetic computability theory [Bau06]. Specifically, we give a
synthetic proof of a fundamental result in computability theory: a subset of the natural
numbers is computable if and only if it and its complement are computably enumerable.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.1. Categorical logic in a nutshell 24

4.1 Categorical logic in a nutshell

Suppose we have a formula 𝜙 (𝑥) with a free variable 𝑥 . If we interpret 𝑥 to range over
some set 𝑋 , then 𝜙 (𝑥) determines a subset of 𝑋 , namely {𝑥 ∈ 𝑋 | 𝜙 (𝑥)}, the subset of
elements 𝑥 of 𝑋 for which 𝜙 (𝑥) holds. A conjunction of formulas also determines a
subset: the intersection of the subsets determined by 𝜙 and𝜓 :

{𝑥 ∈ 𝑋 | 𝜙 (𝑥) ∧𝜓 (𝑥)} = {𝑥 ∈ 𝑋 | 𝜙 (𝑥)} ∩ {𝑥 ∈ 𝑋 | 𝜓 (𝑥)}.

Similarly, with conjunction and union of course. The formulas ⊤ (truth) and ⊥ (falsity)
determine the two extreme subsets 𝑋 and ∅, respectively. The subsets of 𝑋 are a partial
order when equipped with the subset relation. Its greatest element is𝑋 , its least element
is ∅, the intersection of two subsets is the greatest lower bound of the two subsets,
while the least upper bound is given by the union. Thus, we see that we can interpret a
formula as a subset and that the logical connectives are interpreted using operations
(characterized by universal properties) on subsets.

From subsets to monos In categorical logic, we generalize this from the category of
sets to arbitrary, sufficiently rich categories. Instead of subsets we consider monomor-
phisms, or really subobjects1. The monos into a fixed object 𝑋 in a category form a
preorder by setting (𝑀 ↩→ 𝑋) ⪯ (𝑁 ↩→ 𝑋) if we have a map 𝑀 → 𝑁 making the
triangle

𝑀 𝑋

𝑁

commute. (One can check that the map𝑀 → 𝑁 is necessarily a mono.)
This preorder generalizes the subsets with their subset relation. The relation ⪯

is reflexive and transitive, but not necessarily antisymmetric. But we can consider
the poset reflection of this preorder, where we quotient such that monos𝑀 ↩→ 𝑋 and
𝑁 ↩→ 𝑋 are identified when 𝑀 ⪯ 𝑁 and 𝑁 ⪯ 𝑀 both hold. One may check that an
element of the resulting poset is precisely a subobject.

Logical connectives andmonos The formula⊤ is interpreted as the greatest element
in the preorder of monos into 𝑋 , i.e. as id𝑋 : 𝑋 → 𝑋 . The formula ⊥ is interpreted as
the least element in the preorder of monos into 𝑋 , which in a cartesian closed category
with an initial object 0 (like the category of assemblies) indeed exists and is given by
the unique map2 0 → 𝑋 .

Following the universal properties of subsets, we deduce that conjunction should
be interpreted using the greatest lower bound in the preorder of monos. Assuming our
category has pullbacks, one can check that taking the pullback

𝑀 ∧ 𝑁 𝑁

𝑀 𝑋

⌟

1A subobject of 𝑋 is a monomorphism into 𝑋 up to isomorphism in the slice category over 𝑋 .
2The proof that this map is indeed a mono is short, but surprisingly tricky. The interested reader

might like to prove it for themselves. In case they get stuck, see [McL92, Theorem 6.3] or [Fav24].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

25 Chapter 4. The realizability interpretation of logic

of two monos into 𝑋 gives their greatest lower bound𝑀 ∧ 𝑁 ↩→ 𝑋 . (In the diagram all
maps are monos because those are stable under pullback.)

Interpreting disjunction is slightly more involved: for two monos𝑀, 𝑁 ↩→ 𝑋 the
induced map 𝑀 + 𝑁 → 𝑋 from the coproduct is not in general a mono. Instead, we
require that the category factors any map as a regular epi followed by a mono (like
we have in the category of assemblies by Exercise 3.37) and we factor𝑀 + 𝑁 → 𝑋 as
𝑀 + 𝑁 ↠ 𝑀 ∨ 𝑁 ↩→ 𝑋 .

It is an insight of Lawvere [Law69] that the quantifiers ∀ and ∃ can also be suitably
captured by universal properties using adjunctions. Any morphism of the category
𝑓 : 𝑋 → 𝑌 induces a monotone map 𝑓 ∗ : Mono(𝑌) → Mono(𝑋) on the preorders of
monos into 𝑌 and 𝑋 respectively by pulling back along 𝑓 . Viewing these preorders as
categories, themap 𝑓 ∗ has a right adjoint ∃𝑓 by defining ∃𝑓 (𝑚) to be themonomorphism
part of the factorization of 𝑓 ◦𝑚 as a regular epi followed by a mono. For the universal
quantifier, we then require 𝑓 ∗ to also have a left adjoint which we denote by ∀𝑓 . For
locally cartesian closed categories, like the category of assemblies (Proposition 3.24),
we already have a left adjoint

∏
𝑓 to the pullback functor which, being a left adjoint,

preserves monos and hence restricts to a monotone map on the preorders of monos.

Sorts, relations and terms We assume to be given a many-sorted language. This
means that variables, function symbols and relation symbols are typed by an assignment
of sorts. The sort of a variable indicates what it is supposed to range over. Function
symbols have a source and target sort and relation symbols have as many sorts as their
arity. For example, if we are interested in arithmetic we might have a single sort 𝑁
for the natural numbers and a function symbol 𝑠 for the successor map with source
and target sort 𝑁 . We can build terms by e.g. applying a function symbol to a variable,
subject to the condition that the sorts match up of course.

An interpretation of the language in the category is given by several assignments:

• each sort 𝑋 is interpreted as an object J𝑋 K of the category;
• each function symbol 𝑓 with source sort 𝑆 and target sort 𝑇 is interpreted as an
arrow J𝑓 K : J𝑆K → J𝑇 K in the category;

• each relation symbol 𝑅 with sorts 𝑋1, . . . , 𝑋𝑛 is interpreted as a subobject J𝑅K of
the product J𝑋1K × · · · × J𝑋𝑛K.

We can also interpret equality of two terms 𝑠 and 𝑡 by taking the equalizer of their
interpretations J𝑠K and J𝑡K.

For the example of the language of arithmetic, it would make good sense to require
the category to have a natural numbers object and to use this as the interpretation of
the sort of the natural numbers. If we added sorts 𝑁𝑁 , 𝑁 (𝑁𝑁) , etc. for functions then
we would interpret these using exponentials in a cartesian closed category.

The purpose of the above is that it tells us that a formula 𝜙 (𝑥) with a free variable 𝑥
of sort 𝑋 should be interpreted as a monomorphism into J𝑋 K, i.e. it tells us which object
to consider. The actual interpretation of 𝜙 (𝑥) as mono into J𝑋 K can then be calculated
by recursion on the structure of 𝜙 . (If 𝜙 has more than one free variable, say 𝑥1, . . . , 𝑥𝑛
of sorts 𝑋1, . . . , 𝑋𝑛 , respectively, then we simply consider the object J𝑋1K × · · · × J𝑋𝑛K.)

We write ∀(𝑥 : 𝑋).𝜙 (𝑥) and ∃(𝑥 : 𝑋).𝜙 (𝑥) when quantifying over a sort 𝑋 . The
colon (:) should remind us that these quantifications are interpreted in the category.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.2. Categorical logic in categories of assemblies 26

Internal language Given a category C, a particular language we might consider is
the internal language of C where we add a sort for each object of C, a function symbol
for each morphism of C, and finally a relation symbol for each subobject of C. This
language has a natural interpretation in C: if we added a sort for an object 𝑋 , then the
interpretation of that sort is 𝑋 ; and similarly for the function and relation symbols.
In this case we do not distinguish notationally between the object and the sort, the
function symbol and the morphism, and the relation symbol and the subobject.

Soundness One can show that the poset of subobjects is always a Heyting algebra
whenever the category has sufficient structure (e.g. when it is regular and the adjoint
∀𝑓 exists). As a consequence we have:

Theorem (Soundness theorem). If we can prove𝜓 from 𝜙 in constructive logic, then
J𝜙K ⪯ J𝜓K holds in the poset of subobjects.

The subobjects do not usually form a Boolean algebra, however, which means we do
not have soundness with respect to classical logic, i.e. the law of excluded middle may
not be validated by the interpretation in the category.

4.2 Categorical logic in categories of assemblies

We wish to describe the logical side of the category of assemblies. By Section 4.1 this
means studying the monomorphisms of AsmA. As often, it is advisable to first find a
more convenient description of the monos in this category. For example, in the category
of sets, it is often useful to work with subsets instead of injections, and in the category
of presheaves on a category we similarly often choose to work with subpresheaves.
Following Bauer [Bau23], we choose the preorder of realizability predicates on an
assembly 𝑋 as a convenient substitute for the preorder of monos into 𝑋 .

Definition 4.1 (Realizability predicate). A realizability predicate on an assembly𝑋
is a function |𝑋 | → P (A).

Note that the definition of a realizability predicate makes sense even when 𝑋 is just
a set and not an assembly. However, we will shortly define a perorder on realizability
predicates on an assembly 𝑋 which does make essential use of the realizers of 𝑋 .

Notation 4.2. We will typically write 𝜙 and𝜓 for realizability predicates.

We think of a realizability predicate 𝜙 on 𝑋 as a logical predicate on 𝑋 , and of 𝜙 (𝑥)
as the set of witnesses that 𝜙 holds for the element 𝑥 .

Definition 4.3 (Preorder on realizability predicates, 𝜙 ⪯ 𝜓). For two realizability
predicates 𝜙 and𝜓 on an assembly 𝑋 , we put 𝜙 ⪯ 𝜓 exactly if there exists r ∈ A such
that, for every 𝑥 ∈ |𝑋 |, realizer a ⊩𝑋 𝑥 and witness b ∈ 𝜙 (𝑥), we have r a b ∈ 𝜓 (𝑥),
where we implicitly include the requirement that r a b is defined.

Intuitively, we have 𝜙 ⪯ 𝜓 exactly if we can effectively calculate a witness that𝜓
holds at 𝑥 from a witness that 𝜙 holds at 𝑥 and a realizer of 𝑥 . It is at this last point that
we make essential use of the fact that 𝑋 is an assembly and not just a set.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

27 Chapter 4. The realizability interpretation of logic

It is straightforward (and similar to checking that assemblies with assembly maps
form a category) to check that ⪯ is indeed a preorder, i.e. that it is reflexive and transitive.

Notation 4.4 (Preorder of realizability predicates, P(𝑋)). We write P(𝑋) for the
preorder of realizability predicates on an assembly 𝑋 .

Every monomorphism 𝑚 : 𝑌 ↩→ 𝑋 on an assembly 𝑋 determines a realizability
predicate 𝜙𝑚 on 𝑋 by:

𝜙𝑚 (𝑥) B {a ∈ A | 𝑦 ∈𝑚−1(𝑥) and a ⊩𝑌 𝑦}
= {a ∈ A | ∃(𝑦 ∈ |𝑌 |) . a ⊩𝑌 𝑦 and𝑚(𝑦) = 𝑥}.

Notice that the 𝑦 ∈ |𝑌 | is necessarily unique (if it exists), because𝑚 is injective.
Conversely, every realizability predicate on 𝑋 determines a monomorphism of

assemblies [𝜙] ↩→ 𝑋 via:

| [𝜙] | B {𝑥 ∈ |𝑋 | | 𝜙 (𝑥) ≠ ∅}
pair a b ⊩[𝜙] 𝑥 ⇐⇒ a ⊩𝑋 𝑥 and b ∈ 𝜙 (𝑥),

where the inclusion [𝜙] ↩→ 𝑋 is tracked by fst.

Proposition 4.5. For an assembly𝑋 , the above constructions constitute an isomorphism
between the preorder of monos into 𝑋 and the preorder of realizability predicates on 𝑋 .

Exercise 4.6. Prove the proposition.

4.2.1 The Heyting prealgebra of realizability predicates
We describe the structure on the preorder of realizability predicates required for inter-
preting first order logic. The interpretation itself is detailed in Section 4.2.2.

Definition 4.7. There are two extreme examples of realizability predicates on an
assembly 𝑋 :

⊥(𝑥) B ∅,
⊤(𝑥) B A.

For realizability predicates 𝜙 and 𝜓 on a set 𝑋 , we define three new realizability
predicates on 𝑋 by:

(𝜙 ∧𝜓) (𝑥) B {pair a b | a ∈ 𝜙 (𝑥) and b ∈ 𝜓 (𝑥)},
(𝜙 ∨𝜓) (𝑥) B {left a | a ∈ 𝜙 (𝑥)} ∪ {right b | b ∈ 𝜓 (𝑥)}, (recall Proposition 3.19)
(𝜙 ⇒ 𝜓) (𝑥) B {r ∈ A | for every a ∈ 𝜙 (𝑥) we have r a ∈ 𝜓 (𝑥)}.

Exercise 4.8. Check that ⊥, ⊤, ∧, ∨ and⇒ as defined above make the preorder P(𝑋)
of realizability predicates on an assembly 𝑋 into a Heyting prealgebra.
(For a short definition of the latter: it is a preorder that, when viewed as a category,
has finite (co)limits and exponentials.)

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.2. Categorical logic in categories of assemblies 28

In light of Proposition 4.5 and the fact that the Heyting (pre)algebra operations
are characterized by universal properties we know that the operations defined above
correspond to the relevant operations onmonos. For example, [⊥] is themonomorphism
0 ↩→ 𝑋 and [𝜙 ∧𝜓] is the meet (= greatest lower bound) of the monos [𝜙] and [𝜓].

The interpretation of the quantifiers is given by adjoints, as briefly discussed in
Section 4.1. We explicitly describe these adjoints in terms of the preorder of realizability
predicates, where the natural-bijection-between-hom-sets definition of adjoints simpli-
fies to the condition of a (monotone) Galois connection: a map 𝑙 between preorders is
left adjoint to 𝑟 exactly when 𝑙 (𝑥) ≤ 𝑦 ⇐⇒ 𝑥 ≤ 𝑟 (𝑦) holds.

Proposition 4.9. For an assembly map 𝑓 : 𝑋 → 𝑌 and a realizability predicate 𝜙 on 𝑋 ,
the realizability predicate ∀𝑓 (𝜙) on 𝑌 defined by

∀𝑓 (𝜙) (𝑦) B {t ∈ A | for every 𝑥 ∈ 𝑓 −1(𝑦) and a ⊩𝑋 𝑥,we have t a ∈ 𝜙 (𝑥)}

satisfies
𝑓 ∗(𝜓) ⪯ 𝜙 ⇐⇒ 𝜓 ⪯ ∀𝑓 (𝜙)

for all realizability predicates𝜓 on 𝑌 .
In other words, ∀𝑓 : P(𝑋) → P(𝑌) is a right adjoint to 𝑓 ∗ : P(𝑌) → P(𝑋).

Proof. We spell out what each of 𝑓 ∗(𝜓) ⪯ 𝜙 and𝜓 ⪯ ∀𝑓 (𝜙) amounts to.
The former requires the existence of an element r1 ∈ A such that for every 𝑥 ∈ |𝑋 |,
a ⊩𝑋 𝑥 and c ∈ 𝜓 (𝑓 (𝑥)), we have r1 a c ∈ 𝜙 (𝑥).
The latter requires the existence of an element r2 ∈ A such that for every 𝑦 ∈ |𝑌 |,
b ⊩𝑌 𝑦 and c ∈ 𝜓 (𝑦) we have r2 b c ∈ ∀𝑓 (𝜙) (𝑦). That is, r2 b c should satisfy
r2 b c a ∈ 𝜙 (𝑥) for all a ⊩𝑋 𝑥 with 𝑓 (𝑥) = 𝑦.
Now notice that given such an r1, the program ⟨𝑣𝑤𝑢⟩. r1𝑢𝑤 does the job of r2.
Conversely, given such an r2, the program ⟨𝑢𝑤⟩. r2(tf𝑢)𝑤 𝑢, where tf is a tracker
of 𝑓 , does the job of r1.

For an alternative proof, one may verify that ∀𝑓 (𝜙) is the realizability predicate
determined by the monomorphism

∏
𝑓 ([𝜙]), where we recall

∏
𝑓 from Proposition 3.24.

Proposition 4.10. For an assembly map 𝑓 : 𝑋 → 𝑌 and a realizability predicate 𝜙
on 𝑋 , the realizability predicate ∃𝑓 (𝜙) on 𝑌 defined by

∃𝑓 (𝜙) (𝑦) B
⋃

𝑥∈𝑓 −1 (𝑦)
{pair a b | a ⊩𝑋 𝑥 and b ∈ 𝜙 (𝑥)}

satisfies
∃𝑓 (𝜙) ⪯ 𝜓 ⇐⇒ 𝜙 ⪯ 𝑓 ∗(𝜓)

for all realizability predicates𝜓 on 𝑌 .
In other words, ∃𝑓 : P(𝑋) → P(𝑌) is a left adjoint to 𝑓 ∗ : P(𝑌) → P(𝑋).

Exercise 4.11. Prove the proposition either directly or by checking that ∃𝑓 (𝜙) is the

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

29 Chapter 4. The realizability interpretation of logic

realizability predicate 𝜙𝑚 determined by𝑚 in the factorization of the top composite

[𝜙] 𝑋 𝑌

𝑀

𝑓

𝑚

as a regular epimorphism followed by a monomorphism (recall Exercise 3.37).

In the situations that will be of us interest to us, 𝑓 will also be surjective when
we consider ∀𝑓 and ∃𝑓 . If this is the case, then ∀𝑓 (𝜙) admits a definition that is more
symmetric to that of ∃𝑓 (𝜙), because in this case we have

∀𝑓 (𝜙) (𝑦) =
⋂

𝑥∈𝑓 −1 (𝑦)
{t ∈ A | t a ∈ 𝜙 (𝑥) for all a ⊩𝑋 𝑥}

for any realizability predicate 𝜙 on 𝑋 .

4.2.2 The realizability interpretation of logic
Suppose we are given a formula 𝜙 in a language whose sorts and relation and function
symbols have been assigned an interpretation in AsmA. If 𝜙 has free variables 𝑥1, . . . , 𝑥𝑛
of sorts 𝑋1, . . . , 𝑋𝑛 , then, following the preceding development, we may interpret 𝜙 as a
realizability predicate on the assembly J𝑋1K× · · · × J𝑋𝑛K. We write J𝜙K for this predicate.
Thus, for each ®𝑥 ∈ J𝑋1K × · · · × J𝑋𝑛K, we have a subset J𝜙K(®𝑥) ⊆ A of realizers.

Using the constructions of Section 4.2.1 we prove the following recursive character-
ization of membership of such subsets, where we use ®𝑥 |𝜙 for the restriction of a tuple to
those elements that pertain to the domain of J𝜙K (and similarly for terms).

Proposition 4.12. The realizability predicates arising from first order logic obey

r ∈ J𝑠 = 𝑡K(®𝑥) ⇐⇒ J𝑡K
(
®𝑥 |𝑡
)
= J𝑠K

(
®𝑥 |𝑠
)

r ∈ J⊥K(®𝑥) ⇐⇒ never,

r ∈ J⊤K(®𝑥) ⇐⇒ always,

r ∈ J𝜙 ∧𝜓K(®𝑥) ⇐⇒ fst r ∈ J𝜙K
(
®𝑥 |𝜙

)
and snd r ∈ J𝜓K

(
®𝑥 |𝜓

)
r ∈ J𝜙 ∨𝜓K(®𝑥) ⇐⇒

(
r = left r’ and r’ ∈ J𝜙K

(
®𝑥 |𝜙

))
or(

r = right r’ and r’ ∈ J𝜓K
(
®𝑥 |𝜓

))
,

r ∈ J𝜙 ⇒ 𝜓K(®𝑥) ⇐⇒ if a ∈ J𝜙K
(
®𝑥 |𝜙

)
, then r a ∈ J𝜓K

(
®𝑥 |𝜓

)
,

r ∈ J∀(𝑥 : 𝑋) .𝜙K(®𝑥) ⇐⇒ if 𝑥 ∈ |J𝑋 K| and a ⊩J𝑋K 𝑥, then r a ∈ J𝜙K(®𝑥, 𝑥),

r ∈ J∃(𝑥 : 𝑋).𝜙K(®𝑥) ⇐⇒ there is an 𝑥 ∈ |J𝑋 K| such that
fst r ⊩J𝑋K 𝑥 and snd r ∈ J𝜙K(®𝑥, 𝑥).

A closed formula 𝜙 corresponds to a realizability predicate on 1 and may thus be
identified with a single subset ofA. We say that such a 𝜙 is realized, or valid in AsmA
if we have an element of this subset.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.2. Categorical logic in categories of assemblies 30

If we take A B K1 and consider the language of arithmetic, then we recover
Kleene’s original number realizability [Kle45]. The choice of A B K2 and the language
of analysis recovers Kleene’s function realizability [KV65].

Proposition 4.12 may appear to be a formalization of the so-called Brouwer–Heyting–
Kolmogorov (BHK) interpretation and is often presented as such. However, this is not
historically accurate, see [vOos02, p. 241]. It is also worth pointing out that Kleene’s
realizability predates the Curry–Howard correspondence.

It is worth spelling out the realizability interpretation of (double) negation. Recall
that ¬𝜙 is defined as 𝜙 ⇒ ⊥, so that we have:

Lemma 4.13. The realizability predicates interpreting (double) negations satisfy

r ∈ J¬𝜙K(®𝑥) ⇐⇒ {r ∈ A | J𝜙K(®𝑥) = ∅},
r ∈ J¬¬𝜙K(®𝑥) ⇐⇒ {r ∈ A | J𝜙K(®𝑥) ≠ ∅}.

In particular, we see that J¬¬𝜙K(®𝑥) has no computational content as any element
of A acts as a realizer whenever J𝜙K(®𝑥) is nonempty. This suggests a connection to the
functor ∇ : Set → AsmA (from Section 3.3) which we indeed explore in Section 4.3.1.

We repeat that the realizability interpretation of first order logic—by virtue of the
Heyting prealgebra structure—validates constructive logic, i.e. first order logic without
excluded middle. In fact, as Exercise 4.16 shows, the logic governing realizability
predicates is never classical unless the pca is trivial (in which case the category of
assemblies is the familiar category of sets).

4.2.3 Revisiting (regular) epis and monos
A nice way of getting some familiarity with realizability logic is by proving the following
characterizations of (regular) epis and monos in the internal logic of AsmA. We recall
our convention to use the same letters for both the formal symbol in the internal
language and its interpretation in the category, e.g. if 𝑓 is an assembly map, then we
formally have a function symbol ⌜𝑓 ⌝ in our language with interpretation J⌜𝑓 ⌝K B 𝑓 ;
but we’ll simply reuse the letter 𝑓 for this function symbol.

To appreciate Exercise 4.14, recall that an assembly map is an epi if and only if it’s
surjective, while it’s regular epi if and only if it’s surjective and we have an element inA
that witnesses surjectivity (Exercise 3.34). This difference in computational content is
reflected in the (non)use of the double negation in the first items of the exercise below.

Exercise 4.14. Use Exercises 3.34 and 3.38 to show that for an assembly map
𝑓 : 𝑋 → 𝑌 , we have the following logical characterizations:

(i) 𝑓 is a regular epimorphism if and only if

∀(𝑥 : 𝑋).∃(𝑦 : 𝑌).𝑓 (𝑥) = 𝑦

is realized;
(ii) 𝑓 is an epimorphism if and only if

∀(𝑥 : 𝑋).¬¬(∃(𝑦 : 𝑌).𝑓 (𝑥) = 𝑦)

is realized;

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

31 Chapter 4. The realizability interpretation of logic

(iii) 𝑓 is a monomorphism if and only if

∀(𝑥, 𝑥′ : 𝑋).(𝑓 (𝑥) = 𝑓 (𝑥′) ⇒ 𝑥 = 𝑥′)

is realized;
(iv) 𝑓 is a regular monomorphism if and only if

∀(𝑦 : 𝑌).(¬¬(∃(𝑥 : 𝑋).𝑓 (𝑥) = 𝑦) ⇒ ∃!(𝑥 : 𝑋).𝑓 (𝑥) = 𝑦)

is realized.
The quantifier ∃! means “there exists a unique . . .with . . . ”.
Phrased in English, 𝑓 is a regular monomorphism if and only if the statement

“For all 𝑦, if the primage of 𝑓 at 𝑦 is nonempty, then we can (effec-
tively) find a unique 𝑥 with 𝑓 (𝑥) = 𝑦.”

is realized.

4.3 Two-element assemblies as classifiers

This section introduces three sets of realizability predicates, namely the ¬¬-stable,
decidable and semidecidable predicates. These are shown to be classified by three
different assemblies all of which have the set {0, 1} as their carriers, but different
realizers. For example, the ¬¬-stable realizability predicates are classified by ∇{0, 1},
while the assembly 2 of booleans classifies the decidable realizability predicates. We
moreover give explicit connections to computability theory by specializing to the
category of assemblies over Kleene’s first model.

4.3.1 Double negation stable realizability predicates
We have already seen that the monomorphisms of assemblies are given exactly by
realizability predicates. The regular monos can be characterized as a subset of those
realizability predicates, namely those that are ¬¬-stable.

Definition 4.15 (¬¬-stability). A realizability predicate 𝜙 on an assembly 𝑋 is said
to be ¬¬-stable if

∀(𝑥 : 𝑋).(¬¬𝜙 (𝑥) ⇒ 𝜙 (𝑥))
is realized.

In some of the literature (on topos theory), one also sees the name ¬¬-closed. Bauer
uses the word classical in [Bau23]. This is reasonable terminology, because in classical
logic everything is ¬¬-stable. Moreover, as we will see the ¬¬-stable realizability
predicates correspond to ordinary ‘classical’ subsets.

In realizability, not all predicates are ¬¬-stable, as we ask you to verify by means of
the following exercise:

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.3. Two-element assemblies as classifiers 32

Exercise 4.16. Show that if all realizability predicates of AsmA are ¬¬-stable, then
the pca A is trivial.
Hint: For a, b ∈ A, consider a suitable realizability predicate on ∇{0, 1}.

In fact, we have already seen the ¬¬-stable realizability predicates because (seen as
monomorphisms) they are precisely the regular monos, as we ask you to verify.

Exercise 4.17. Prove that a realizability predicate 𝜙 on an assembly 𝑋 is ¬¬-stable
if and only if its corresponding monomorphism [𝜙] ↩→ 𝑋 is regular.

The ¬¬-stable predicates have no computational content as made precise by the
following result:

Proposition 4.18. Every ¬¬-stable realizability predicate 𝜙 on an assembly 𝑋 is
uniquely determined by a subset 𝐴 ⊆ |𝑋 | such that we have a pullback diagram

[𝜙] ∇𝐴

𝑋 ∇|𝑋 |

⌟

𝜂𝑋

in AsmA.

Proof. Given a ¬¬-stable realizability predicate 𝜙 on 𝑋 , we define

𝐴 B {𝑥 ∈ |𝑋 | | 𝜙 (𝑥) ≠ ∅} = | [𝜙] |.

We may compute the pullback of ∇𝐴 ↩→ ∇|𝑋 | along 𝜂𝑋 as the assembly 𝑃 with

|𝑃 | B 𝐴 and a ⊩𝑃 𝑥 ⇐⇒ 𝑎 ⊩𝑋 𝑥 .

The identity on 𝐴 gives functions between | [𝜙] | and |𝑃 |. It remains to see that they
are tracked. Towards 𝑃 , the map is tracked by fst. In the other direction, we get a
tracker by the assumption that 𝜙 is ¬¬-stable.
For the converse, we note that the above computation indeed shows that such a
pullback corresponds to a ¬¬-stable realizability predicate, because the realizers of
the pullback are just the realizers of 𝑋 .

In fact, the ¬¬-stable realizability predicates arise as pullbacks of a single map:

Proposition 4.19. Every ¬¬-stable realizability predicate 𝜙 on an assembly 𝑋 is
uniquely determined by a map 𝜒 : 𝑋 → ∇{0, 1} such that we have a pullback diagram

[𝜙] 1

𝑋 ∇{0, 1}

⌟
★ ↦→ 1

𝜒

in AsmA.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

33 Chapter 4. The realizability interpretation of logic

Proof. Given 𝐴 ⊆ |𝑋 |, the map 𝜒′ : ∇𝑋 → ∇{0, 1} with 𝜒′(𝑥) =
{
0 if 𝑥 ∉ 𝐴

1 if 𝑥 ∈ 𝐴
gives a pullback square

∇𝐴 1

∇|𝑋 | ∇{0, 1}

⌟
★ ↦→ 1

𝜒 ′

so the result follows from Proposition 4.18 and pullback pasting.

The map 1 → ∇{0, 1} is said to be a classifier for the ¬¬-stable realizability
predicates (subobjects).

Finally, we can also internalize Proposition 4.18 as:

Exercise 4.20. For an assembly 𝑋 , the exponential (∇{0, 1})𝑋 is isomorphic to
∇(P (|𝑋 |)).

4.3.2 Decidable realizability predicates
After the ¬¬-stable realizability predicates we now consider the subset of decidable
realizability predicates. We show these to be classified by the assembly of booleans and
explore the connection to computable subsets in assemblies over Kleene’s first model.

Definition 4.21 (Decidability). A realizability predicate 𝜙 on an assembly 𝑋 is said
to be decidable if

∀(𝑥 : 𝑋).(𝜙 (𝑥) ∨ ¬𝜙 (𝑥))
is realized.

The decidable realizability predicates form a subset of the ¬¬-stable ones.

Lemma 4.22. Every decidable realizability predicate is ¬¬-stable.

Proof. This is a nice opportunity to make use of the soundness of constructive logic, so
that we don’t need to concern ourselves with realizers. That is, we give a constructive
proof that decidability implies ¬¬-stability. If 𝜙 is decidable, then we only have to
consider two cases: if 𝜙 (𝑥) holds, then we trivially get ¬¬𝜙 (𝑥) ⇒ 𝜙 (𝑥); while if
¬𝜙 (𝑥) hold, then the assumption ¬¬𝜙 (𝑥) leads to a contradiction, allowing us to
conclude 𝜙 (𝑥).

Notice that Lemma 4.22 in combination with Exercise 4.16 implies that not all
realizability predicates are decidable (unless the pca is trivial).

Proposition 4.23. The decidable realizability predicates are classified by 2.

Proof. Suppose 𝜙 is a decidable realizability predicate on an assembly 𝑋 . Then the
function 𝜒 : |𝑋 | → |2| defined as

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.3. Two-element assemblies as classifiers 34

𝜒 (𝑥) B
{
0 if 𝜙 (𝑥) = ∅,
1 if 𝜙 (𝑥) ≠ ∅;

is tracked because 𝜙 is decidable, so we get an assembly map 𝜒 : 𝑋 → 2. Computing
the pullback 𝑃 in

𝑃 1

𝑋 2

⌟
★ ↦→ 1

𝜒 ′

we get

|𝑃 | B {𝑥 ∈ |𝑋 | | 𝜙 (𝑥) ≠ ∅} = | [𝜙] | and a ⊩𝑃 𝑥 ⇐⇒ a ⊩𝑋 𝑥 .

But, recalling the proof of Proposition 4.18, we see that 𝑃 and [𝜙] are isomorphic as
𝜙 is ¬¬-stable by Lemma 4.22.
Conversely, given such a pullback [𝜙], the tracker of 𝑋 → 2 witnesses the fact that
∀(𝑥 : 𝑋).¬¬𝜙 (𝑥) ∨ ¬𝜙 (𝑥) is realized. But the square

1 1

2 ∇{0, 1}

⌟
★↦→1

is a pullback, so by pullback pasting we see that [𝜙] is classified by ∇{0, 1}. Therefore,
by Proposition 4.19, the predicate 𝜙 is ¬¬-stable, so in fact ∀(𝑥 : 𝑋).𝜙 (𝑥) ∨ ¬𝜙 (𝑥) is
realized, as desired.

For the remainder of this subsection we takeA B K1, i.e., we work with assemblies
over Kleene’s first model (Example 2.5).

Exercise 4.24. Show that the natural numbers object in AsmK1 is isomorphic to the
assembly N with carrier N and realizers 𝑛 ⊩N 𝑛 for each 𝑛 ∈ N.

Similarly, one may show that in AsmK1 we can take the numbers 0 and 1 as the
respective realizers of the elements 0, 1 ∈ |2| of the assembly of booleans.

Recall from computability theory that a subset 𝐴 ⊆ N is computable if we have a
total (Turing) computable function 𝜒 : N→ N such that 𝜒 (𝑛) = 1 ⇐⇒ 𝑛 ∈ 𝐴. We say
that 𝜒 computes 𝐴. Note: instead of “computable”, some (older) textbooks will use the
terminology “recursive”, or (potentially confusing for us) “decidable”.

The following exercises show that the decidable realizability predicates of AsmK1

correspond precisely to computable subsets.

Exercise 4.25.

(i) Show that the exponential 2N is isomorphic to the assembly C with

|C| B {𝐴 ⊆ N | 𝐴 is computable}, and
𝑛 ⊩C 𝐴 ⇐⇒ 𝜑𝑛 computes 𝐴.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

35 Chapter 4. The realizability interpretation of logic

(ii) Show that there is a bijection between computable subsets and pullback squares

• 1

N 2

⌟
★↦→1

(iii) Conclude that there is a bijection between computable subsets and decidable
realizability predicates on N.

4.3.3 Semidecidable realizability predicates
We introduce a third and final class of realizability predicates: the semidecidable ones.

Definition 4.26 (Semidecidability). A realizability predicate 𝜙 on an assembly 𝑋 is
said to be semidecidable if

∀(𝑥 : 𝑋).∃(𝜎 : 2N).((∃(𝑛 : N).𝜎 (𝑛) = 1) ⇐⇒ 𝜙 (𝑥))

is realized.

Notice the inherent essential asymmetry of semidecidability: the assertion that the
predicate is true can be made by making finitely many observations (keep querying the
sequence until we see a 1); on the other hand, to conclude that the predicate is false we
would need evidence that the sequence is 0 everywhere.

Definition 4.27 (Assembly of semidecidable truth values, Σ). The assembly of
semidecidable truth values, denoted by Σ, has carrier {0, 1} and realizers

r ⊩Σ 𝑏 such that r k ∈ {true, false} for all 𝑘 ∈ N, and we have
(∃(𝑛 ∈ N). r n = true) ⇐⇒ (𝑏 = 1).

Thus, the realizers of Σ are codes for binary sequences of booleans and such a code
for a sequence realizes the element 1 precisely when the sequence is true somewhere.
It should therefore come as no surprise that we have:

Exercise 4.28. The assembly Σ (with distinguished element 1 ∈ |Σ|) classifies the
semidecidable realizability predicates.

For the remainder of this subsection we again work with Kleene’s first model only.

Exercise 4.29. Show that Σ is isomorphic to the assembly Σ′ with carrier {0, 1} and
realizers

𝑛 ⊩Σ′ 0 ⇐⇒ 𝑛 ∉ 𝐾 and 𝑛 ⊩Σ′ 1 ⇐⇒ 𝑛 ∈ 𝐾,
where 𝐾 B {𝑛 ∈ N | 𝜑𝑛 (𝑛) is defined} is the (diagonal) Halting set.
Note: This requires a little bit of computability theory.

It follows from Exercise 4.29 that while both inclusions

2 ↩→ Σ ↩→ ∇{0, 1}

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.3. Two-element assemblies as classifiers 36

are mono and epi, neither of them is regular mono or regular epi, as it would imply
(check!) that membership of the Halting set 𝐾 is computable which it (famously) isn’t.

Recall from computability theory that a subset 𝐴 ⊆ N is computably enumerable
(or c.e. for short) if we have a partial computable function 𝑒 : N→ N such that 𝑒 (𝑛) is
defined if and only if 𝑛 ∈ 𝐴. We say that 𝑒 enumerates𝐴. Note: instead of “computably
enumerable”, some (older) textbooks will use the terminology “recursively enumerable”,
or (potentially confusing for us) “semidecidable”. A standard example of a computably
enumerable subset that is not computable is the Halting set 𝐾 .

The following exercises explore the connections between the semidecidable realiz-
ability predicates of AsmK1 and computably enumerable subsets.

Exercise 4.30. Show that the exponential ΣN is isomorphic to the assembly CE with

|CE| B {𝐴 ⊆ N | 𝐴 is computably enumerable}, and
𝑛 ⊩CE 𝐴 ⇐⇒ 𝜑𝑛 enumerates 𝐴.

Exercise 4.31. Show that for an assembly 𝑋 , we have a bijection between

(i) pullbacks
• 1

𝑋 Σ

⌟
★↦→1

(ii) subsets 𝑋 ′ ⊆ 𝑋 and c.e. subsets 𝐴 ⊆ N such that for all 𝑥 ∈ 𝑋 , we have

𝑥 ∈ 𝑋 ′ ⇒ {𝑛 ∈ N | 𝑛 ⊩𝑋 𝑥} ⊆ 𝐴, and
𝑥 ∉ 𝑋 ′ ⇒ {𝑛 ∈ N | 𝑛 ⊩𝑋 𝑥} ∩𝐴 = ∅.

In particular, taking 𝑋 B N, we see that semidecidable realizability predicates on N
correspond to computably enumerable subsets.

Recall Rice’s Theorem from computability theory:

Theorem (Rice). Suppose that 𝑃 is a subset of N such that

(i) 𝑃 is an index set: if 𝑛 ∈ 𝑃 and 𝜑𝑛 = 𝜑𝑚 , then𝑚 ∈ 𝑃 ;
(ii) 𝑃 is nontrivial, i.e. 𝑃 ≠ ∅ and 𝑃 ≠ N.

Then 𝑃 is not computable.

Rice’s Theorem is often informally phrased as: “every nontrivial semantic property
of partial computable functions is undecidable”.

In the category AsmK1 it has the following incarnation:

Exercise 4.32. Show that the exponential 2CE � 2(ΣN) is isomorphic to 2.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

37 Chapter 4. The realizability interpretation of logic

4.4 Very first steps in synthetic computability theory

We end this chapter by giving an example of synthetic computability theory [Bau06].
At a high level, the idea is to use the internal logic of AsmK1 to develop computability
theory3. The point of restricting to the internal logic is that everything is automatically
computable: you never need to check computability or reason explicitly about Turing
machines for example. A downside (depending on your perspective) is that we have to
give up on using classical logic, because it is not valid in the category as we have seen.

In computability theory, a basic but fundamental result is the following:

Theorem (Post). If 𝐴 ⊆ N and its complement N \𝐴 are computably enumerable, then
𝐴 is computable.

It is not hard to prove this theorem, but we use it here as an illustration of what a
synthetic development might look like.

Theorem 4.33 (Post’s theorem, synthetically). For a realizability predicate 𝜙 on an
assembly 𝑋 ∈ AsmK1 , if 𝜙 and ¬𝜙 are semidecidable, then 𝜙 is decidable.

We prove Theorem 4.33 via two general lemmas. However, the final argument will
need one additional logical axiom, namely Markov’s Principle, that is not provable in
plain constructive logic, but that it is valid in the internal logic of AsmK1 .

Definition 4.34 (Markov’s Principle). The statement that every binary sequence
that is not 0 everywhere must contain a 1 is known asMarkov’s Principle. More
formally, it is the statement:

∀
(
𝜎 : 2N

)
.¬(∀(𝑛 : N).𝜎 (𝑛) = 0) → (∃(𝑛 : N).𝜎 (𝑛) = 1).

Exercise 4.35.

(i) Show that Markov’s Principle is equivalent—over constructive logic—to

∀
(
𝜎 : 2N

)
.¬¬(∃(𝑛 : N).𝜎 (𝑛) = 1) → (∃(𝑛 : N).𝜎 (𝑛) = 1).

(ii) Show that Markov’s Principle is realized if and only if every semidecidable
realizability predicate is ¬¬-stable.

(iii) Show that Markov’s Principle is realized over K1.

As announced, we now prove two general lemmas. Note that the proofs make no
mention of computability and simply restrict to constructively sound reasoning.

Lemma 4.36. If 𝜙 and𝜓 are semidecidable realizability predicates on an assembly 𝑋 ,
then 𝜙 ∨𝜓 is again semidecidable.

Proof. Let 𝑥 ∈ |𝑋 | be arbitrary. We reason purely in constructive logic. Suppose there

3Really, the internal logic of the realizability topos; see Chapter 5.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

4.5. List of exercises 38

exist binary sequences 𝜎 and 𝜏 such that

(∃(𝑛 : N).𝜎 (𝑛) = 1) ⇐⇒ 𝜙 (𝑥) and (∃(𝑛 : N).𝜏 (𝑛) = 1) ⇐⇒ 𝜓 (𝑥) .

Then
(∃(𝑛 : N).(𝜎 ⊕ 𝜏) (𝑛) = 1) ⇐⇒ 𝜙 (𝑥) ∨𝜓 (𝑥),

where 𝜎 ⊕ 𝜏 is the binary sequence obtained by taking the maximum of the outputs
of 𝜎 and 𝜏 at each index.

Lemma 4.37. For any realizability predicate 𝜙 , we have that ¬¬(𝜙 ∨ ¬𝜙) and ⊤ are
equivalent in the preorder of realizability predicates.

Proof. If 𝜙 is a realizability predicate on an assembly 𝑋 , then it suffices to show that
∀(𝑥 : 𝑋).¬¬(𝜙 (𝑥) ∨ ¬𝜙 (𝑥)) is realized. We show that ¬¬(𝑝 ∨ ¬𝑝) holds generally
in constructive logic. Assume ¬(𝑝 ∨ ¬𝑝) with the aim of deriving a contradiction.
Since 𝑝 implies 𝑝 ∨¬𝑝 , we derive ¬𝑝 . But then 𝑝 ∨¬𝑝 holds again which contradicts
our assumption.

We are now ready to prove Theorem 4.33:

Proof of Theorem 4.33. Suppose that 𝜙 and ¬𝜙 are semidecidable. By Lemma 4.36
we know that 𝜙 ∨ ¬𝜙 is again semidecidable. Moreover, by Markov’s Principle, the
predicate 𝜙 ∨¬𝜙 is ¬¬-stable. But ∀(𝑥 : 𝑋).¬¬(𝜙 (𝑥) ∨¬𝜙 (𝑥)) is true by Lemma 4.37,
so we get ∀(𝑥 : 𝑋).𝜙 (𝑥) ∨ ¬𝜙 (𝑥), i.e. 𝜙 is decidable, as desired.

Once again, we stress the purely logical flavour of the above arguments—with the
exception of checking that Markov’s Principle is valid in AsmK1 which should be done
once and can then be taken as an additional axiom to the synthetic development.

Finally, we recover Post’s result by specializing Theorem 4.33 to the assembly of
natural numbers and by exploiting the correspondence between the (semi)decidable re-
alizability predicates and computable/c.e. subsets as explored in Sections 4.3.2 and 4.3.3.

4.5 List of exercises

1. Exercise 4.6: On monomorphisms as realizability predicates and vice versa.
2. Exercise 4.8: On the Heyting prealgebra of realizability predicates.
3. Exercise 4.11: On ∃𝑓 being left adjoint to 𝑓 ∗ as maps between preorders of

realizability predicates.
4. Exercise 4.14: On logical characterizations of (regular) epis and monos.
5. Exercise 4.16: On the fact that not all realizability predicates are ¬¬-stable.
6. Exercise 4.17: On the ¬¬-stable realizability predicates as the regular monos.
7. Exercise 4.20: On exponentials of ∇{0, 1}.
8. Exercise 4.24: On the natural numbers object in AsmK1 .

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

39 Chapter 4. The realizability interpretation of logic

9. Exercise 4.25: On the correspondence between decidable realizability predicates
in AsmK1 and computable subsets of the natural numbers.

10. Exercise 4.28: On the classifier of semidecidable realizability predicates.
11. Exercise 4.29: On the assembly of semidecidable truth values in AsmK1 .
12. Exercise 4.30: On computably enumerable subsets and the exponential of the

assemblies of natural numbers and semidecidable truth values in AsmK1 .
13. Exercise 4.31: On computably enumerable subsets and pullbacks of the assembly

of semidecidable truth values in AsmK1 .
14. Exercise 4.32: On Rice’s theorem in AsmK1 .
15. Exercise 4.35: On Markov’s Principle.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Chapter 5

Epilogue: towards realizability
toposes

In this epilogue we briefly discuss what is perhaps the elephant in the room (pun
intended1): the realizability topos associated to a pca. Indeed, the notion of a realiz-
ability topos is noticeably absent from these notes, essentially because its construction
is relatively complicated compared to the category of assemblies.

Working with an (elementary) topos has some benefits of course. The primary
feature of a topos is the existence of a classifier ⊤ : 1 → Ω for all monomorphisms—the
category of assemblies only has classifiers for special subclasses (e.g. ¬¬-stable or
decidable monos) as we have seen. A consequence is that every monomorphism is
regular (because any mono into 𝑋 is the equalizer of its characteristic map 𝜒 : 𝑋 → Ω

and the composite 𝑋 → 1
⊤−→ Ω). Thus, while regular monos and monos are distinct

in the category of assemblies, the passage to the realizability topos unifies these two
concepts.

Here we briefly sketch the construction of the realizability topos over a pca. The
objects of the realizability topos are partial equivalence relations: sets 𝑋 equipped
with a P (A)-valued predicate ∼ : 𝑋 × 𝑋 → P (A) such that transitivity and symmetry
of ∼ are “realized”. For the latter we set up a Heyting prealgebra of P (A)-valued
predicates similar to that of the realizability predicates in Section 4.2 with the notable
exception that we now work with bare sets, so the elements of our sets are not equipped
with realizers. In fact, while the relation ∼ is not assumed to be reflexive in general,
elements of 𝑥 ∼ 𝑥 are taken as realizers of 𝑥 and evidence that 𝑥 “exists”. In general,
we think of ∼ as an equality predicate on 𝑋 .

A morphism between such pairs (𝑋,∼𝑋) and (𝑌,∼𝑌) is defined to be a P (A)-valued
predicate 𝐹 on 𝑋 × 𝑌 such that the statement that 𝐹 is a strict functional relation are
realized. Strictness means ∀(𝑥 ∈ 𝑋).∀(𝑦 ∈ 𝑌).(𝐹 (𝑥,𝑦) ⇒ 𝑥 ∼𝑋 𝑥 ∧ 𝑦 ∼𝑌 𝑦), that is, 𝐹

1For the uninitiated: Johnstone’s two volume compendium on topos theory is titled Sketches of an
Elephant: A Topos Theory Compendium and commonly referred to as “the Elephant”. A third volume,
covering realizability toposes was planned but has yet to be published.

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

41 Chapter 5. Epilogue: towards realizability toposes

relates only elements that “exist”. Moreover, 𝐹 should respect the equality predicates,
i.e. ∀(𝑥, 𝑥′ ∈ 𝑋).∀(𝑦,𝑦′ ∈ 𝑌).(𝐹 (𝑥,𝑦) ∧ (𝑥 ∼𝑋 𝑥′) ∧ (𝑦 ∼𝑌 𝑦′) ⇒ 𝐹 (𝑥′, 𝑦′)) must be
realized. Finally, 𝐹 should be a functional relation, so we also require single-valuedness
and totality, in the sense that ∀(𝑥 ∈ 𝑋).∀(𝑦,𝑦′ ∈ 𝑌).(𝐹 (𝑥,𝑦) ∧ 𝐹 (𝑥,𝑦′) → 𝑦 ∼𝑌 𝑦′) and
∀(𝑥 ∈ 𝑋).(𝑥 ∼𝑋 𝑥 → ∃(𝑦 ∈ 𝑌).𝐹 (𝑥,𝑦)) are realized.

One can show that the resulting category is indeed a topos and that it houses the
category of assemblies as a full subcategory. In fact, the category of assemblies is
precisely the subcategory of ¬¬-separated objects of the realizability topos, i.e. those
objects 𝑋 for which ∀(𝑥,𝑦 : 𝑋).(¬¬(𝑥 = 𝑦) → (𝑥 = 𝑦)) holds in the internal logic. This
is perhaps foreseen by the “classical” interpretation of equality in the realizability logic
of assemblies (Proposition 4.12).

The realizability topos over Kleene’s first model is known as the effective topos
as was detailed in Hyland’s landmark paper [Hyl82]. The more general theory, known
as tripos theory, was the subject of Pitts’s PhD thesis [Pit81] and his joint paper
with Hyland and Johnstone [HJP80]. The interested reader can consult van Oosten’s
textbook [vOos08], Streicher’s notes [Str18], or Zoethout’s master’s thesis [Zoe18].

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Bibliography

[Abo14] AboAmmar. Add text to Penrose triangle. TEX StackExchange answer.
Aug. 31, 2014. url: https://tex.stackexchange.com/a/198782
(cit. on p. iii).

[AC98] Roberto M. Amadio and Pierre-Louis Curien.
Domains and Lambda-Calculi.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998. doi: 10.1017/cbo9780511983504
(cit. on pp. 3, 10).

[Bau00] Andrej Bauer.
“The Realizability Approach to Computable Analysis and Topology”.
PhD thesis. Carnegie Mellon University, 2000.
Available as technical report CMU-CS-00-164 (cit. on p. 9).

[Bau06] Andrej Bauer. “First Steps in Synthetic Computability Theory”.
In: Proceedings of the 21st Annual Conference on Mathematical Foundations
of Programming Semantics (MFPS XXI).
Ed. by M. Escardó, A. Jung, and M. Mislove. Vol. 155.
Electronic Notes in Theoretical Computer Science. 2006, pp. 5–31.
doi: 10.1016/j.entcs.2005.11.049 (cit. on pp. 13, 23, 37).

[Bau12] Andrej Bauer. Substitution is pullback. Blog post. Sept. 28, 2012. url:
https://math.andrej.com/2012/09/28/substitution-is-pullback/

(cit. on p. 17).
[Bau23] Andrej Bauer. “Notes on realizability”. Lecture notes. May 6, 2023.

url: https://www.andrej.com/zapiski/MGS-2022/notes-on-
realizability.pdf (cit. on pp. 2–5, 9–10, 13, 21, 23, 26, 31).

[BMSS11] Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and
Monika Seisenberger. “Minlog - A Tool for Program Extraction Supporting
Algebras and Coalgebras”.
In: Algebra and Coalgebra in Computer Science: 4th International Conference,
CALCO 2011. Winchester, UK, August/September 2011. Proceedings.
Ed. by Andrea Corradini, Bartek Klin, and Corina Cîrstea. Vol. 6859.
Lecture Notes in Computer Science. Springer, 2011, pp. 393–399.
doi: 10.1007/978-3-642-22944-2_29 (cit. on p. 1).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://tex.stackexchange.com/a/198782
https://doi.org/10.1017/cbo9780511983504
http://reports-archive.adm.cs.cmu.edu/anon/2000/abstracts/00-164.html
https://doi.org/10.1016/j.entcs.2005.11.049
https://math.andrej.com/2012/09/28/substitution-is-pullback/
https://www.andrej.com/zapiski/MGS-2022/notes-on-realizability.pdf
https://www.andrej.com/zapiski/MGS-2022/notes-on-realizability.pdf
https://doi.org/10.1007/978-3-642-22944-2_29
https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

43 Bibliography

[Chh23] Rahul Chhabra. Experiments with Realizability in Univalent Type Theory.
https://rahulc29.github.io/realizability/.
Cubical Agda development accompanying an upcoming BTech thesis.
2023. url: https://github.com/rahulc29/realizability (cit. on p. 3).

[dJon18] Tom de Jong. “Realizability with Scott’s Graph Model”.
Master’s thesis. Utrecht University, 2018. doi: 20.500.12932/29734
(cit. on p. 10).

[dJon23] Tom de Jong. “Domain Theory and Denotational Semantics”.
Lecture notes and exercises for the Midlands Graduate School (MGS), 2–6
April 2023, Birmingham, UK. 2023. url: https:
//github.com/tomdjong/MGS-domain-theory/blob/main/README.md

(cit. on p. 4).
[Esc04] Martín Escardó. “Synthetic Topology: of Data Types and Classical Spaces”.

In: Proceedings of the Workshop on Domain Theoretic Methods for
Probabilistic Processes (DTMPP 2003).
Ed. by J. Desharnais and P. Panangaden. Vol. 87.
Electronic Notes in Theoretical Computer Science. 2004, pp. 21–156.
doi: 10.1016/j.entcs.2004.09.017 (cit. on p. 9).

[Fav24] Naïm Favier. Answer to the Mathematics Stack Exchange post titled “In a
CCC with the initial object, can I have a morphism A -> 0?” Mar. 8, 2024.
url: https://math.stackexchange.com/questions/3977129/in-a-ccc-
with-the-initial-object-can-i-have-a-morphism-a-

0/4877251#4877251 (cit. on p. 24).
[FS90] Peter J. Freyd and Andre Scedrov. Categories, Allegories. Vol. 39.

North-Holland Mathematical Library. Elsevier, 1990.
doi: 10.1016/s0924-6509(08)x7003-5 (cit. on p. 23).

[HJP80] J. M. E. Hyland, P. T. Johnstone, and A. M. Pitts. “Tripos theory”.
In: Mathematical Proceedings of the Cambridge Philosophical Society 88.2
(1980), pp. 205–232. doi: 10.1017/S0305004100057534 (cit. on pp. 1, 41).

[Hyl82] J. M. E. Hyland. “The Effective Topos”.
In: The L. E. J. Brouwer Centenary Symposium: Proceedings of the
Conference held in Noordwijkerhout, 8-13 June, 1981. Vol. 110.
Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Company, 1982, pp. 165–216.
doi: 10.1016/S0049-237X(09)70129-6 (cit. on p. 41).

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Vol. 141.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1999.
doi: 10.1016/s0049-237x(98)x8028-6 (cit. on pp. 3, 17).

[Joh02] Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium.
2 vols. Oxford Logic Guides. Oxford University Press, 2002 (cit. on p. 40).

[Kle45] S. C. Kleene. “On the interpretation of intuitionistic number theory”.
In: Journal of Symbolic Logic 10.4 (1945), pp. 109–124.
doi: 10.2307/2269016 (cit. on pp. 1, 5, 30).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://rahulc29.github.io/realizability/
https://github.com/rahulc29/realizability
https://doi.org/20.500.12932/29734
https://github.com/tomdjong/MGS-domain-theory/blob/main/README.md
https://github.com/tomdjong/MGS-domain-theory/blob/main/README.md
https://doi.org/10.1016/j.entcs.2004.09.017
https://math.stackexchange.com/questions/3977129/in-a-ccc-with-the-initial-object-can-i-have-a-morphism-a-0/4877251#4877251
https://math.stackexchange.com/questions/3977129/in-a-ccc-with-the-initial-object-can-i-have-a-morphism-a-0/4877251#4877251
https://math.stackexchange.com/questions/3977129/in-a-ccc-with-the-initial-object-can-i-have-a-morphism-a-0/4877251#4877251
https://doi.org/10.1016/s0924-6509(08)x7003-5
https://doi.org/10.1017/S0305004100057534
https://doi.org/10.1016/S0049-237X(09)70129-6
https://doi.org/10.1016/s0049-237x(98)x8028-6
https://doi.org/10.2307/2269016
https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Bibliography 44

[KV65] Stephen Cole Kleene and Richard Eugene Vesley. The Foundations of
Intuitionistic Mathematics: Especially in relation to recursive functions.
Vol. 39. Studies in Logic and the Foundations of Mathematics.
North-Holland Publishing Company, 1965.
doi: 10.1016/s0049-237x(08)x7064-8 (cit. on pp. 10, 30).

[Law63] F. William Lawvere.
“Functorial Semantics of Algebraic Theories and Some Algebraic Problems
in the context of Functorial Semantics of Algebraic Theories”.
PhD thesis. Columbia University, 1963.
url: http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html.
Republished in: Reprints in Theory and Applications of Categories, No. 5
(2004), pp. 1–121 (cit. on p. 16).

[Law69] F. William Lawvere. “Adjointness in Foundations”.
In: dialectica 23.3–4 (1969), pp. 281–296.
doi: 10.1111/j.1746-8361.1969.tb01194.x (cit. on p. 25).

[Lie04] Peter Lietz. “From Constructive Mathematics to Computable Analysis via
the Realizability Interpretation”.
PhD thesis. Technischen Universität Darmstadt, 2004.
url: https://tuprints.ulb.tu-darmstadt.de/id/eprint/528
(cit. on p. 9).

[LN15] John Longley and Dag Normann. Higher-Order Computability.
Theory and Applications of Computability. Springer, 2015.
doi: 10.1007/978-3-662-47992-6 (cit. on p. 3).

[Lon95] John R. Longley. “Realizability Toposes and Language Semantics”.
PhD thesis. University of Edinburgh, 1995. doi: 1842/402.
Available as technical report ECS-LFCS-95-332 (cit. on pp. 4, 21).

[LS86] J. Lambek and P. J. Scott. Introduction to Higher-Order Categorical Logic.
Vol. 7. Cambridge studies in advanced mathematics.
Cambridge University Press, 1986 (cit. on p. 23).

[McL92] Colin McLarty. Elementary Categories, Elementary Toposes.
Oxford University Press, 1992.
doi: 10.1093/oso/9780198533924.001.0001 (cit. on p. 24).

[MM94] Saunders Mac Lane and Ieke Moerdijk.
Sheaves in Geometry and Logic: A First Introduction to Topos Theory.
Universitext. Springer, 1994. doi: 10.1007/978-1-4612-0927-0
(cit. on p. 23).

[Pit81] Andrew Mawdesley Pitts. “The Theory of Triposes”.
PhD thesis. University of Cambridge, 1981.
url: https://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf
(cit. on pp. 1, 41).

[Plo77] G. D. Plotkin. “LCF considered as a programming language”.
In: Theoretical Computer Science 5.3 (1977), pp. 223–255.
doi: 10.1016/0304-3975(77)90044-5 (cit. on p. 4).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://doi.org/10.1016/s0049-237x(08)x7064-8
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://doi.org/10.1111/j.1746-8361.1969.tb01194.x
https://tuprints.ulb.tu-darmstadt.de/id/eprint/528
https://doi.org/10.1007/978-3-662-47992-6
https://doi.org/1842/402
https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332/
https://doi.org/10.1093/oso/9780198533924.001.0001
https://doi.org/10.1007/978-1-4612-0927-0
https://www.cl.cam.ac.uk/~amp12/papers/thet/thet.pdf
https://doi.org/10.1016/0304-3975(77)90044-5
https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

45 Bibliography

[Reu99] Bernhard Reus. “Realizability Models for Type Theories”.
In: Tutorial Workshop on Realizability Semantics and Applications
(associated to FLoC’99, the 1999 Federated Logic Conference). Ed. by
Lars Birkedal, Jaap van Oosten, Giuseppe Rosolini, and Dana S. Scott.
Vol. 23. Electronic Notes in Theoretical Computer Science 1. Elsevier, 1999,
pp. 128–158. doi: 10.1016/s1571-0661(04)00108-2 (cit. on p. 3).

[Rey84] John C. Reynolds. “Polymorphism is not set-theoretic”.
In: Semantics of Data Types: International Symposium. Sophia-Antipolis,
France, June 1984. Proceedings.
Ed. by Gilles Kahn, David B. MacQueen, and Gordon Plotkin. Vol. 173.
Lecture Notes in Computer Science. Springer-Verlag, 1984, pp. 145–156.
doi: 10.1007/3-540-13346-1_7 (cit. on p. 1).

[Sch24] M. Schönfinkel. “Über die Bausteine der mathematischen Logik”.
In: Mathematische Annalen 92.3 (1924), pp. 305–316.
doi: 10.1007/BF01448013 (cit. on p. 5).

[Sco72] Dana Scott. “Continuous lattices”.
In: Toposes, Algebraic Geometry and Logic. Ed. by F. W. Lawvere. Vol. 274.
Lecture Notes in Mathematics. Springer, 1972, pp. 97–136.
doi: 10.1007/BFB0073967 (cit. on p. 10).

[Sco76] Dana Scott. “Data Types as Lattices”.
In: SIAM Journal on Computing 5.3 (1976), pp. 522–587.
doi: 10.1137/0205037 (cit. on p. 9).

[See84] R. A. G. Seely. “Locally cartesian closed categories and type theory”.
In: Mathematical Proceedings of the Cambridge Philosophical Society 95.1
(1984), pp. 33–48. doi: 10.1017/s0305004100061284 (cit. on p. 17).

[Smy92] M. B. Smyth. “Topology”. In: Background: Mathematical structures.
Ed. by S. Abramsky, Dov M. Gabbay, and T. S. E. Maibaum. Vol. 1.
Handbook of Logic in Computer Science. Clarendon Press, 1992,
pp. 641–762 (cit. on p. 9).

[Str04] Thomas Streicher.
“Introduction to CATEGORY THEORY and CATEGORICAL LOGIC”.
Lecture notes. 2004. url:
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf

(cit. on p. 23).
[Str18] Thomas Streicher. “Realizability”. Lecture notes. 2018. url: https:

//www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf

(cit. on pp. 2–3, 17, 41).
[Str91] Thomas Streicher. Semantics of Type Theory. Birkhäuser, 1991.

doi: 10.1007/978-1-4612-0433-6 (cit. on p. 17).
[Tro98] A. S. Troelstra. “Realizability”. In: Handbook of Proof Theory.

Ed. by Samuel R. Buss. Vol. 137.
Studies in Logic and the Foundations of Mathematics. Elsevier, 1998,
pp. 407–473. doi: 10.1016/s0049-237x(98)80021-9 (cit. on p. 3).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://doi.org/10.1016/s1571-0661(04)00108-2
https://doi.org/10.1007/3-540-13346-1_7
https://doi.org/10.1007/BF01448013
https://doi.org/10.1007/BFB0073967
https://doi.org/10.1137/0205037
https://doi.org/10.1017/s0305004100061284
https://www2.mathematik.tu-darmstadt.de/~streicher/CTCL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://www2.mathematik.tu-darmstadt.de/~streicher/REAL/REAL.pdf
https://doi.org/10.1007/978-1-4612-0433-6
https://doi.org/10.1016/s0049-237x(98)80021-9
https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

Bibliography 46

[Vic96] Steven Vickers. Topology via Logic.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1996 (cit. on p. 9).

[vOos02] Jaap van Oosten. “Realizability: a historical essay”.
In: Mathematical Structures in Computer Science 12.3 (2002).
doi: 10.1017/s0960129502003626 (cit. on pp. 3, 30).

[vOos08] Jaap van Oosten. Realizability: An Introduction to its Categorical Side.
Ed. by S. Abramsky, S. Artemov, D. M. Gabbay, A. Kechris, A. Pillay, and
R. A. Shore. Vol. 152. Studies in Logic and the Foundations of Mathematics.
Elsevier, 2008. doi: 10.1016/s0049-237X(08)X8001-2
(cit. on pp. 1–3, 7, 10, 21, 41).

[vOos16] Jaap van Oosten. “Basic Category Theory and Topos Theory”.
Lecture notes with exercises. Feb. 2016. url:
https://www.staff.science.uu.nl/~ooste110/syllabi/cattop16.pdf

(cit. on pp. iii, 23).
[Wei00] Klaus Weihrauch. Computable Analysis: An Introduction.

Texts in Theoretical Computer Science. An EATCS Series. Springer, 2000.
doi: 10.1007/978-3-642-56999-9 (cit. on p. 9).

[Zoe18] Jetze Zoethout. “Slices of Realizability Topoi”.
Master’s thesis. Utrecht University, 2018. doi: 20.500.12932/28690
(cit. on pp. 18, 41).

If you find an inaccuracy of any kind, please go to https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies.

https://doi.org/10.1017/s0960129502003626
https://doi.org/10.1016/s0049-237X(08)X8001-2
https://www.staff.science.uu.nl/~ooste110/syllabi/cattop16.pdf
https://doi.org/10.1007/978-3-642-56999-9
https://doi.org/20.500.12932/28690
https://github.com/tomdjong/MGS-categorical-realizability#fixing-inaccuracies

	Abstract
	Acknowledgements
	Contents
	Introduction
	Aims
	Exercises
	References
	Further reading

	Models of computation: partial combinatory algebras
	Basic examples of pcas
	Basic programming in pcas
	More examples of pcas
	List of exercises

	Categories of assemblies
	Morphisms of assemblies
	Categorical constructions
	Cartesian closure and equalizers
	Coproducts and coequalizers
	Natural numbers object
	Dependent products and sums

	Relation to the category of sets
	Epimorphisms and monomorphisms
	Regular epimorphisms
	Regular monomorphisms

	From pcas to assemblies, functorially
	List of exercises

	The realizability interpretation of logic
	Categorical logic in a nutshell
	Categorical logic in categories of assemblies
	The Heyting prealgebra of realizability predicates
	The realizability interpretation of logic
	Revisiting (regular) epis and monos

	Two-element assemblies as classifiers
	Double negation stable realizability predicates
	Decidable realizability predicates
	Semidecidable realizability predicates

	Very first steps in synthetic computability theory
	List of exercises

	Epilogue: towards realizability toposes
	Bibliography

