
T H E TA N G I B L E P R O J E C T
Using a mediated sketching table, tangible objects and modern

web technologies to extend traditional video conferencing

Johan Andersson
Jonas Brood

Patrik Burström
John Ek

Viktor Lindgren
Mattias Lundberg
Jimmy Nyström
Nicklas Nyström

Elias Näslund
Samuel Sjödin
Stefan Sundin

Alexandra Tsampikakis
John Viklund
Karl Öhman

Supervisor: Prof. Peter Parnes

Luleå University of Technology

February 2013

We want to thank Andreas Nilsson1 for helping us build the
workspace setup at LTU, and EIT for sponsoring equipment and our

trip to the conference in Delft.

1 http://www.ltu.se/staff/a/andreas

A B S T R A C T

In this report we discuss a web-based video conferencing prototype
that we built during a project course at Luleå University of Technol-
ogy. The prototype extends traditional video conferencing by adding
a so called mediated sketching table (also referred to as a "shared
workspace") and tangible items. The mediated sketching table pro-
vides a way to share a physical area on your table, allowing multiple
participants to use normal pen and paper to collaborate in new and
intuitive ways. The tangible items are meant to provide new ways to
interact with the system, allowing the user to remove the traditional
mouse and keyboard in an effort to get a more analog and mediated
experience.

Since this project was done in collaboration with the EIT ICT Labs2,
we got the opportunity to go to Delft in the Netherlands and partic-
ipate at the Mediating Presence conference. At the conference, we
demonstrated our prototype and discussed it with the professors and
researchers that were present. Some of those discussions are pre-
sented in this report.

Some theory behind what is required to have a good mediated expe-
rience is also briefly discussed.

2 European Institute of Innovation and Technology, Information and Communication
Technologies

iii

C O N T E N T S

Page
1 introduction 1

1.1 Problem description . 2

1.2 Project goals . 3

1.3 Project requirements . 3

1.4 Project delimitations . 3

1.5 Research questions . 4

1.6 Project transparency . 4

2 example setup 6

3 technologies 7

3.1 HTML5 and WebRTC . 7

3.2 Node.js . 7

3.3 TangibleAPI . 8

3.4 Sifteo . 8

3.5 Sphero . 8

3.6 WebGL . 9

3.7 ArUco . 10

3.8 Pixastic . 10

3.9 Logitech Camera Software 11

3.10 YUIDoc . 11

3.11 Git . 11

4 use cases 12

4.1 Logging in . 12

4.2 Enter a meeting room 13

4.3 Using the shared workspace 13

4.4 Inviting someone . 14

5 system architecture 17

5.1 Tangible devices . 17

5.2 Node.js server . 17

6 result 19

6.1 Lobby . 19

6.2 Room . 19

6.3 Shared Workspace . 20

6.3.1 Setting up a workstation 20

6.3.2 Camera / Projector Calibration 22

6.4 Virtual buttons . 27

6.5 Tangible devices . 27

6.5.1 TangibleAPI . 27

6.5.2 Sifteo . 28

6.5.3 Sphero . 28

6.6 Testing . 29

iv

contents

6.6.1 WebRTC . 29

6.6.2 Projector . 29

6.6.3 Tangibles . 30

7 discussion 31

7.1 Issues . 31

7.1.1 WebRTC . 31

7.1.2 Projector / Camera 31

7.1.3 Tangibles . 32

7.2 Mediating presence conference 33

7.3 Future work and improvements 35

8 conclusion 37

a mediated sketching table - workshop in stock-
holm 38

a.1 Station Setup . 38

a.2 Remote Communication 38

a.3 Camera / Projector Calibration 39

a.4 Wacom Boards . 40

a.5 Hand Projection Positioning 42

bibliography 43

v

1
I N T R O D U C T I O N

As video conferencing systems become commonplace, we face other
issues than just being able to communicate. Issues such as finding
common standards and platforms that make things simpler for the
end user. There are also social issues such as increased friction and
decreased teamwork efficiency. What we really want is a video confer-
encing system that provides the feeling that the other person is sitting
right in front of us and hide the fact that that person might actually
be sitting on the other side of the planet. This "feeling" can be de-
fined in a more scientific term as mediated presence. Two examples
of things that affect this feeling are eye contact and low latency.

We want to be able to share a common workspace to further emulate
sitting at the same table. The shared workspace uses real paper and
pens and is filmed and projected down from above. The reason for
using real paper and pens is that it is easier for the participant and
gives the feeling that you all actually are sitting in the same room and
drawing on the same paper instead of sitting across the globe.

The vision of future video conferencing systems has always been that
everyone is portrayed in their correct size using either big screens or
a projector solution. Small screens where the participants all look in
different directions, does not add anything that voice communication
is not already providing. TelePresence TX9000 [1] is a solution created
by Cisco that addresses this issue. It can be seen in Figure 1.

Microsoft Surface is a product that uses a big multi touch screen as a
board and different kinds of wireless protocol to communicate with
different devices such as, WiFi and Bluetooth. When an object, for
example a camera are touching the surface the photos are automat-
ically transferred to the board and then you can use your fingers to
move them around. An example of a system using Surface is Three’s
company. It is developed at Microsoft in order to explore interac-
tion between more than two people using the Surface together with
real-time video and "explore the subtleties of traditional notions of
identity, awareness, spatial metaphor, and corporeal embodiments as
they relate to three-way collaboration". [21]

Another problem with traditional video conferencing setups is that
the users are still being forced to use a mouse and keyboard for some
actions. The alternative is to limit the user input options. With this
project, we are attempting to remove the need for a mouse and key-

introduction

Figure 1: Cisco TelePresence TX9000 One-Row System.

board by moving the functionality they provide to other interactive
elements, such as gestures and small tangible devices. The camera
that is recording the shared workspace gives us more opportunity for
input, like capturing hand gestures or the pressing of virtual buttons.
The tangible devices provide a similar new source of input and out-
put, but with the distinct property that they are real objects that can
be moved.

The project was initiated by de Greef, T.J, Gullström, C, Handberg, L,
Nefs, H.T, and Parnes, P. in a cooperation between Luleå University of
Technology (LTU), The royal institute of technology (KTH) and Delft
University of Technology (TUD) in February 2012[2]. The project is
funded by the European Institute of Innovation and Technology[4].

1.1 problem description

The problem we set out to solve was to improve the feeling of pres-
ence when communicating over video. As a part of this problem,
we especially focused on enabling architects to work together over
a larger distance. Unlike other businesses where one can open a
shared document or work with different files and uploading them
to a shared repository, architects wish to work with paper and pencil.
We also wanted to make it easy to present and discuss objects on the
desk as easily as if the other person was standing next to you.

Finally, we explored how tangible devices can be used to simplify
interaction with the system by providing buttons and information
displays that do not interfere with what is currently going on on the
computer screen.

2

introduction

1.2 project goals

These are the goals we intended to fulfill:

• Have a working system

• Have a working shared workspace

• Use tangible devices to make things easier and interact on an-
other level, instead of using mouse and keyboard

• Investigate how the system can enhance mediated presence and
thus improve teamwork efficiency

The first three goals are easy to define and measurable. The fourth
goal is harder to measure, so during the conference we discussed it
with the researchers from the various universities in order to get a bet-
ter understanding of how well the system performs in this area.

1.3 project requirements

The project was very open and had few restrictions, where the main
requirements are that the system should use WebRTC for communi-
cation backend, provide a shared workspace and use tangible devices
for user interaction. As much as possible was to be done with HTML5

and JavaScript. This was to promote using native browsers without
any plugins. The system should also give the users a sense of pres-
ence in order to promote the feeling of sitting at the same table and
drawing together. The complete system must be easy to use after the
initial setup.

1.4 project delimitations

We only used functionality that browser manufacturers currently pro-
vided. The exception was drivers and other software required for
the tangible devices. This delimitation is only made since current
browsers do not allow direct access to hardware from the browser.
Since the system requires a ceiling-mounted projector and camera to-
gether with a big screen and open workspace area, we assume that
not every user have the knowledge to be able to set up the system at
their own workstations.

3

introduction

1.5 research questions

A big part of this project was the discussion of how to improve the
mediated presence, that is the feeling of presence and trust. The sim-
plest way to improve the feeling of presence is to have big screens
situated so that it feels like the colleague is sitting across the table
from you. Good image and audio quality is also needed. Construct-
ing a system that lets the users project confidence and gain the trust
of the other users is more complicated. According to Heath et. al,
one issue is obtaining eye contact. This is not automatic since there
is an offset between the camera and the person on the screen and the
problem is made even more complicated when there is more than two
people in the conversation. Using the system has to be smooth and
easy enough for it to be aiding in working together instead of being
a hindrance.

1.6 project transparency

One thing that our supervisor, Peter Parnes usually requests in all his
courses is that the progress of the project should be periodically up-
dated in blog posts. We have therefore during the project published
45 blog posts1 with updates about the progress. The idea was that
anyone should be able to follow the progress of the project, even peo-
ple with no connection to the university, and be able to understand
the blog posts.

Early on in the project we published a gantt chart with our mile-
stones, see Figure 2. We made room to publish five releases during
the project — named Arnold, Jason, Sylvester, Dolph and Chuck from
the action heroes from The Expendables movie [11] — although we
only needed four releases. Fortunately, we did not need to make any
major adjustment to this planning.

Figure 2: Gantt chart with milestones.

1 http://the-tangibles.blogspot.com

4

introduction

Although not a requirement, we also decided to release all of our code
as open source. We genuinely believe that knowledge and academic
research should be public and free for all to use and learn from. The
code is avaliable at2.

2 https://github.com/stefansundin/The-Tangibles

5

2
E X A M P L E S E T U P

In Figure 3 below, you can see the basic setup of the system. Here is
a brief explanation of its different parts:

1. A screen displaying the chat window is placed at the edge of
the table in order to emulate that the other person is sitting at
the same table with the workspace between them.

2. The shared mediated workspace. What is drawn inside this area
is shared between all users. The keyboard and mouse have been
moved aside as they are not the main input devices.

3. The projector is mounted above the workspace.

4. The camera that films the workspace. What is filmed locally is
projected on other users’ workspaces.

5. A second camera filming the user’s upper body. The image data
is sent to other users’ chat windows.

Figure 3: The setup of the system.

3
T E C H N O L O G I E S

This project contains a myriad of different technologies. The main
ones are listed in this section.

3.1 html5 and webrtc

To structure and present information on the World Wide Web, HTML
is used extensively where HTML5 [18][23] is the newest HTML stan-
dard, succeeding HTML4 and XHTML. The main new features that
are interesting for the Tangibles project are the new <video>, <audio>
and <canvas> elements.

WebRTC1 [25] is aiming to become the standard for real-time voice
and video communication in the browser, without the use of plugins.
Work began in April 2011 and as of December 2012 the standard is not
yet completed. A requirement for WebRTC is to use it in conjunction
with HTML5. The main idea is to use peer to peer communication
instead of sending all the information through a central server. Some
sort of server or messaging server is still required in order to set up
the connection. This connection, called PeerConnection, is used to
transmit the real-time video and voice between the connected clients.
The video streams can then be shown using <video> elements.

Our choice to use WebRTC lets us stick to HTML and JavaScript
and removes the need for a powerful server, but limits us to use the
Google Chrome web browser for the time being.

3.2 node .js

Node.js is an event-driven, non-blocking I/O JavaScript framework
[14], built on Chrome’s V8 JavaScript runtime [9]. The reason for us-
ing Node.js is that it makes for easily building fast and scalable net-
work applications. The server is entirely written under the Node.js
framework and uses the WebSocket implementation to handle com-
munication to the clients. The other main purpose of the server is to
handle room logic and also the simplified API for WebRTC.

1 Web Real-Time Communication

technologies

3.3 tangibleapi

TangibleAPI is a gateway that provides a general way of accessing tan-
gible devices connected to your local computer from the web browser.
The API is meant to be general, so you don’t have to write web appli-
cations that targets a specific device, but instead target devices with
specific capabilities. The devices have to have specific drivers written
for them to expose their functionality to the TangibleAPI server.

The TangibleAPI was developed in a master thesis [13] by Leo Jeusset,
which we have continued developing. The original source code was
retrieved from Github [12].

3.4 sifteo

Sifteos are small cubes with a color screen on them [20]. They can
be seen in Figure 4 and 5. A wireless connection allows them to
interact with the computer. Using the connection, it’s possible to
show pictures on the screens. In addition to this, they are also able
to react to certain events and pass them on to the computer. Some
events that are possible is pressing, tilting and placement relative to
each other. The driver for Sifteo uses the TangibleAPI to communicate
to the web browser and was developed during the same master thesis
as the TangibleAPI.

Figure 4: Sifteo cubes.

3.5 sphero

Spheros [16] are small robot balls. They can be seen in Figures 6 and 7.
Spheros can be steered from a smartphone or interacted with from a
computer using a Bluetooth connection. The connection has support
for reporting movement as well as the ability to send commands such
as speed, direction and a color to show by the built-in multi-color
lights.

8

technologies

Figure 5: Sifteo cubes.

Figure 6: Sphero ball.

The SpheroDriver [6], developed at LTU by Nicklas Gavelin as part
of his master thesis [7], is a port of the Sphero Robotix Android API
[17] that enables Sphero to run on a desktop computer. The slightly
modified version of this Robotix Android API is here called Sphero-
Desktop-API [5]. The Sphero-Desktop-API supports a fairly large
amount of commands and functions, such as setting a color, spin,
roll, as well as streaming sensor information. The SpheroDriver has a
basic foundation for communicating with TangibleAPI, enabling the
sphero to be controlled from a website. It was developed in Java with
the Bluecove library for Bluetooth communication. Bluecove makes it
possible to run in the most common operating systems.

3.6 webgl

WebGL [10] is a JavaScript API for graphics rendering in the browser.
It allows for code to be compiled and run on the computer’s graphics

9

technologies

Figure 7: Sphero controlled by a smartphone.

processing unit (GPU), which is more suited for 3D and 2D graphics
manipulation.

In short, a WebGL program consists of a vertex shader, a fragment
shader and input data, such as vertices of a 3D model and texture
images. The vertex shader processes each input vertex, then clipping
and rasterization happens behind the scenes, which turns the surfaces
of the model into fragments ("potential pixels"). The fragment shader
then processes each fragment before the final steps of the graphics
pipeline.

The ability to process pixels efficiently and in parallel is well suited
for doing the types image processing and transformations that is used
for manipulating video streams in this project.

3.7 aruco

ArUco [22] is a library for augmented reality applications based on
OpenCV (Open Source Computer Vision). It is used to detect so
called AR markers (Figure 8) in images, each one representing a num-
ber between zero and 1023. Several markers can be detected at once,
and they can be detected regardless of their orientation.

3.8 pixastic

Pixastic [19] is a JavaScript library which provides a wide variety of
operations on images. It works by utilizing the access of raw pixel
data, which is a feature in the new HTML5 canvas element.

10

technologies

Figure 8: Example of AR markers that can be detected with ArUco.

3.9 logitech camera software

Logitech Camera Software [15] allows you to take high quality pho-
tos and videos with your webcam, activate motion detection and use
face-tracking. It let’s you adjust the settings of your webcam in or-
der to improve the image quality. It can be used together with your
preferred video-calling software.

3.10 yuidoc

YUIDoc [26] is a documentation tool and a Node.js application. By
writing comments in the code in a certain syntax, YUIDoc generates
a number of web pages which are easy to navigate through. It is very
similar to Javadoc, but works with any programming language that
support comment blocks. By using a documentation tool it is easier
and faster to get an overview of the system.

3.11 git

For revision control and code management we use Git. Git is a open
source distributed revision control system [8]. To simplify the setup
we chose to host the repository at Github2.

2 https://github.com/stefansundin/The-Tangibles

11

4
U S E C A S E S

These use cases aim to show some real world usages of the applica-
tion. We have created a few use cases which show the most basic
functionality of the system, while more advanced (and out of scope)
features, such as actual drawing and design, are intentionally omit-
ted.

The usage of the system is based on three persons. First we have
two architects, Alice and Bob, that work in the same company but in
different locations. They often work together on various projects and
want to save travel time by working over a distance instead. The third
person is a project manager, Chuck, who is overseeing this particular
project and is located at a third location.

4.1 logging in

When Alice arrives to the workstation in the morning she starts the
computer and logs in. After that she starts the web browser and
opens the Tangible web page. She is met with the login form shown
in Figure 9, where she enters her name and presses continue. She is
now logged in and is met by a list of rooms and participants shown
in the lobby 10.

Figure 9: Alice logging in to the system.

use cases

Figure 10: Alice in the lobby.

4.2 enter a meeting room

When Alice is in the lobby she sees that Bob is already in the room.
She wants to join the room to be able to speak with Bob. To enter the
room and speak to Bob she simply presses the row representing the
room in the lobby shown in Figure 11.

Figure 11: Alice entering the same room as Bob.

Now Alice is inside the room and is met by a video showing Bob.
The room view is shown in Figure 12.

4.3 using the shared workspace

Since Alice and Bob are architects they want to refine their designs.
Hence they need to open the shared workspace. Since they have a
projector and a camera correctly mounted above the workspace they

13

use cases

Figure 12: Alice entered the same room as Bob.

can just open their workspaces. We will follow Alice, but Bob takes
the exact same steps to start sharing the workspace.

Figure 13: Button that opens the workspace.

Alice begins by starting the projector and making sure the computer
recognizes it. She then presses the open workspace-button, see Figure
13. A new browser window opens that is then moved to the correct
position. She needs to move it so it is seen on the projected image
on the table. She then need to allow the browser to use the camera
and select the correct camera filming the workspace. After allowing
the camera to be used, Alice can start the automatic calibration with
the press of a button. Alice then have the opportunity to adjust the
size of the workspace, and when she is happy with the size she just
presses the virtual button to the left to continue.

When both Alice and Bob have finished these steps, they are able to
see each others shared workspaces. Now they can start refining their
designs together.

4.4 inviting someone

Alice and Bob have discussed the design for a while and decide that
they need to discuss some details with their manager, Chuck. Since
Chuck is also logged in to the system, Bob invites him. Bob presses
the invite button shown in Figure 14. Doing so opens a dialog show-
ing a list of people currently online, seen in Figure 15. He selects
Chuck and presses OK. Now Alice and Bob wait for Chuck to accept
the invitation.

14

use cases

Figure 14: The invite button.

Figure 15: The invite dialog.

On Chuck’s end, a notification with the invitation appears, shown in
Figure 16. He also sees the notification on his tangible devices, as seen
in Figure 17, and can easily accept the invite by pressing the accept
button on the web page or interacting with the tangible devices. After
he has accepted he will join Alice and Bob in the discussion.

15

use cases

Figure 16: The invite notification on the web page.

Figure 17: The invite notification on the tangible devices.

16

5
S Y S T E M A R C H I T E C T U R E

The completed system consists of various parts. The most important
of them are the node.js server that runs separately. Then there is a
few different functionalities based in the browser, such as WebRTC
communication, functionality for the shared workspace and the tan-
gible web interface. All of those communicate with each other using
shared javascript objects.

5.1 tangible devices

Communication from browser to the TangibleAPI are conducted by
standard HTTP queries using a RESTful API. Handling the commu-
nication this way has several advantages, where the most important
is that it does not depend on the use of plugins and works on any
browser with good JavaScript support.

The TangibleAPI server also uses a standardized set of messages to
communicate with its drivers. The respective device drivers are then
responsible to perform the action on the device. An overview of the
tangible devices can be seen in Figure 18.

Figure 18: Overview of the communication over the TangibleAPI.

5.2 node .js server

The server consists of a Node.js server which opens a WebSocket to
each client entering the index page. Using an internally developed
API it is possible to communicate between the clients and the server
via the WebSockets. The API communication is event driven and
is built around packets consisting of one event and a data payload
containing information regarding that event. The server is split into

system architecture

two parts with one handling messages and states regarding clients
and another part dedicated to handling communication for setting
up WebRTC sessions. The system architecture and communication
systems usage is shown in Figure 19.

Figure 19: Overview of the system architecture and communication.

18

6
R E S U LT

This section is divided into separate parts for the different technolo-
gies and concepts of the project. First we will discuss the concept
of lobby and room and then look at the main technologies. We also
present some other things related to the project such as testing and
documentation.

6.1 lobby

When users first enter the site they are prompted to enter a username.
After that they are forwarded to the lobby, see Figure 10. This lobby
is a portal for the site, allowing users to create new rooms, delete
rooms, enter rooms, change their username and also see which users
are participating in which room. Users also get notifications about
incoming calls at the bottom of the page.

6.2 room

A room is the place on the site where users gather up for their con-
versation and shared workspace. There are no imposed limit on the
number of users that may be in a room at once, but due to high re-
source demand on the computer, only a few users are feasible.

Figure 20: A screenshot of a room named Paris, with black areas showing
where the video streams would be positioned when there are two
persons in the room.

result

In the center of the page there are video streams of the other partici-
pants. A small video of yourself is shown in the bottom right. In the
upper right corner there are various buttons to control the site. The
buttons are as follows; view the status of the tangible devices, toggle
the workspace window, toggle the text chat, invite more users to the
room, leave the room, and minimize/maximize the header, maximiz-
ing will also allow the user to change their name. The buttons are
shown in Figure 20 in that order. To start sharing the workspace the
user presses the open workspace-button, moves the new window to
the desired position on the projected image, and finally presses a but-
ton to start the automated calibration process, described in greater
detail in Section 6.3.2.

6.3 shared workspace

The mediated sketching table gives users the illusion of drawing on
the same physical workspace; they can see each other’s drawings
and each other’s hands. Each user of the shared workspace has a
rectangle projected onto the table, the contents of which is shared
with the other users. The goal is to make the shared area look as
close to identical as possible for all users, giving them the feeling of
sitting around the same table. To achieve this, each user records their
shared area and streams the video to the other participants.

6.3.1 Setting up a workstation

The greatest challenge when setting up a workstation is to get the
lighting and all the settings just right. There are a number of vari-
ables that affect the quality of the captured image, the most important
being ambient lighting, projector light intensity and camera settings.
The following sections contain instructions and tips for setting up a
workstation correctly.

6.3.1.1 Environment

• Make sure the windows in the room (if any) has blinds or
drapes, to keep the sunlight out.

• Use a light source that gives an even ambient light (we use flu-
orescent lamps). Directional lighting, such as searchlights or
spotlights may work too, but then it’s important to position
them such that the entire drawing surface is evenly lighted.

• Avoid using glossy paper, as this introduces unnecessary glare
that makes it harder to capture the drawings on camera.

20

result

• Use broad marker pens when drawing. Internet bandwidth
may limit the resolution of incoming video streams, which can
make thinner lines disappear.

6.3.1.2 Camera

• Mount the camera as close as possible to the drawing surface,
just make sure the entire projected image is visible to the cam-
era.

• Use a camera that allows you to change the exposure time,
brightness and autofocus settings. We use Logitech C920 cam-
eras with accompanying software.

• Turn off the camera’s autofocus feature and focus the camera
on the drawing surface.

• Disable the "RightLight" setting in the camera’s control panel.
Otherwise, the camera will adjust some settings automatically.

• Increase the camera’s exposure time until the flickering lines
(discussed in the Issues section) in the captured image disap-
pears.

• To reduce the effects of video feedback and to avoid a constantly
darkening image, increase the brightness setting on the camera
to around 75

• Make sure the gain setting is turned down low. Sometimes, for
reasons we haven’t been able to deduce, this setting changes by
itself when the camera starts.

• The correct camera settings depend on the lighting conditions
and choice of projector, so there will always be some trial and
error to get it right.

• Make sure you save the camera settings before closing the con-
trol panel!

6.3.1.3 Projector

• Mount the projector relatively close to the table, about 1.5 me-
ters.

• Turn down the brightness and contrast on the projectors as low
as possible while still keeping the projected image clearly visi-
ble to the eye. Remember, you want to film as little as possible
of the projected image to avoid video feedback problems, but
still enough to make the projected AR markers visible to the
camera.

21

result

• As was stated in the Issues section of the report, it might be a
good idea to use an LCD projector. An LCD projector redraws
the entire image simultaneously, which may make it easier to
film the projection without having to care about colored stripes.

6.3.2 Camera / Projector Calibration

A lot of work was put into making the camera/projector calibration
process quick and intuitive. The focus of this part of the project
has been to eliminate the need to position the camera and projec-
tor at perfect angles, and instead solve the calibration problems in
software.

Say the workspace area a user wishes to share looks like Figure
21.

Figure 21: Drawings on a user’s local workspace.

When filmed by the camera, the workspace may look something like
Figure 22. The other users need some way to transform the distorted
rectangle in the video stream to fit into their own shared workspace
area.

One way of doing this would be to mount the camera at a perfect
angle to only film the shared area, then project the video straight
onto the others’ shared areas. However, this is very hard, sometimes
impossible, to achieve in practice. Another approach would be to
calculate a perspective matrix based on how the shared area looks
through the camera, then draw the image on a 3D plane that reverses

22

result

Figure 22: The workspace, as seen by the camera.

the distortion. But unless the projector is perfectly mounted and cal-
ibrated, the image will also be skewed by the keystone effect, which
occurs when the projector is not perpendicular to the surface it is
projecting onto. Mismatching resolution between projector and com-
puter can also introduce distortion.

A function is needed to transform an arbitrary point in camera space
to its corresponding point in browser window space. A general equa-
tion system to convert points from one four sided polygon to another
is shown in equation 1.

x ′
n = a1 · xn · yn + a2 · xn + a3 · yn + a4,

y ′
n = b1 · xn · yn + b2 · xn + b3 · yn + b4. (1)

In Figure 23 an example of two rectangles are shown. When attempt-
ing to solve the equations, four points of the shared workspace area
are needed in both coordinate systems. We solve the equations and
find the desired mapping by performing the following steps:

1. Draw an AR marker in the area we wish to share.

2. Project the workspace onto a table.

3. Film the projection.

4. Detect the marker in the video stream (using ArUco) and extract
its corners.

23

result

5. Solve a system of equations to get values for a and b in the
equations above.

Figure 23: Each point (xn,yn) in the camera space is mapped to the corre-
sponding point (x ′

n,y ′
n) in the browser window space.

A problem with this type of transform is that the resulting image gets
distorted, more and more the farther away from the anchor points
(corners) you get. If the camera is mounted at a bad angle, this is very
noticeable. When the transform is applied to the image in Figure 22

then overlaid on the original image, the difference is clearly visible
(Figure 24).

Figure 24: The transformed image overlaid on the original image.

Close to the anchor points the results are acceptable, but near the
center the images differ greatly. If the area is split into four regions,
as seen in Figure 25, we get more anchor points, and a more precise
transform.

24

result

Figure 25: More anchor points used in the transformation (T:Top, M:Middle,
B:Bottom, L:Left, C:Center, R:Right).

Applying a separate transform for each of the four regions results in
Figure 26. They still don’t match up perfectly, but the result is clearly
better. Splitting the rectangle into yet smaller regions produces even
better results. How we take advantage of this is explained in the
calibration steps described below.

6.3.2.1 Step 1: Finding a transform for the entire browser window

First an AR marker is projected over the entire browser window, and
a transform function is found using the method described above. The
reason for doing this is to enable marker and virtual button detection
in the following calibration step - when a resizing marker or hand
movement is detected, its position needs to be translated into browser
coordinates. High precision is not necessary, so one transform is used
for the entire area.

6.3.2.2 Step 2: Resizing and repositioning the workspace

The outlines of a rectangle are projected onto the users desk. This
represents the default workspace area. A virtual button with the text
’Done’ is displayed next to it.

The workspace area can now be resized and repositioned by the user.
Two Sifteo cubes display separate AR markers. As long as they are
seen by the camera, their coordinates (in browser window space) can

25

result

Figure 26: Four transforms applied to the distorted image instead of one.

be calculated using the transform function found in the previous step.
One cube is used to decide the position of the projected rectangle,
and thus the workspace area: if this cube is detected, the rectangle
is moved to its position (the lower left corner of the rectangle is set
to the lower left corner of the cube). The second cube is used to
decide the size of the rectangle. The width of the rectangle is set
to the distance between the cube and the lower left corner of the
rectangle. The height is changed proportionally to the width. When
the virtual button is pressed — or rather, when motion is detected
over the button’s projection — this calibration step is completed, and
the specified rectangle is used as the workspace area.

6.3.2.3 Step 3: Finding a transform for the shared workspace

Next, a function is found to map a point on the workspace in the
image data to a point in our computer model.

The solution used is to split the shared area into smaller regions and
create separate, simple transforms for each of them. Each transform
only manipulates a small part of the video stream, and the results are
combined into one image.

The area is split into four subregions, which are then recursively split
into four subregions, and so on. The recursion depth is variable and
results in 4depth transforms. After some testing, it was decided that
a depth of two, giving 16 subregions, was the best choice, as it gives

26

result

a good enough result while only prolonging the calibration process a
moment.

The mapping found in this final step is sent to all participants of the
shared workspace, who then use it to transform the shared area in
the corresponding user’s video stream to match their shared area in
the browser.

6.4 virtual buttons

A virtual button, see Figure 27, is a button that is projected down on
the workspace that you can push by moving your hand above it. To
be able to push a button a mechanism for detecting movement in the
video stream is needed.

This mechanism is implemented by subtracting two consecutive im-
ages and see what has changed. By calculating the average value of
the three color buffers, R, G and B and subtracting the second image
with the first one we get an image showing the difference. Even if
nothing has changed between two image captures from the camera
stream the images will probably still be slightly different. Therefore
we need a threshold to compare the difference to and if the difference
is over the threshold we set that pixel to white and if it is lower we
set it to black. Now we got a black and white image showing every
change in the image between the two captures. If more than a pre-
defined number of pixels have changed, the button is considered to
have been pushed.

6.5 tangible devices

The code received has been adapted to better fit our particular ap-
plication. The different parts of the application will be described
separately below.

6.5.1 TangibleAPI

The TangibleAPI was originally designed with respect to be able
to have multiple applications use the same set of tangibles. The
programs had to reserve the devices needed and no one else could
use them during that time. This was a problem because if the user
reloaded the website or if the browser crashed, the devices could not
be re-registered. We solved this by allowing objects to be registered
even though they appeared to already be in use. Thus if you establish
a new session, it will regain control of the API and the devices.

27

result

Figure 27: In the upper left corner you can see a virtual button projected
down. The button is showing the incoming video stream from
another user.

6.5.2 Sifteo

The Sifteo driver was reasonably well developed and had support for
all features we wanted in our application. There were some prob-
lems understanding and eliminating some critical bugs during the
beginning of the project. After that the driver has mostly worked as
intended, although there have been some issues with images. The
one that we first had to cope with was the slow transmission and dis-
play of images, as it takes several seconds to load and display a new
image. To some extent we were able to solve the problem by first
showing a text explaining the function before the image is shown.
Another problem with images has been that some are not shown cor-
rectly, sometimes colors will be wrong. We have not been able to
pinpoint and solve this problem, but since we only use static images
this problem has not been a problematic issue.

6.5.3 Sphero

As described in the Technologies section, SpheroDriver already had a
basic foundation for communicating with TangibleAPI, enabling the
sphero to be controlled from a website. The SpheroDriver has been
improved and further developed during this project, enabling new
types of commands to be sent from the website in addition to the

28

result

previously implemented command show_color. The new commands
are spin_left, spin_right and report_events. Each new type of event
required new code in the TangibleAPI as well as JavaScript for the
website, and code for handling these messages in the SpheroDriver.
Reporting of events means that a command is sent to the Sphero to
initiate a stream, sending either its gyro data or its accelerometer
data. The sensor data is sent in full detail all the way to the web
page, allowing for building advanced web page applications where
the sphero can be used, for example as a controller.

In the use case for this project, when a user is being called/invited
by another user to join a room, the sphero starts to spin. The called
user may then push the Sphero to give a positive reply and join the
room.

6.6 testing

During development we have had the need to test our code. No au-
tomatical tests have been developed but rather been tested manually
a bit different for the different parts of the project.

6.6.1 WebRTC

Continuous testing have been done every week together with the
other groups. Most functionality have emerged in an ad hoc man-
ner and therefore specific testing has not been a high priority versus
bug fixing and adaptation to changes made in Google Chrome.

6.6.2 Projector

During the project we set up two stations for testing. This made it
possible to find out things like how the lighting in the room impacts
on the system, and the optimal distance and settings for camera and
projector. It also made it possible to detect any eventual bugs in the
system.

Additionally, a number of programs were developed to test the dif-
ferent steps of the calibration process locally, without the need for a
projector setup.

29

result

6.6.3 Tangibles

Due to the interactive nature of the tangible devices, it was not pos-
sible to develop unit tests to test the full behaviour. Instead a test
page was developed, where some of the core functionality could be
tested. For example, there were buttons to show images and colors
on devices, as well as displaying events from connected objects. This
approach made it easy to see and evaluate the expected behaviour.
In order to test and calibrate the accelerometer and gyro sensor data
streams from the Sphero, a graphical output was created in a test
page, see Figure 28.

Figure 28: Testing output of Sphero sensor streams.

30

7
D I S C U S S I O N

During the project we have, as anticipated, had a few problems. In
this section we intend to discuss them along with provide some pos-
sible solutions. We also intend to provide some examples on how to
let follow-up projects continue. Along with those discussions we also
present some insight from the mediating presence conference.

7.1 issues

The issues are divided by the main technologies used. WebRTC, pro-
jector / camera and tangible devices. Apart from those there are no
major issues we feel the need to discuss.

7.1.1 WebRTC

Some problems that have been observed are that WebRTC and Google
Chrome are constantly changing, which means that there have been
a lot of emergency fixes when the API is changed. Also since the API
is constantly changing and not yet finalized, no documentation of the
JavaScript API has been made other than the W3C Working Draft [24].
There was also an issue occurring from time to time where the video
streams showing the remote participant and the shared workspace
switched back and forth every other video frame.

7.1.2 Projector / Camera

Filming a user’s drawing on the table while simultaneously project-
ing the other users’ drawings on top of it can be troublesome. If too
much of the projected image is captured by the camera, you run into
trouble with video feedback. The other users’ images are filmed again
and sent back, which may cause lines in the image to grow thicker
and thicker if the projected image does not match up perfectly with
the original (which it won’t, since the calibration process does not
produce a perfect result, as previously described). Thus, we want
to capture as little as possible of what’s coming out of the projector
and as much as possible of the physical drawing. However, during

discussion

the automatic calibration we rely on the camera to identify projected
AR markers, so then we want the camera to see the projected image
clearly. To summarize, we want to capture as much as possible during
calibration and as little as possible afterwards. One solution would
be to run the calibration process once, store the resulting transforms
and then change the camera settings to work well when drawing, but
we have chosen to compromise.

Our first workstation was set up in a basement lab with no sunlight,
which meant that we could control the ambient light however we
wanted. This turned out to be more important than we had real-
ized when we tried setting up stations at other locations, with less
ideal lighting conditions. At the conference in Delft, for example,
huge windows let in large amounts of sunlight, which meant that the
lighting conditions changed during the day. This made us to have
to constantly adapt the projector and camera settings, just to get an
acceptable image. Learning from this, we tried to set up the station at
KTH in a completely darkened room. However, with the projector as
the main light source, the lighting will change just as much depend-
ing on what is being projected (dark images, such as the large AR
markers used for workspace calibration, gives much less light than
the large white area of the empty workspace). In the end, what is
needed to avoid having to change camera and projector settings (af-
ter initial calibration) is a room with constant ambient light hitting the
drawing area, at least as intense as the light from the projector. More
specific instructions on how to achieve this is given in the Setting up
a workstation section.

7.1.3 Tangibles

The Sphero-Desktop-API [5] that is used for PC had some limitation
compared to the Sphero driver for Android [17]. One problem was
that when the sphero start to spin then there is no way to stop it. A
workaround for this was to set it to spin with zero speed. The result
is that it stops, but with the side effect that auto balancing is disabled.
That is because auto balancing is not possible when spinning due to
limitations in the implementation. However, this might be just what
one wants when using the Sphero for receiving a call. When pushing
at the Sphero, one might not want the Sphero to roll away far but
to flip back, staying near its place. Another overall issue with the
Sphero-Desktop-API was its lack of documentation and examples. A
fairly large amount of time had to be put on understanding how the
different commands was to be called upon, this applies especially
for the SetStreamCommand, calling the Sphero to stream its sensor
data. If the bits or range of integers in the command was a bit off
the required range, the command would return nothing. Also no

32

discussion

documentation existed explaining how to reach the returned sensor
data, so these two problems both had to be solved by trial-and-error.
Another open issue with the streaming command is that although it
is possible to command the sphero to stream its accelerometer data or
its gyro data, these two can apparently not be sent at the same time.
Nevertheless, this has not been a limiting factor for this project.

One of the main issues with the sifteos is the setup phase, where
the user is required to use a specific developer edition of the sifteo
program. On each run of the sifteo program the user is required to
load the driver and press play. This is something that is easy to forget
and is not working as expected all the time.

7.2 mediating presence conference

The possibility of attending the EIT ICT mediating presence confer-
ence [3] at Delft University of Technology was known to us some
time in advance. At LTU, due to reasons outside our control, we had
only had a few weeks to properly test the setup before departing to
Delft. At TU Delft, we had two days to build up a complete setup
consisting of two stations. Thanks to a very good effort by the peo-
ple at TU Delft, we managed to build and test the stations with time
to spare. On our third day the conference started, and after a few
opening talks, the people attending the conference were able to test
the prototype. Since the conference was held in a public space in the
university, people who was just passing were also welcome to try the
prototype, which many did.

During the conference, we found that the people testing the sketching
table didn’t need much help in understanding how it worked1. Most
people thought it was intuitive and games were invented on the spot.
This is quite different from playing these games online, as the sketch-
ing table is not bound by any rules. This provides the participants the
opportunity to agree on their own rules as they play, with both good
and less good results. The most popular game was undoubtedly tic-
tac-toe. We are very glad that the experience seemed to be intuitive
and fun for most people, and it was not uncommon for a session to
result in laughter2.

As part of a scheduled exercise, Robin Schaeverbeke was teaching
Jimmy Nyström about perspectives using the sketching table, see Fig-
ure 29. Robin went about this exercise as he normally does when his
student is sitting right besides him. During this session we gained
new insights into how the sketching table can be used as a tool for a

1 Everything was already configured and setup correctly.
2 http://www.youtube.com/watch?v=ehyOn7Ixb1Y

33

discussion

student-teacher relationship. There are some specific technical addi-
tions that can be made, such as a viewer-only mode for the sketching
table which can be used by the students. Another important part of a
student-teacher session is eye contact. The teacher wants to be able to
see how the student is responding, while the student might be very
focused on the table3.

The biggest technical problem was that since the sketching table setup
is very light sensitive, and the stations were positioned just besides
two huge windows, the stations needed to be fine-tuned every once
in awhile. Unfortunately, with the current standards, it is not possible
to control webcam settings such as exposure time from the browser.
If this was possible, some parts of the manual tuning could be auto-
mated.

At the conference, the tangible items were mostly unused. Once the
session is up and running, the tangible items don’t have much use
except to simply end the session. This was not too surprising - one of
our biggest struggles has been trying to find a really good use case for
the tangible devices. A feature that we did want to show in Delft that
didn’t succeed during those light conditions was using the Sifteos for
resizing the shared space. The Sifteo cubes can be used to display the
AR markers needed to resize the drawing area for the sketching table.
This failed because the screens of the Sifteo cubes have a lot of glare
and thus reflect a lot of the light coming from the overhead projector,
making it difficult for the camera to recognize the AR markers.

Most of the uses one has of the tangible devices with the current
use cases are as easily done with other means such as the virtual
buttons, the mouse/keyboard or a piece of paper, but we believe that
the Sphero has quite a lot of potential when put in a useful context.
One suggestion that was mentioned during a discussion session in
Delft was to use the sphero to rotate objects. An assignment was
mentioned when the student will get a 3D object from the teacher
that he or she is suppose to draw a sketch of. This may seem like
something that would be difficult to do remotely, but if the user was
holding a Sphero and the model was rotating in the same way the
Sphero was rotated, that would make it almost as intuitive as if one
was holding the object in the hand. One of the requirements for this
is already implemented; streaming the gyro data from the Sphero via
TangibleAPI.

3 http://www.youtube.com/watch?v=sWQXCdvuGM4

34

discussion

7.3 future work and improvements

With the finalization and implementation of the data channels in We-
bRTC, the project could be expanded to include sending files and
documents in an easy way between the clients. However, the current
solution will still require a server to find and setup the connections
between the clients. Any communication that is only relevant to the
participants of a certain room could be sent using the PeerConnection.
This would put an even lesser load on the server and limit its work to
keeping track of the rooms and performing some work when a user
joins a room.

Another feature already mentioned is to use the Sphero to rotate
shared 3D objects, for example in an architect teacher’s class. It would
also be possible to add other tangible devices given that there are use
cases included where the device comes to its right.

Multiple improvements on the shared workspace images could be ap-
plied, for example subtracting the background or changing all back-
grounds to the same color, and enhancing thin lines with WebGL.

35

discussion

Figure 29: Robin Schaeverbeke teaching Jimmy Nyström using the shared
workspace.

36

8
C O N C L U S I O N

We believe that we have met a majority of the project goals that were
set up during the planning phase of the project. We have shown that
it is possible and feasible to implement a mediated sketching table
using modern web technologies. Since these technologies are chang-
ing all the time, we expect that the code will need to be updated with
future browser releases for the prototype to continue working.

It would be beneficial to have more low-level access to camera fea-
tures, such as exposure time and focus control, in order to aid in
automatic calibration. But since these web technologies are quite new
this is not yet possible. Placing stations in a room with static lighting
conditions is currently the best way to deal with this problem.

One problem with the tangible items is that there was no clear use
case when we began. It was also very difficult to think of a good use
case during the project. Perhaps it was a mistake to start development
without one. It should be easy to implement a better use case if
development on the prototype is continued.

During the project we visited Delft and demonstrated the prototype
at the Mediating Presence conference. We are very thankful that we
got the opportunity to go there and we believe it was time well spent.
It was challenging to incorporate this trip into the project planning
while making sure we had something to show.

A workshop was held near the end of the course at KTH in Stockholm.
During that workshop LTU students met with students from KTH
and TU Delft to pass on knowledge about how the system works,
installing and calibrating workstations, and other things needed to
set up a workstation. Stations were set up, early 2013, at each of the
universities, and are intended to be used for real video conferencing
and applications. The interested reader can find more details about
this in Appendix A.

Our hope is that our prototype will be actively used and that these
workstations prove to be a valuable tool for those using them.

A
A P P E N D I X : M E D I AT E D S K E T C H I N G TA B L E -
W O R K S H O P I N S T O C K H O L M

What follows is a summary of our experiences during the workshop
in Stockholm, 18-19 December 2012.

Jimmy Nyström and Nicklas Nyström from LTU, Henning Alesund
from KTH and Arvind Mohabir from TU Delft worked together in
setting up two mediated sketching tables at KTH. Professors Charlie
Gullström and Leif Handberg assisted with help, guidance and hard-
ware. The first goal of the workshop was to share knowledge on how
to set up and calibrate a workstation, since all three universities will
have them in the future. The second goal was to find and discuss
future work and improvements to the mediated sketching table and
finally, experiment with Wacom Boards1 as an additional means of
collaboration.

a.1 station setup

The workspace setup was done a bit differently than previous ones.
Two flat screen TVs were mounted together and placed standing on
a table at approximately a 120 degree angle. The workspace was
projected between the screens. The idea was to have similar setups at
all three universities, with one person on each screen. This way, all
three can look at each other - and see the others look at each other -
in a natural way, as Figure 30 shows.

a.2 remote communication

We got to test using the system for communicating between two dif-
ferent locations (as opposed to having two stations in the same room,
as we did at LTU and TU Delft), making this the first time the sys-
tem was put to the test at actually mediating presence. The station
at KTH was used to communicate with Patrik Burström at LTU and
collaborate on a drawing 33. When everything is working properly,
the system successfully conveys the feeling of working in the same
room.

1 A Wacom Tablet is a professional drawing board with an LCD monitor and a pres-
sure sensitive pen that simulates the feel of drawing on paper

38

mediated sketching table - workshop in stockholm

Figure 30: Top view of the three workspace setups, illustrating the idea be-
hind the choice of screen placement.

Due to limitations in the graphics card/drivers we couldn’t get the
monitors to display the video conferencing in format we wanted, but
this can be fixed in software - perhaps as a choice between landscape
and portrait mode for the video streams.

a.3 camera / projector calibration

The station used in LTU had been set up correctly, with a lot of time
and effort put into configuring the camera settings. This meant that
the LTU station was ready for use right away, with a only a quick and
simple camera / projector calibration necessary before starting.

The reason why the LTU station could be calibrated so well was that
two stations were set up next to each other. This way, you immedi-
ately see the result on the other station as the camera and projector
settings are altered. However, in a real world setting, you don’t want
the users to have to tinker with the camera settings each time they
start a session. It should only have to be done once and it needs
to be possible to do it locally, before connecting to other users. To
achieve this functionality on a single station, new software needs to
be written that allows users to directly see the results of changing the
camera settings and that also provides help on how to achieve the
best results. Without such help, getting everything to work involves
a lot of trial and error, and lots of patience.

39

mediated sketching table - workshop in stockholm

Figure 31: Nicklas and Patrik collaborating on a nice Spider-Man drawing.

a.4 wacom boards

We noticed that using the Wacom boards feels a lot like drawing on
paper, thanks to their pressure sensitivity. This means that they might
be a good replacement to our pen and paper approach. However, the
importance of seeing the other user’s hands has yet to be determined:
during the tests with our system, both users used hand gestures as a
complement to the voice chat communication.

As we saw in Delft (the teacher-student experiment), users tend to
focus on the drawing itself and may not make much eye contact while
drawing, which also points toward the conclusion that seeing the
other person’s hands is useful.

40

mediated sketching table - workshop in stockholm

With the Wacom board, the only indication of what the other user is
doing is a little marker (like a mouse pointer) on the screen. This may
be sufficient for collaboration, but doesn’t really give a sense of pres-
ence. As an experiment, the physical pen and paper workspace of the
Tangible system was replaced with a Wacom board. The board and
camera were placed such that the hands of the remote user was visi-
ble on the video chat screen, to give a better sense of what he/she was
doing. AutoCAD WS2 was used as a means for online collaboration
with the Wacom boards. It’s not made for sketching, but since the
workshop was only for two days, we used what was available.

Figure 32: Arvind (left), Patrik (on screen) and Henning (right) collaborating
on sketches.

The Wacom board has a lot of potential as a complement to the pen
and paper drawing surface, or even as a replacement. However, there
are a number of issues that need to be resolved. Firstly, there is no
currently available software (that we could find) that supports the
pressure sensitive sketching that makes the board great. Secondly,
there are many advantages to being able to see the hands of the other
users when collaborating, which you don’t get when using the board.
Using the video conferencing of the Tangible system helps somewhat,
but you still lose the ability to gesture and point at the image to con-
vey information. The experiment led to discussions about different
solutions to getting the hands to show on the board. One suggestion
was to use an approach similar to the shared workspace. That is, to
use a projector and camera to simply project video of the hands onto
the Wacom board (though this might not be feasible due to glare,
among other things). Another idea was to make a transparent video

2 https://www.autocadws.com/

41

mediated sketching table - workshop in stockholm

overlay in software, but that possibility needs to be investigated fur-
ther.

a.5 hand projection positioning

Another question arose as well: what is the optimal position of the
projected hands in relation to the chat window?

Figure 33: Two possible ways of projecting the hands on the shared
workspace.

Above is an image illustrating two possible setups. The version to the
left is the one that was implemented in the workshop: when using
the system, the other user’s hands are projected as though they are
coming from the same direction as your own. The right version looks
more natural, but poses a couple of problems.

First of all, it makes it more difficult to collaborate on a drawing,
since the users will be seeing it from different directions. Second,
this approach does not work when more than two people are using
the system at the same time; they can’t all be facing each other.

42

B I B L I O G R A P H Y

[1] Cisco. Telepresence tx9000, October 2012. URL http://www.

cisco.com/web/telepresence/products/tx9000.html.

[2] T.J de Greef, C Gullström, L Handberg, H.T Nefs,
and P. Parnes. Shared mediated workspaces, November
2012. URL http://presencelive.info/Resources/Documents/

Proceedings/09_deGreefEtAl.pdf.

[3] Dr. Caroline Nevejan Dr. Charlie Gullström. Mediating presence
- workshop and final conference 2012, November 2012. URL
http://www.eitictlabs.eu/ict-labs/all-events/article/

mediating-presence-workshop-and-final-conference-2012/.

[4] EIT. Eit itc labs, November 2012. URL http://http://www.

eitictlabs.eu/.

[5] Nicklas Gavelin. Sphero desktop api, November 2012. URL
https://github.com/nicklasgav/Sphero-Desktop-API.

[6] Nicklas Gavelin. Sphero tangible driver, November 2012. URL
https://github.com/nicklasgav/SpheroTangibleDriver.

[7] Nicklas Gavelin. Visualizing energy consumption
using physical artifacts, November 2012. URL
http://pure.ltu.se/portal/sv/studentthesis/

visualizing-energy-consumption-using-physical-artifacts%

283c3b3195-beef-4a18-a3c1-9adafddf5d97%29.html.

[8] Git. Git, January 2013. URL http://git-scm.com/.

[9] Google. V8 javascript engine, October 2012. URL http://code.

google.com/p/v8/.

[10] Khronos Group. Webgl, December 2012. URL http://www.

khronos.org/webgl/.

[11] IMDb. The expendables, October 2012. URL http://www.imdb.

com/title/tt1320253/.

[12] Leo Jeusset. Sifthesis, November 2012. URL https://github.

com/lojeuv/.

[13] Leo Jeusset. Sifthesis, November 2012. URL https://sites.

google.com/site/sifthesis/documents.

[14] Joyent. Node js, October 2012. URL http://nodejs.org/.

43

http://www.cisco.com/web/telepresence/products/tx9000.html
http://www.cisco.com/web/telepresence/products/tx9000.html
http://presencelive.info/Resources/Documents/Proceedings/09_deGreefEtAl.pdf
http://presencelive.info/Resources/Documents/Proceedings/09_deGreefEtAl.pdf
http://www.eitictlabs.eu/ict-labs/all-events/article/mediating-presence-workshop-and-final-conference-2012/
http://www.eitictlabs.eu/ict-labs/all-events/article/mediating-presence-workshop-and-final-conference-2012/
http://http://www.eitictlabs.eu/
http://http://www.eitictlabs.eu/
https://github.com/nicklasgav/Sphero-Desktop-API
https://github.com/nicklasgav/SpheroTangibleDriver
http://pure.ltu.se/portal/sv/studentthesis/visualizing-energy-consumption-using-physical-artifacts%283c3b3195-beef-4a18-a3c1-9adafddf5d97%29.html
http://pure.ltu.se/portal/sv/studentthesis/visualizing-energy-consumption-using-physical-artifacts%283c3b3195-beef-4a18-a3c1-9adafddf5d97%29.html
http://pure.ltu.se/portal/sv/studentthesis/visualizing-energy-consumption-using-physical-artifacts%283c3b3195-beef-4a18-a3c1-9adafddf5d97%29.html
http://git-scm.com/
http://code.google.com/p/v8/
http://code.google.com/p/v8/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://www.imdb.com/title/tt1320253/
http://www.imdb.com/title/tt1320253/
https://github.com/lojeuv/
https://github.com/lojeuv/
https://sites.google.com/site/sifthesis/documents
https://sites.google.com/site/sifthesis/documents
http://nodejs.org/

bibliography

[15] Logitech. Logitech webcam software, October 2012. URL http:

//www.logitech.com/en-us/support/5798?osid=14&bit=64.

[16] Orbotix. Sphero, November 2012. URL http://www.gosphero.

com/.

[17] Orbotix. Sphero driver, code for android, October 2012. URL
https://github.com/orbotix/Sphero-Android-SDK.

[18] HTML 5 Rocks. Html5 rocks, October 2012. URL http://www.

html5rocks.com/.

[19] Jacob Seidelin. Pixastic: Javascript image processing, January
2009. URL http://www.pixastic.com/.

[20] Sifteo. Sifteo, September 2012. URL www.sifteo.com.

[21] Anthony Tang, Michel Pahud, Kori Inkpen, Hrvoje Benko,
John C. Tang, and Bill Buxton. Three’s company: Understanding
communication channels in three-way distributed collaboration.
CSCW 2010, 2010.

[22] Cordoba university. Aruco, December 2012. URL http://www.

uco.es/investiga/grupos/ava/node/26.

[23] W3C. Html5 working group, October 2012. URL http://www.w3.

org/html/wg/.

[24] W3C. Working draft for webrtc, November 2012. URL http:

//www.w3.org/TR/2012/WD-webrtc-20120821/.

[25] W3C. Webrtc, October 2012. URL http://www.w3.org/TR/

webrtc/.

[26] YUI. Yuidoc, January 2013. URL http://yui.github.com/

yuidoc/.

44

http://www.logitech.com/en-us/support/5798?osid=14&bit=64
http://www.logitech.com/en-us/support/5798?osid=14&bit=64
http://www.gosphero.com/
http://www.gosphero.com/
https://github.com/orbotix/Sphero-Android-SDK
http://www.html5rocks.com/
http://www.html5rocks.com/
http://www.pixastic.com/
www.sifteo.com
http://www.uco.es/investiga/grupos/ava/node/26
http://www.uco.es/investiga/grupos/ava/node/26
http://www.w3.org/html/wg/
http://www.w3.org/html/wg/
http://www.w3.org/TR/2012/WD-webrtc-20120821/
http://www.w3.org/TR/2012/WD-webrtc-20120821/
http://www.w3.org/TR/webrtc/
http://www.w3.org/TR/webrtc/
http://yui.github.com/yuidoc/
http://yui.github.com/yuidoc/

	Dedication
	Abstract
	Contents
	1 Introduction
	1.1 Problem description
	1.2 Project goals
	1.3 Project requirements
	1.4 Project delimitations
	1.5 Research questions
	1.6 Project transparency

	2 Example Setup
	3 Technologies
	3.1 HTML5 and WebRTC
	3.2 Node.js
	3.3 TangibleAPI
	3.4 Sifteo
	3.5 Sphero
	3.6 WebGL
	3.7 ArUco
	3.8 Pixastic
	3.9 Logitech Camera Software
	3.10 YUIDoc
	3.11 Git

	4 Use cases
	4.1 Logging in
	4.2 Enter a meeting room
	4.3 Using the shared workspace
	4.4 Inviting someone

	5 System Architecture
	5.1 Tangible devices
	5.2 Node.js server

	6 Result
	6.1 Lobby
	6.2 Room
	6.3 Shared Workspace
	6.3.1 Setting up a workstation
	6.3.2 Camera / Projector Calibration

	6.4 Virtual buttons
	6.5 Tangible devices
	6.5.1 TangibleAPI
	6.5.2 Sifteo
	6.5.3 Sphero

	6.6 Testing
	6.6.1 WebRTC
	6.6.2 Projector
	6.6.3 Tangibles

	7 Discussion
	7.1 Issues
	7.1.1 WebRTC
	7.1.2 Projector / Camera
	7.1.3 Tangibles

	7.2 Mediating presence conference
	7.3 Future work and improvements

	8 Conclusion
	A Mediated Sketching Table - Workshop in Stockholm
	A.1 Station Setup
	A.2 Remote Communication
	A.3 Camera / Projector Calibration
	A.4 Wacom Boards
	A.5 Hand Projection Positioning

	Bibliography

