
1

NajNaf: WantCloud BV’s Large Scale Image
Resizer

F.W. Bakker∗ S.F. van Wouw∗

prof.dr.ir. D.H.J. Epema† dr.ir. A. Iosup† ir. B.I. Ghit‡

∗Authors {f.w.bakker,s.f.vanwouw}@student.tudelft.nl
†Instructors {d.h.j.epema,a.iosup}@tudelft.nl

‡Lab Assistant b.i.ghit@tudelft.nl

Abstract—WantCloud BV’s current image resizing and persistant storage system is not able to cope with peak loads and does not
scale up or down without human intervention. In this paper NajNaf is proposed: a system that is scalable, reliable, and durable without
human intervention. The system is implemented as a cloud based application and has different subsystems that can be hosted in
different virtual machines. This service oriented approach makes it possible to independently scale different parts of the system when
necessary. Experiments with a prototype of the system on the DAS-4 cluster of the Delft University of Technology show that NajNaf
dynamically scales up and down. This results in more than 90% of the tasks finishing before the global deadline. NajNaf ensures
reliability by introducing redundance into the system. It therefore is a viable alternative to the current system.

F

1 INTRODUCTION

WantCloud BV has an application that resizes and stores
images in one relational database hosted by a shared
webhosting provider. This system has one main issue:
it does not scale automatically with the amount of
concurrent users. Therefore the system cannot deal with
peak loads efficiently. In addition, the relational database
quickly becomes the bottleneck, because it has only one
entry point.

In order to deal with the problems the current system
has, a new system is proposed: NajNaf, of which the
design is described in this paper. NajNaf is a large scale
image resizer with persistent storage support that is
specifically designed to be scalable, reliable, and durable
without requiring human intervention. As such, this
system deals with the problems WantCloud BV’s current
system has.

NajNaf can be hosted on a cloud infrastructure like
Amazon EC21 or on a grid computing infrastructure like
DAS-42. The system has different subsystems which each
can be hosted on a separate VM (Virtual Machine). The
head node subsystem is responsible for monitoring all
other subsystems, and scaling their capacity up or down
when necessary. The master node is responsible for
taking all image resize tasks and keeps track of them in a
queue. The worker node subsystem consumes multiple
image resize tasks off the master’s queue and executes
them parallel. Finally the persistent storage subsystem
stores the resized images in a distributed object database.

If a subsystem fails it is automatically replaced by a

1. Amazon EC2 http://aws.amazon.com/ec2/
2. DAS-4 (The Distributed ASCI Supercomputer 4) http://www.cs.

vu.nl/das4/home.shtml

new VM running this subsystem. In case of the master
this is a mirrored version (so the tasks in the queue do
not get lost), and in case of a worker it is a new worker,
after which the master automatically reschedules the lost
image tasks.

Experiments with a prototype of the system (not im-
plementing persistent storage) were conducted on the
DAS-4 cluster using VMs with one cpu core available
each. The experiments show that the system reacts to
load changes and creates or suspends VMs accordingly
within 15 seconds after the load change. This results in
more than 90% of the tasks finishing before the global
deadline.

The remainder of the paper is structured as follows:
In section 2 requirements of the system are described,
followed by the system design in section 3. The perfor-
mance of the system is evaluated in section 4. Lastly, the
pros and cons of the cloud based approach are evaluated
in section 5 and conclusions are in 6.

2 REQUIREMENTS

There are two sets of requirements to the system:
the requirements for the production system and the
requirements for the prototype system. In this section we
will first list the requirements of the prototype followed
by the list of requirements for the production system.
Note that the second list is an extension of the first
list - all prototype requirements are also requirements
for the production system. Functional requirements are
annotated with FR, while non-functional requirements
(constraints) are annotated with NFR.

Prototype system:

2

[FR:1] Image Resizing
The system should resize the images such that
they fit into the following dimension boxes
(keeping aspect ratio intact): 128×128, 512×512
and 1024× 1024 (customizable by customer).

[FR:2] Monitoring
The system should include a monitoring-
subsystem allowing administrators an insight
into the performance of the system.

[NFR:1] Automation
Running the system should not require any
human intervention.

[NFR:2] Elasticity
Upon a higher load the system’s capacity must
be automatically increased. When the load low-
ers the capacity must be reduced to minimize
costs.

[NFR:3] Load Balancing (Performance)
The system should evenly distribute the tasks
over the available VMs.

[NFR:4] Modularity
The system should have a Service Oriented
Architecture (SOA) in order to be able to re-use
different components within other WantCloud
BV systems.

[NFR:5] Reliability
Downscaling the system (removing VMs)
should not cause tasks to be dropped. Nor
should tasks be dropped when a part of the
system fails. Single point of failures are still
allowed in the system (master and head node,
see section 3).

[NFR:6] Response time
The time from when an image task is submitted
until it has been completed should not exceed
the global deadline of 30 seconds for at least
90% of all tasks.

Production system:

[FR:3] Persistent Storage
The resized images should be saved into a
persistent storage facility.

[NFR:7] Durability
The persistent storage should make sure the
stored images do not perish.

[NFR:8] No single point of failure
The system must be even more reliable by re-
moving all single point of failures - all subsys-
tems must support some form of replication.

[NFR:9] Multi-tenancy Fairness
The system must ensure the system is fair
which is defined as: Users submitting first get
served first and no starvation should occur
(e.g. when one user submits a lot of jobs at
once the users after this user should still get
their jobs completed within finite time).

3 SYSTEM DESIGN

3.1 Resource Management Architecture
The global system design together with the allocation of
system components to different types of VMs is depicted
in figure 1. Components are grouped together on one
VM type based on their coherence (as one would do
when designing subsystems). However, components on
the same VM type are decoupled as much as possible
(using interfaces), such that they can be maintained inde-
pendently ([NFR:4] Modularity). The system is described
per VM type below. By referring to the requirements
when explaining each component, one can infer whether
the respective feature is actually implemented or not3.

3.1.1 The Head Node
The head node is responsible for managing all VMs (and
itself is not a VM in our setup). It has a VMMonitor
([FR:2] Monitoring) which receives status updates from
running VMs. The VMScheduler starts or stops VMs
based on the feedback it receives from the VMMonitor
([NFR:2] Elasticity). This component is also responsible
for the initial startup of the entire system ([NFR:1]
Automation).

3.1.2 The Master Node
The system uses a master-worker setup to process im-
ages. There is one (possibly replicated, [NFR:8]) master,
and there are multiple workers. A master node hosts the
TaskPool, to which external producer programs (depicted
by the External Producer VM type in figure 1) can push
their image resize tasks. This TaskPool is implemented as
a message queue with FIFO ordering (or can be modified
to use a certain priority rule, depending on the fair-
ness policy). The TaskPoolMonitor sends heartbeats to the
VMMonitor containing the current resource utilization
information and queue length. Finally the MasterCon-
troller accepts commands from the VMScheduler (such as:
prepare to shutdown).

3.1.3 The Worker Nodes
Multiple worker nodes are responsible for resizing im-
ages and uploading them to the persistent storage ([FR:1]
Image Resizing). This is accomplished by a single Con-
sumer per worker node that spawns a resize task thread
for every task consumed from the TaskPool. When re-
sizing has finished, the StorageUploader takes over and
inserts the resized images into the persistent storage
([FR:3] Persistent Storage).

The WorkerController is similar to the MasterController.
The WorkerMonitor reports the average image resize
speed and the amount of concurrent image resize tasks
it is running to the VMMonitor. The task of resizing

3. We have taken additional features such as durability and multi-
tenancy fairness into account but did not actually implement them
in the prototype version. We therefore did not include an additional
features section. We consider the additional feature scheduling to been
implemented by mechanic of section 3.2.5 and the master-worker setup

3

Fig. 1. System Design to VM Type Mapping

and uploading to storage is considered to be one atomic
operation. The Consumer will only acknowledge back to
the TaskPool if the entire task succeeded.

3.1.4 The Persistent Storage Nodes
Multiple persistent storage node VMs are responsible for
storing the (resized) images ([FR:3] Persistent Storage).
The PersistentStorageProxy is aware of the exact par-
titioning of persistent storage shards of a distributed
object database such as CouchDB4. Replicating database
clusters ensures [NFR:7] Durability.

The PersistentStorageMonitor and StorageController are
based on the same idea as the TaskPoolMonitor and Mas-
terController. The first sends heartbeats to the VMMonitor,
and the latter accepts commands from the VMScheduler.

3.1.5 States and Commands
The worker and master’s application state is used to
inform the head node of the state the application is
in (this state is important when the respective VM is
actually up and running). Figure 2 shows the state
diagram of the worker. The labels along the edges of the
state diagram show what is required for the application
to switch states. The ‘err’ is an internal event, while
INIT and SHUTDOWN are commands received from the
head node. A typical usage pattern is to send an INIT
command with the master’s ip address to a worker in

4. An example of how this can be accomplished with CouchDB can
be found at http://guide.couchdb.org/editions/1/en/clustering.html

the READY state. And a SHUTDOWN command when the
worker is no longer needed, after which the worker can
be suspended if the worker enters the READY state again.
If the head node detects a worker in the ERROR state,
it will try to reset the worker by resending an INIT
command. If this fails it simply deletes the worker.

3.2 System Policies
The system has different policies in place in order to
comply with constraints set in section 2. These are
explained in the sections below.

3.2.1 Scaling
The system is able to automatically scale up and
down when needed ([NFR:2] Elasticity and [NFR:1]
Automation). In the current design the persistent storage
only scales up, and the worker nodes can scale up and
down. The master node does not scale (it is assumed it
can handle the queue on its own).

All VMs periodically send heartbeats with their cur-
rent resource utilization to the VMMonitor. The monitor
keeps track of the most recent heartbeats and peri-
odically sends them to the VMScheduler (this means
heartbeats can arrive in a certain timespan, resulting in a
synchronised mechanism). The VMScheduler in turn will
use the heartbeat data to determine what commands to
issue (if any).

The VMScheduler will decide to scale up (add more
worker nodes) if the total expected time it takes to

4

Fig. 2. State diagram of the worker

process all image tasks in the TaskPool is above a certain
threshold (e.g. 30 seconds). It will scale down when the
total expected time is below a certain threshold (e.g. 15
seconds)5. The amount of VMs that is created/resumed
or suspended is determined by how far off track the total
expected time is compared to the threshold. For example
the current formula for scaling up is:

x =

⌈
expectedT ime

targetT ime

⌉
· workers− workers

Assume the amount of VMs to add or remove to the
pool of VMs is x, then in case of having to remove
VMs from the pool, the VMScheduler will issue the
WorkControllers of the x last added VMs to prepare for
suspension. The corresponding Consumers will no longer
consume new tasks from the TaskPool and the VM status
will change from RUNNING to READY. The scheduler will
then suspend the corresponding VMs when it will get to
know the new status through a heartbeat.

Spawning new VMs can either be done by creating
a new VM from a clean VM image or by resuming
previously suspended VMs. The latter is preferred be-
cause initial research has shown that the time it takes
to suspend and resume a VM is significantly faster than
creating a new VM (about a factor 10). When a VM is

5. We actually started to let the VMScheduler base its decisions on
the memory/disk and cpu loads of the workers. However, this did
not take the amount of pending image tasks into account and cpu
load averages were unreliable when VMs had just started.

resumed and the size of the pool of suspended VMs is
smaller than a certain treshhold, new VMs are created
and suspended. This helps maintain the size of the pool.
When scaling down and the pool of suspended VMs will
get above a certain threshold, VMs will be permanently
removed from the pool instead6.

3.2.2 Load Balancing
The system needs to keep the tasks spread among all
workers in order to comply with [NFR:3] Load Balanc-
ing (Performance), not overloading some nodes, while
others are idle.

The first worker that is available to execute a task is
the first worker that executes the task. The Consumer
module on a worker node keeps consuming tasks from
the TaskPool until it reaches the worker node’s resource
cap. This might lead to a load imbalance if some workers
continuesly get all the tasks while a couple of other
workers suffer from starvation. But in this case the
scaling policy kicks in, suspending the worker nodes that
are under utilized. This results in fewer worker nodes
being used, possibly increasing the load per node but
also automatically making it more balanced.

Moving tasks between worker nodes would increase
the complexity, but luckily there is no need for such a
mechanism.

6. This is currently not in the prototype, it will only create more VMs
if necessary until it reached the VM cap. Then it only suspends and
resumes VMs from its pool.

5

3.2.3 Reliability and Durability
In order for the system to be reliable and the persis-
tent data to be really durable ([NFR:5] and [NFR:7]
respectively), certain redundancy has been built into the
system.

The persistent storage uses replication servers to repli-
cate data to ensure durability. The master node VM
running the TaskPool mirrors this pool on a different VM
on a different physical machine (not implemented in the
prototype). In addition, tasks are only acknowledged to
the master node to be complete iff both the resizing and
inserting into the persistent storage were successful.

If one of the VMs has not sent a heartbeat to the
head node for at least 2 minutes (customizable) the
VMScheduler will issue another VM of the same type
to take over. In case of a master VM not responding,
the scheduler will activate the mirrored VM to replace
the master and instruct the worker VMs through their
WorkerController to acknowledge their tasks to the new
master VM instead. In case of a worker failing, the VM-
Scheduler will simply spawn a new VM, and the TaskPool
will reschedule the tasks that were lost due to not getting
any acknowledgements. If one of the persistent storage
nodes fails, the VMScheduler will promote a replica and
creates one additional replica.

Finally, the head node could be replicated in future
versions of the system to remove this single point of
failure.

3.2.4 Fairness
The order of execution of tasks is determined by the
order of the tasks in the TaskPool. In order to comply
with [NFR:9] Multi-tenancy Fairness, we decided to use
a FIFO queue implementation, which means tasks are
executed in the order in which they are added. This has
one potential downside however: if one user submits a
large batch of tasks at once, future tasks may be delayed
for a long time. Note that this will only be the case when
the system is already scaled to its maximum capacity: if
it hasn’t yet the system will just scale up, preventing
the users from suffering from the large batch of tasks.
Although the fairness requirement is not violated in this
scenario, one could implement more complex queues
such as priority queues to solve this potential problem.

3.2.5 Slow Start Scheduling
The amount of images a Worker can resize at a given time
depends on a few factors. The most important factor is
the amount of processors the VM can use. Another factor
would be the connection speed at which the Worker can
download the image from the source. Whether the VM
suffers from time slicing also effects how many threads
can optimally run at the same time.

Due to the dynamic nature of two of these factors the
worker has to dynamically determine how many image
tasks (thus threads) it can process at the same time. It
uses a special algorithm to achieve this. This algorithm

is based on the slow-start algorithm used by TCP [3].
This strategy is part of the congestion control algorithm
of the TCP protocol. TCP’s slow-start uses a dynamic
window size to determine how many packets can be
sent at the same time - the Worker’s version uses this to
determine how many threads it can run at the same time.
TCP’s windows size is increased when an ack is received
and reduced when an ack is not received in time, the
Worker’s version decreases the window size when the
VM’s CPU is above a certain threshold, and increases
the size when an image task has been processed without
hitting this threshold.

4 EXPERIMENTAL RESULTS

4.1 Experimental Setup
NajNaf is written for the DAS-4 cluster using Open-
Nebula [2] for managing virtualization. Each VM runs
a CentOS 5 image with 1GB of RAM and a single-core
CPU of 2.4GHz (Virtual). All custom code is written in
Python (version 2.7).

Communication between the VMs is accomplished
with Python’s Socket implementation. Memory and cpu
usage of the VMs have been determined by using the
unix top utility. The cpu usage is actually a load average
that is determined by how many tasks want to use the
cpu vs how many tasks have used the cpu in a certain
timespan (1 minute in our case, to still be accurate but at
the same time ignore huge cpu spikes). Disk usage was
determined by the df unix utility.

The system consists of a couple of external libraries.
These libraries are mentioned below.
Apache-Apollo - an open source messaging queue sys-
tem Apache-Apollo is used to connect the producers (e.g.
the image uploaders, or any other internal image cre-
ation process) with the consumers (the image resizers).
It is essentially the TaskPool of the system. We decided
to use a messaging queue because of the easy usage
and because it creates a layer between the consumers
and producers, allowing for easy and split scaling of
the consumer and producer subsystems. Apache-Apollo
was used as it supports the STOMP messaging protocol
messaging protocol [4]. This has two benefits. First of
all, when a new and better messaging queue system is
created that supports STOMP it will be easier to replace
Apache-Apollo. Secondly, the protocol is language in-
dependent, allowing the producers and consumers to be
written in different programming languages. This makes
the system more versatile.
PIL - an open source image processing library for
Python One of the aspects of the system is the resizing
and watermarking of the new images. For this, PIL is
used. This library is able to perform all the required
image manipulation tasks.
LB watermarker This simple library provides water-
marking functionality [1] using PIL.
CouchDB - image storage The prototype does not yet
contain an actual storage system. The eventual system

6

should contain a distributed and scalable data storage
system, and we think CouchDB would be an interesting
candidate due to its partitioning and scalability capabil-
ities.

4.2 Experiment
A single experiment was executed. This experiment mea-
sures both the elasticity and the response time of the
system. The parameters used in this experiment and the
way the experiment was executed can be found in in
section 4.2.1. The result can be found in section section
4.2.2.

4.2.1 Parameters and execution
The experiment required an artificial load. This work-
load was generated by adding i image tasks each j
seconds to the Apollo messaging queue. The values of i
were changed throughout the experiment. Even though
the application consists of an actual download, resize
and watermark script for resizing the image at a specific
URL this was not used for the experiments. The main
reasons are that it would have caused serious load on the
server hosting the images and the performance would be
dependent on the actual download times of the images,
something that can vary throughout the experiment.
Because of this the processing time of each image task
was set to 2− 3 seconds of busy waiting.

In order to not overload the DAS-4 cluster the size
of the worker pool was set to 10 VMs. Note that the
VMScheduler can easily manage many more nodes (the
average load on the head node was neglectable). These
workers were already created at the start of the algo-
rithm.

Section 3.2.5 explains the slow-start algorithm the
Worker uses. Due to the fact that each VM only has a
single-core CPU available and the processing of an image
task is just busy waiting, the worker always had just a
single thread processing at a time.

The VMScheduler has a couple of configuration param-
eters that can be tweaked. One of these is the interval
between the iterations in which decisions are made.
During the experiments this was set to 15 seconds. As a
result it takes at most thirty seconds before a worker VM
starts working (15s to detect, 15s to detect running and
issue an INIT command). The VMScheduler calculates
the expected completion time - the time it will take
all active workers to empty the queue. The scheduler
attempts to keep this expected completion time between
15 and 30 seconds by either scaling up or down.

The experiment starts with a worker pool of 1 running
and 9 suspended workers and a task pool of length 70.
At the start of the experiment the queue is filled with 15
images tasks every 5 seconds. Each image task sent in
this experiment causes the worker to busy wait for 2−3
seconds. At t = 200 seconds this rate was decreased to
just 10 image tasks every 5 seconds. At t = 870 a peak
load of 20 image tasks every 5 seconds was generated,

and at t = 930 this load was changed to 5 image tasks
every 5 seconds. At about t = 1200 a peak load of 15
image tasks every 5 seconds was generated.

The charged-time and charged-cost of the experiments
are evaluated by calculating the time the various VMs
were running. We define the start of a run as the moment
at which the VM was created or resumed, and the end
of a run the moment at which a VM was suspended or
deleted. The experiments are run on the DAS-4 cluster
and not on Amazon EC2. Since the DAS-4 cluster does
not charge for the usage of the cluster the charged-cost is
taken as if the experiments were in fact run on Amazon
EC2, assuming a cost of 10 Euro-cents/charged hour.
Both the charged-time and charged-cost can be found
at the end of section 4.2.2.

4.2.2 Results
According to ([NFR:2] Elasticity) it is essential that the
system is able to scale both up and down automatically.
The goal is to reduce the cost of running the system,
but it is important that the response time of the system
(the time between the image task entering the queue and
the worker sending an ack to acknowledge it has fin-
ished processing the image task) remains within desired
bounds. In this experiment the elasticity and response
time is evaluated.

Figure 3 shows the expected completion time, the
queue length and the number of worker threads during
this experiment. Note that, due to the single-core the
VM uses, each worker only had a single thread used to
process image tasks. Thus, the amount of worker threads
equals the amount of worker VMs. The figure shows a
couple of interesting results. First of all, the amount of
workers and the queue length follow the same pattern.
This shows that, upon increasing the load, more workers
are created in a timely manner. The expected completion
time tends to fluctuate between 15 and 30 seconds, which
is exactly the aim of the VMScheduler. There is only
one occasion at which the expected completion time is
significantly larger than 30 seconds, at t = 1300. This is
due to the peak load of 20 image tasks generated every
5 seconds. The worker pool of 10 workers simply can’t
handle such a peak: 20 image tasks corresponds to a load
of one minute of processing time. As these are generated
every 5 seconds this will require a total of 12 workers
to keep up. Note that even with this peak the average
response time still satisfies [NFR:6] Response time.

Figure 4 shows the total expected sequential process-
ing time (the time required to empty the queue if there
had only been one worker) and the amount of worker
threads. Both the amount of worker threads and the
expected sequential processing time follow the same
pattern, showing how well the system actually scales up
and down.

The total sequential runtime of the experiment can be
calculated by adding the runtimes of all workers and the
master node. This gives a total of 14000 seconds, thus 3.9
charged-time hours. At a total of 10 Euro-cents/ charged

7

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200
 400

 600
 800

 1000

 1200

 1400

 1600

 1800

 2000

 0

 2

 4

 6

 8

 10

w
o
rk

e
r

th
re

a
d

 c
o
u
n
t

time(s)

expected completion time (s)
queue length

worker thread count

Fig. 3. Expected completion time, queue length and
number of workers threads over time

 0

 50

 100

 150

 200

 250

 300

 0 200
 400

 600
 800

 1000

 1200

 1400

 1600

 1800

 2000

 0

 2

 4

 6

 8

 10

ti
m

e
(s

)

w
o
rk

e
r

th
re

a
d

 c
o
u
n
t

running time(s)

total expected sequential processing time
worker thread count

Fig. 4. Expected sequential processing time vs number
of worker threads over time

hour the experiment cost a total of 39 cents. In this time
about 4000 image tasks were processed, giving us a total
cost of 0.01 cents per image task.

5 DISCUSSION

Although NajNaf is relatively complex for an image
resize application because of the advanced requirements
of the system, it proves to be a viable alternative to the
current system WantCloud BV is using.

The experiments show that NajNaf satisfies both
([NFR:2] Elasticity) and ([NFR:6] Response time). The
cost of processing one image is relatively low: section
4.2.2 shows the processing of a single image task (with
a processing time of three seconds) costs as little as 0.01
Euro-cents. Since the system always needs exactly one
active master node the cost of scaling a single image
becomes slightly less as the size of the queue increases:
the overhead of having the master node is spread out
over more images. Thus when extrapolating over the
found results, 10.000 images can be submitted for a total
cost of 1 Euro, while the resizing of 10.000.000 images
costs less than a 1000 Euro.

Apart from the requirements that are shown to be met
by the experiments, there are several other features in

the prototype that make the prototype meet all of its
requirements.

The head node keeps a log of all activities in the sys-
tem. This log contains the latest states of the applications,
the average processing times of the workers, the length
of the messaging queue and many other statistics. The
log itself is in human-readable format, satisfying ([FR:2]
Monitoring).

Whenever a worker node crashes the head node
deletes the VM and creates a new one. Since the worker
only sends an acknowledgement after it has finished
processing the image task it is guaranteed that no image
tasks are lost. This satisfies both ([NFR:1] Automation)
and ([NFR:5] Reliability). Whenever the master node
crashes a new master node is created, and all workers are
set to fetch image tasks from the new master. This also
happens automatically, again conforming with ([NFR:1]
Automation).

Due to the slow-start algorithm workers only fetch
image tasks when they are able to actually process the
image task. This conforms with ([NFR:3] Load Balancing
(Performance)).

6 CONCLUSION
In this paper the design of NajNaf was described - a
system that tries to deal with all the problems Want-
Cloud BV’s current system has. Experiments have been
conducted on a prototype of the system and together
with sound reasoning we have shown that that the
system meets all the prototype requirements.

However, the prototype system does not contain all re-
quirements, but provides a good base for the production
system. All production requirements can be achieved by
extending the prototype without exceptions. As a result
we are convinced NajNaf can play an important part in
the future of WantCloud BV. We therefore recommend
WantCloud BV to choose for a cloud based solution,
either off-the-shelf or custom made.

REFERENCES
[1] Lb matermarker. http://www.turboradness.com/

watermark-your-images-with-python/ [Visited 10 December
2012].

[2] Opennebula. http://opennebula.org/ [Visited 10 December 2012].
[3] Slow start algorithm. http://tools.ietf.org/html/rfc5681 [Visited

10 December 2012].
[4] Stomp - the simple text oriented messaging protocol. http://

stomp.github.com/ [Visited 10 December 2012].

APPENDIX A
TIME SHEET

Activity Time Spent (hour)
Thinking (design) 30
Developing 90
Experimenting 10
Analysis 10
Writing(report) 35
Wasted (setup etc.) 30
Total 205

8

The amount of time used for experimenting is fairly
small compared to the other activities, this is mainly
because the resource monitor was already in place and
we only had to simulate workload for the system. Of the
time spent on the experiments about 70% of the time
was used for debugging and the remaining time was
used to build a workload simulator and actually run the
experiments.

