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INTRODUCTION 

In this paper, we present ZkVM, the zero-knowledge virtual machine: a 
transaction format for a shared, multi-asset, cryptographic ledger. 

ZkVM aims at lowering the costs of participating in a global network by 
making transactions highly customizable, confidential, highly efficient 
and simple. 

Customizable: ZkVM permits custom contracts. Contracts support 
realistic use cases via programmable constraints over encrypted data 
and assets. The VM supports a powerful language to express a wide 
range of higher-level protocols without the need to change the VM and 
upgrade the entire network. 

Confidential: In ZkVM, quantities and types of assets are fully 
encrypted. The asset flow is hidden on the transaction level. Individuals 
and organizations can safely perform their transactions directly on the 
shared ledger, instead of keeping them in siloed databases. 

Efficient: The ZkVM blockchain uses a compact data model that fits in 
a few kilobytes. Verification of transactions is highly parallelizable and 
takes 1-2 ms per CPU core. Nodes can bootstrap instantly from a 
network-verified snapshot. Virtually any computing device can run a 
full node, without relying on intermediate infrastructure and trusted 
third parties. Devices with limited cellular data plans can save 
bandwidth by tracking relevant state updates only (e.g. watching their 
own payment channels), without having to verify all transactions. 

Simple: ZkVM requires no special compilers, debuggers, or optimizers. 
Its abstractions map well onto real-world concepts, and the technology 
stack consists of a small number of inventions reviewed by a global 
community of cryptographers and engineers. 

ZkVM is an evolution of the authors’ prior work on TxVM, which in turn 
was influenced by the design of Bitcoin and Ethereum. The motivation 
for such ledgers was originally expressed in the paper Secure Property 
Titles by Nick Szabo. 
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https://chain.com/assets/txvm.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
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https://nakamotoinstitute.org/secure-property-titles/


TRANSACTIONS 

A ZkVM transaction is a data structure around a program that describes 
the issuance and transfer of financial assets. A transaction also 
contains data such as protocol version, time bounds, and 
cryptographic proofs necessary to verify the correctness of the 
transaction. 

Assets are created via issuance: each asset is securely identified by its 
issuer’s predicate (public key), so only the issuer’s signature can 
authorize creation of additional units of the asset. Asset units are 
removed from circulation with a dedicated retire instruction. 

Assets are transferred by use of inputs and outputs. Each output 
specifies a new destination for the funds, and each input identifies an 
output from a previous transaction and unlocks its value with a 
cryptographic signature. The input is said to spend the earlier 
transaction’s output. 

A payee can use the signatures to verify the chain of ownership, but 
also needs to make sure that the asset was not double-spent. This 
problem is solved with the blockchain state: a set of unspent outputs. 
Each time a transaction declares an input, an item is removed from the 
set. If the item has been removed (or never existed), the transaction is 
rejected. A consensus protocol can ensure that all participants in the 
network agree on the same blockchain state. 

A ZkVM blockchain can work with any consensus protocol, from Proof-
of-Work to Federated Byzantine Consensus. It can even work as a 
private financial database with real-time auditability. The exact 
protocol depends on its concrete application, which is outside the 
scope of this document. 
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PROGRAM EXECUTION 

ZkVM is a stack machine for verifying a transaction. The stack machine 
executes the transaction’s program in order to determine the validity 
of the transaction and to compute a list of updates to the blockchain 
state. 

A transaction’s program is a string of bytecode, which consists of 
instructions that allow spending, issuing and distributing asset values, 
composing arithmetic constraints, and interacting with contracts. The 
VM does not permit loops or unbounded recursion, which greatly 
simplifies the calculation of the costs of operating the network and 
eliminates entire classes of vulnerabilities. 

Instructions operate on items of distinct types: plain data types such 
as scalars and group elements, and linear types such as values and 
contracts. 

Each instruction is a high-level operation that embodies the protocol 
rules. For instance, the cloak instruction not only allows a program to 
redistribute assets but also checks that the balances are preserved. 

ZkVM executes a transaction’s program deterministically, in full 
isolation from the blockchain state. Instructions like input and 
output add entries to a transaction log. The transaction log describes 
changes to the blockchain state dictated by the transaction: old 
outputs to consume and new outputs to create. The application of  
these changes to the blockchain state happens in a separate phase. 
This separation allows transactions to be executed either in arbitrary 
order or in parallel, synchronizing only on delete/insert operations for 
the transaction outputs. 
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CONTRACTS 

In ZkVM, values are protected by contracts. Each contract contains a 
payload and a predicate. The payload is an arbitrary number of items 
that could be values or data parameters. The predicate is a condition 
that must be satisfied in order to unlock the items in the payload. 

Transaction outputs are nothing more or less than contracts persisted 
to the blockchain state. During validation, contracts exist on the VM 
stack. ZkVM requires the transaction program to clear contracts from 
the stack, which can only be done by satisfying their predicates. Once 
the items are unlocked, they can be used to form new items to be 
locked in either a transient contract or a persistent output. 

The ZkVM instruction set is expressive enough to build a wide range of 
protocols using contracts: payment channels, order books, multi-
factor/multi-party custody, collateralized loans, and even arbitrary 
state machines. 

Predicates can be satisfied with either a signature or the execution of a 
sub-program. The most common way to satisfy a predicate is with the 
signtx instruction that verifies a signature over a hash of the entire 
transaction, interpreting the predicate as a public key. Alternatively, the 
call instruction reveals a sub-program embedded in a predicate and 
executes it before the main program continues. Finally, the delegate 
instruction provides maximum flexibility: it executes an arbitrary 
program not contained in the predicate (after verifying a signature). 

Operations on predicates are implemented using the Taproot 
commitment scheme by Gregory Maxwell that offers a privacy-
flexibility tradeoff based on real-world use cases. 

Consider, for example, a two-party financial contract. If both parties 
cooperate, they can form a ZkVM program that reconstitutes the 
contract from an unspent output in the blockchain state, unlocks the 
value it contains in its payload, redistributes it using the cloak 
instruction, and creates new outputs. The transaction is simply signed 
by both parties to satisfy the predicate. If the parties do not cooperate, 
or if some conditions cannot be satisfied by a simple signature, one of 
the parties can disclose the appropriate sub-program (or clause) 
embedded in the predicate and let ZkVM execute it before continuing 
with the main program. For instance, a loan contract can time out and 
allow the creditor to claim the collateral locked in a contract. 

The implementation provides a powerful and safe Rust API for 
composing arbitrary contracts and transactions directly, without the 
need for specialized languages and compilers. 
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https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html


CONSTRAINTS 

Alongside the stack and the transaction log, VM state contains a 
constraint system, where arithmetic and boolean instructions add 
constraints during program execution.  

In order to preserve confidentiality, ZkVM instructions do not operate 
on ordinary integers and booleans. Instead, they operate on Expression 
types (arithmetic combinations of secret integers) and Constraint 
types (logical functions of secret booleans). 

First, the arithmetic relations between secret and non-secret integers 
are expressed using neg, add, and mul operations that produce an 
Expression object. Then, the eq instruction creates a Constraint object 
that asserts the equality of two Expressions. Multiple Constraints are 
composed with logical operations such as and, or and not. Finally, the 
verify instruction takes the resulting Constraint object and adds it to 
the constraint system. 

To implement verification of the constraints in zero-knowledge, ZkVM 
uses the Bulletproofs proving system by Bünz, Bootle, Boneh, Poelstra, 
Wuille and Maxwell. While the program runs, various instructions add 
constraints to the constraint system. After the VM finishes execution 
of a program, it uses the Bulletproofs protocol to verify the constraint 
system using a proof string stored within the transaction. If verification 
succeeds, the transaction is considered valid. 

To construct the proof string, the creator of a transaction first runs the 
VM in proving mode. The transaction program creates the same 
constraints as in verification mode, but instead of checking the proof, 
the constraint system is used to generate a proof and finalize the 
transaction structure. To make this possible, the program is 
represented as an array of Instruction objects that carry witness 
information such as blinding factors or secret quantities. This 
information is erased when the program is converted to bytecode for 
publication on the blockchain. 

VM instructions directly interact with the constraint system, without 
using any intermediate representation such as a syntax trees or 
arithmetic circuits, and without any compilation/optimization phases. 
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https://crypto.stanford.edu/bulletproofs/


SCALABILITY 

ZkVM is designed to scale to a wide range of applications and large 
volumes of transactions. The design focuses on low bandwidth 
requirements, fast and parallelizable transaction verification, and 
minimal storage overhead. 

A ZkVM transaction contains a single constraint system proof (around 
1Kb) and a single 64-byte Schnorr signature, aggregated via the multi-
message Musig protocol by Maxwell, Poelstra, Seurin and Wuille. The 
size of the proof scales logarithmically, lowering the marginal cost of 
an input-output pair to just 200 bytes that can be further optimized by 
caching most recent outputs. 

ZkVM execution is decoupled from updates to the blockchain state: 
every transaction can be verified in isolation. The result of ZkVM 
execution is a transaction log, which contains a list of consumed and 
created unspent outputs (utxos) that are applied to the blockchain 
state separately. Historical transactions are pruned, while the utxo set 
is compressed with the Utreexo scheme by Thaddeus Dryja. A billion 
unspent outputs use just 1 kilobyte of data (30 merkle roots). New 
nodes bootstrap instantly from a network-verified Utreexo snapshot. 

Nodes that track large amounts of unspent outputs for their clients still 
have favorable storage requirements: the utxo set grows much more 
slowly than the number of transactions and has a cache-friendly 
access pattern (older outputs are spent less frequently). 

Bandwidth-constrained nodes such as mobile devices with limited data 
plans can use simplified payment verification mode: instead of 
verifying all transactions they can track block headers only, to detect 
changes to their utxo proofs and the status of their payment channels, 
without the need for dedicated trusted services. 
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https://eprint.iacr.org/2018/068.pdf
https://www.youtube.com/watch?v=edRun-6ubCc
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification
https://lightning.network/lightning-network-paper.pdf


PRIVACY 

In ZkVM transactions, all asset quantities, asset types, and parameters 
to contracts are encrypted by default, unless explicitly unblinded. At 
the moment of issuance, an asset type must be public (because the 
asset type is tied to the authentication predicate), but the quantity is 
encrypted. 

Asset flow within the scope of a transaction is fully encrypted: the M 
inputs and N outputs are generally indistinguishable to third-party 
observers (those without the blinding factors needed to decrypt them). 
However, the graph of transaction inputs and outputs is made public to 
efficiently prevent double-spending. 

Asset flow across transactions can be further obfuscated using a 
variant of the CoinJoin scheme by Gregory Maxwell, in which multiple 
payments are combined in a single multi-party transaction. This makes 
the flow of assets more diffuse and incidentally reduces the marginal 
proof size. 

Complex contracts that contain data parameters (e.g. prices, expiration 
time, counters) may keep the parameters encrypted at a low cost. This 
way, invoking a contract discloses only its logic, not the data it’s 
operating on. 

Predicates use the Taproot commitment scheme to pack an arbitrarily 
large set of conditions into a single public key. This allows users to 
avoid revealing contract logic in the first place. If all parties to a 
contract cooperate (e.g. closing a payment channel normally, without 
forced settlement), the network only has to see an aggregated 
signature, so neither the number of parties nor the nature of the 
contract has to be published. If the parties do not cooperate, Taproot 
allows revealing and verifying a required subset of conditions (contract 
clause), keeping all the others secret. 
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PERFORMANCE 

ZkVM does not permit loops or unbounded recursion. All immediately 
executed operations are very cheap, and the cost of execution is 
proportional to the length of the transaction program. A typical 
program consists of a handful of short instructions (input, signtx, 
output and one cloak), with 128 bytes of data for each input and 96 
bytes for each output. If any contract reveals a sub-program, it must be 
encoded directly in the main program and cannot be constructed on 
the fly. 

Verification of signatures, constraints, and Taproot commitments are 
relatively expensive because they involve the scalar multiplication of 
elliptic-curve points. For that reason, these operations are deferred 
and performed in a batch after the VM is finished executing the 
transaction’s program. 

Use of the Ristretto group by Mike Hamburg, Henry de Valence, Isis 
Lovecruft, Tony Arcieri and its state-of-the-art implementation in the 
Dalek project by Isis Lovecruft and Henry de Valence, reduces the cost 
of one output verification to 1ms on a modern 3 GHz CPU, which implies 
a throughput of 1000 outputs per second per core. Verification is also 
highly parallelizable to optimize latency-critical deployments. Proving 
time is in the order of several milliseconds per output. 

Custom constraints created by contracts typically have significantly 
less overhead than the cloak instruction that merges and splits the 
input values into the outputs. 
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CONCLUSION 

ZkVM is a comprehensive solution that brings together the results of 
years of work by many researchers and developers in applied 
cryptography, programming languages, and cryptocurrencies. 

It strikes the right balance between various partially conflicting 
requirements, producing a robust technology stack for the global 
financial system of the future. 

ZkVM is part of the Slingshot open source project, distributed under 
the Apache License, version 2.0. 

FUTURE WORK 

To increase privacy, the CoinJoin scheme on top of ZkVM requires a 
multi-party proving algorithm for a joint constraint system proof. It 
would allow parties to not exchange their secrets, yet build a single 
proof for a joint transaction as if it was done by a single party. 

Various higher-level protocols, such as accounts, payment channels 
and order books, require dedicated APIs built on top of ZkVM. These are 
subject to the future work on ZkVM. 
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