
ZkVM
 FAST,
 PRIVATE,
 FLEXIBLE
BLOCKCHAIN CONTRACTS

 Oleg Andreev
 Bob Glickstein
 Vicki Niu
 Tess Rinearson
 Debnil Sur
 Cathie Yun
May 2019

INTRODUCTION

In this paper, we present ZkVM, the zero-knowledge virtual machine: a
transaction format for a shared, multi-asset, cryptographic ledger.

ZkVM aims at lowering the costs of participating in a global network by
making transactions highly customizable, confidential, highly efficient
and simple.

Customizable: ZkVM permits custom contracts. Contracts support
realistic use cases via programmable constraints over encrypted data
and assets. The VM supports a powerful language to express a wide
range of higher-level protocols without the need to change the VM and
upgrade the entire network.

Confidential: In ZkVM, quantities and types of assets are fully
encrypted. The asset flow is hidden on the transaction level. Individuals
and organizations can safely perform their transactions directly on the
shared ledger, instead of keeping them in siloed databases.

Efficient: The ZkVM blockchain uses a compact data model that fits in
a few kilobytes. Verification of transactions is highly parallelizable and
takes 1-2 ms per CPU core. Nodes can bootstrap instantly from a
network-verified snapshot. Virtually any computing device can run a
full node, without relying on intermediate infrastructure and trusted
third parties. Devices with limited cellular data plans can save
bandwidth by tracking relevant state updates only (e.g. watching their
own payment channels), without having to verify all transactions.

Simple: ZkVM requires no special compilers, debuggers, or optimizers.
Its abstractions map well onto real-world concepts, and the technology
stack consists of a small number of inventions reviewed by a global
community of cryptographers and engineers.

ZkVM is an evolution of the authors’ prior work on TxVM, which in turn
was influenced by the design of Bitcoin and Ethereum. The motivation
for such ledgers was originally expressed in the paper Secure Property
Titles by Nick Szabo.

!2

https://chain.com/assets/txvm.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://nakamotoinstitute.org/secure-property-titles/
https://nakamotoinstitute.org/secure-property-titles/

TRANSACTIONS

A ZkVM transaction is a data structure around a program that describes
the issuance and transfer of financial assets. A transaction also
contains data such as protocol version, time bounds, and
cryptographic proofs necessary to verify the correctness of the
transaction.

Assets are created via issuance: each asset is securely identified by its
issuer’s predicate (public key), so only the issuer’s signature can
authorize creation of additional units of the asset. Asset units are
removed from circulation with a dedicated retire instruction.

Assets are transferred by use of inputs and outputs. Each output
specifies a new destination for the funds, and each input identifies an
output from a previous transaction and unlocks its value with a
cryptographic signature. The input is said to spend the earlier
transaction’s output.

A payee can use the signatures to verify the chain of ownership, but
also needs to make sure that the asset was not double-spent. This
problem is solved with the blockchain state: a set of unspent outputs.
Each time a transaction declares an input, an item is removed from the
set. If the item has been removed (or never existed), the transaction is
rejected. A consensus protocol can ensure that all participants in the
network agree on the same blockchain state.

A ZkVM blockchain can work with any consensus protocol, from Proof-
of-Work to Federated Byzantine Consensus. It can even work as a
private financial database with real-time auditability. The exact
protocol depends on its concrete application, which is outside the
scope of this document.

!3

PROGRAM EXECUTION

ZkVM is a stack machine for verifying a transaction. The stack machine
executes the transaction’s program in order to determine the validity
of the transaction and to compute a list of updates to the blockchain
state.

A transaction’s program is a string of bytecode, which consists of
instructions that allow spending, issuing and distributing asset values,
composing arithmetic constraints, and interacting with contracts. The
VM does not permit loops or unbounded recursion, which greatly
simplifies the calculation of the costs of operating the network and
eliminates entire classes of vulnerabilities.

Instructions operate on items of distinct types: plain data types such
as scalars and group elements, and linear types such as values and
contracts.

Each instruction is a high-level operation that embodies the protocol
rules. For instance, the cloak instruction not only allows a program to
redistribute assets but also checks that the balances are preserved.

ZkVM executes a transaction’s program deterministically, in full
isolation from the blockchain state. Instructions like input and
output add entries to a transaction log. The transaction log describes
changes to the blockchain state dictated by the transaction: old
outputs to consume and new outputs to create. The application of
these changes to the blockchain state happens in a separate phase.
This separation allows transactions to be executed either in arbitrary
order or in parallel, synchronizing only on delete/insert operations for
the transaction outputs.

!4

https://en.wikipedia.org/wiki/Substructural_type_system

CONTRACTS

In ZkVM, values are protected by contracts. Each contract contains a
payload and a predicate. The payload is an arbitrary number of items
that could be values or data parameters. The predicate is a condition
that must be satisfied in order to unlock the items in the payload.

Transaction outputs are nothing more or less than contracts persisted
to the blockchain state. During validation, contracts exist on the VM
stack. ZkVM requires the transaction program to clear contracts from
the stack, which can only be done by satisfying their predicates. Once
the items are unlocked, they can be used to form new items to be
locked in either a transient contract or a persistent output.

The ZkVM instruction set is expressive enough to build a wide range of
protocols using contracts: payment channels, order books, multi-
factor/multi-party custody, collateralized loans, and even arbitrary
state machines.

Predicates can be satisfied with either a signature or the execution of a
sub-program. The most common way to satisfy a predicate is with the
signtx instruction that verifies a signature over a hash of the entire
transaction, interpreting the predicate as a public key. Alternatively, the
call instruction reveals a sub-program embedded in a predicate and
executes it before the main program continues. Finally, the delegate
instruction provides maximum flexibility: it executes an arbitrary
program not contained in the predicate (after verifying a signature).

Operations on predicates are implemented using the Taproot
commitment scheme by Gregory Maxwell that offers a privacy-
flexibility tradeoff based on real-world use cases.

Consider, for example, a two-party financial contract. If both parties
cooperate, they can form a ZkVM program that reconstitutes the
contract from an unspent output in the blockchain state, unlocks the
value it contains in its payload, redistributes it using the cloak
instruction, and creates new outputs. The transaction is simply signed
by both parties to satisfy the predicate. If the parties do not cooperate,
or if some conditions cannot be satisfied by a simple signature, one of
the parties can disclose the appropriate sub-program (or clause)
embedded in the predicate and let ZkVM execute it before continuing
with the main program. For instance, a loan contract can time out and
allow the creditor to claim the collateral locked in a contract.

The implementation provides a powerful and safe Rust API for
composing arbitrary contracts and transactions directly, without the
need for specialized languages and compilers.

!5

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html

CONSTRAINTS

Alongside the stack and the transaction log, VM state contains a
constraint system, where arithmetic and boolean instructions add
constraints during program execution.

In order to preserve confidentiality, ZkVM instructions do not operate
on ordinary integers and booleans. Instead, they operate on Expression
types (arithmetic combinations of secret integers) and Constraint
types (logical functions of secret booleans).

First, the arithmetic relations between secret and non-secret integers
are expressed using neg, add, and mul operations that produce an
Expression object. Then, the eq instruction creates a Constraint object
that asserts the equality of two Expressions. Multiple Constraints are
composed with logical operations such as and, or and not. Finally, the
verify instruction takes the resulting Constraint object and adds it to
the constraint system.

To implement verification of the constraints in zero-knowledge, ZkVM
uses the Bulletproofs proving system by Bünz, Bootle, Boneh, Poelstra,
Wuille and Maxwell. While the program runs, various instructions add
constraints to the constraint system. After the VM finishes execution
of a program, it uses the Bulletproofs protocol to verify the constraint
system using a proof string stored within the transaction. If verification
succeeds, the transaction is considered valid.

To construct the proof string, the creator of a transaction first runs the
VM in proving mode. The transaction program creates the same
constraints as in verification mode, but instead of checking the proof,
the constraint system is used to generate a proof and finalize the
transaction structure. To make this possible, the program is
represented as an array of Instruction objects that carry witness
information such as blinding factors or secret quantities. This
information is erased when the program is converted to bytecode for
publication on the blockchain.

VM instructions directly interact with the constraint system, without
using any intermediate representation such as a syntax trees or
arithmetic circuits, and without any compilation/optimization phases.

!6

https://crypto.stanford.edu/bulletproofs/

SCALABILITY

ZkVM is designed to scale to a wide range of applications and large
volumes of transactions. The design focuses on low bandwidth
requirements, fast and parallelizable transaction verification, and
minimal storage overhead.

A ZkVM transaction contains a single constraint system proof (around
1Kb) and a single 64-byte Schnorr signature, aggregated via the multi-
message Musig protocol by Maxwell, Poelstra, Seurin and Wuille. The
size of the proof scales logarithmically, lowering the marginal cost of
an input-output pair to just 200 bytes that can be further optimized by
caching most recent outputs.

ZkVM execution is decoupled from updates to the blockchain state:
every transaction can be verified in isolation. The result of ZkVM
execution is a transaction log, which contains a list of consumed and
created unspent outputs (utxos) that are applied to the blockchain
state separately. Historical transactions are pruned, while the utxo set
is compressed with the Utreexo scheme by Thaddeus Dryja. A billion
unspent outputs use just 1 kilobyte of data (30 merkle roots). New
nodes bootstrap instantly from a network-verified Utreexo snapshot.

Nodes that track large amounts of unspent outputs for their clients still
have favorable storage requirements: the utxo set grows much more
slowly than the number of transactions and has a cache-friendly
access pattern (older outputs are spent less frequently).

Bandwidth-constrained nodes such as mobile devices with limited data
plans can use simplified payment verification mode: instead of
verifying all transactions they can track block headers only, to detect
changes to their utxo proofs and the status of their payment channels,
without the need for dedicated trusted services.

!7

https://eprint.iacr.org/2018/068.pdf
https://www.youtube.com/watch?v=edRun-6ubCc
https://en.bitcoinwiki.org/wiki/Simplified_Payment_Verification
https://lightning.network/lightning-network-paper.pdf

PRIVACY

In ZkVM transactions, all asset quantities, asset types, and parameters
to contracts are encrypted by default, unless explicitly unblinded. At
the moment of issuance, an asset type must be public (because the
asset type is tied to the authentication predicate), but the quantity is
encrypted.

Asset flow within the scope of a transaction is fully encrypted: the M
inputs and N outputs are generally indistinguishable to third-party
observers (those without the blinding factors needed to decrypt them).
However, the graph of transaction inputs and outputs is made public to
efficiently prevent double-spending.

Asset flow across transactions can be further obfuscated using a
variant of the CoinJoin scheme by Gregory Maxwell, in which multiple
payments are combined in a single multi-party transaction. This makes
the flow of assets more diffuse and incidentally reduces the marginal
proof size.

Complex contracts that contain data parameters (e.g. prices, expiration
time, counters) may keep the parameters encrypted at a low cost. This
way, invoking a contract discloses only its logic, not the data it’s
operating on.

Predicates use the Taproot commitment scheme to pack an arbitrarily
large set of conditions into a single public key. This allows users to
avoid revealing contract logic in the first place. If all parties to a
contract cooperate (e.g. closing a payment channel normally, without
forced settlement), the network only has to see an aggregated
signature, so neither the number of parties nor the nature of the
contract has to be published. If the parties do not cooperate, Taproot
allows revealing and verifying a required subset of conditions (contract
clause), keeping all the others secret.

!8

https://bitcointalk.org/?topic=279249

PERFORMANCE

ZkVM does not permit loops or unbounded recursion. All immediately
executed operations are very cheap, and the cost of execution is
proportional to the length of the transaction program. A typical
program consists of a handful of short instructions (input, signtx,
output and one cloak), with 128 bytes of data for each input and 96
bytes for each output. If any contract reveals a sub-program, it must be
encoded directly in the main program and cannot be constructed on
the fly.

Verification of signatures, constraints, and Taproot commitments are
relatively expensive because they involve the scalar multiplication of
elliptic-curve points. For that reason, these operations are deferred
and performed in a batch after the VM is finished executing the
transaction’s program.

Use of the Ristretto group by Mike Hamburg, Henry de Valence, Isis
Lovecruft, Tony Arcieri and its state-of-the-art implementation in the
Dalek project by Isis Lovecruft and Henry de Valence, reduces the cost
of one output verification to 1ms on a modern 3 GHz CPU, which implies
a throughput of 1000 outputs per second per core. Verification is also
highly parallelizable to optimize latency-critical deployments. Proving
time is in the order of several milliseconds per output.

Custom constraints created by contracts typically have significantly
less overhead than the cloak instruction that merges and splits the
input values into the outputs.

!9

https://ristretto.group
https://doc.dalek.rs/curve25519_dalek/

CONCLUSION

ZkVM is a comprehensive solution that brings together the results of
years of work by many researchers and developers in applied
cryptography, programming languages, and cryptocurrencies.

It strikes the right balance between various partially conflicting
requirements, producing a robust technology stack for the global
financial system of the future.

ZkVM is part of the Slingshot open source project, distributed under
the Apache License, version 2.0.

FUTURE WORK

To increase privacy, the CoinJoin scheme on top of ZkVM requires a
multi-party proving algorithm for a joint constraint system proof. It
would allow parties to not exchange their secrets, yet build a single
proof for a joint transaction as if it was done by a single party.

Various higher-level protocols, such as accounts, payment channels
and order books, require dedicated APIs built on top of ZkVM. These are
subject to the future work on ZkVM.

!10

https://github.com/stellar/slingshot
https://bitcointalk.org/?topic=279249

AUTHORS (A-Z)

Oleg Andreev 
oleganza@gmail.com

Bob Glickstein 
bobg@emphatic.com

Vicki Niu 
vicki.niu@gmail.com

Tess Rinearson  
tess.rinearson@gmail.com

Debnil Sur 
debnil@alumni.stanford.edu

Cathie Yun  
cathieyun@gmail.com

With contributions from Kev Wedderburn decentralisedkev@gmail.com

We thank Jessica Ling and Justin Rice for their feedback.

This work was sponsored by Interstellar and Stellar Development Foundation.

!11

mailto:oleganza@gmail.com
mailto:bobg@emphatic.com
mailto:vicki.niu@gmail.com
mailto:tess.rinearson@gmail.com
mailto:debnil@alumni.stanford.edu
mailto:cathieyun@gmail.com
mailto:decentralisedkev@gmail.com
https://interstellar.com
https://www.stellar.org

REFERENCES

!12

[txvm] TxVM: Transaction Virtual Machine
Bob Glickstein, Cathie Yun, Dan Robinson, Keith Rarick, Oleg Andreev

[btc] Bitcoin: A Peer-to-Peer Electronic Cash System
Satoshi Nakamoto

[eth] Ethereum: a secure decentralized generalized transaction ledger
Gavin Wood

[szabo98] Secure Property Titles with Owner Authority
Nick Szabo

[taproot] Taproot: Privacy preserving switchable scripting
Gregory Maxwell

[bp] Bulletproofs: Short Proofs for Confidential Transactions and More
Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, Greg Maxwell

Bulletproofs implementation with Ristretto
Henry de Valence, Cathie Yun, Oleg Andreev

[musig] Simple Schnorr Multi-Signatures with Applications to Bitcoin
Gregory Maxwell, Andrew Poelstra, Yannick Seurin, Pieter Wuille

[utreexo] Utreexo: Reducing Bitcoin Nodes to 1 Kilobyte (transcript)
Thaddeus Dryja

[lightning] The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments
Joseph Poon, Thaddeus Dryja

[coinjoin] CoinJoin: Bitcoin privacy for the real world
Gregory Maxwell

[ristretto] The Ristretto Group
Mike Hamburg, Henry de Valence, Isis Lovecruft, Tony Arcieri

[dalek] curve25519-dalek, pure-Rust implementation of Ristretto
Isis Lovecruft, Henry de Valence

[slingshot] Project Slingshot, pure-Rust implementation of ZkVM, Cloak, and Musig
Oleg Andreev, Bob Glickstein, Vicki Niu, Tess Rinearson, Debnil Sur, Cathie Yun

https://chain.com/assets/txvm.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://nakamotoinstitute.org/secure-property-titles/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://crypto.stanford.edu/bulletproofs/
http://github.com/dalek-cryptography/bulletproofs/
https://eprint.iacr.org/2018/068.pdf
https://www.youtube.com/watch?v=edRun-6ubCc
https://diyhpl.us/wiki/transcripts/bitcoin-core-dev-tech/2018-10-08-utxo-accumulators-and-utreexo/
https://lightning.network/lightning-network-paper.pdf
https://bitcointalk.org/?topic=279249
https://ristretto.group
https://doc.dalek.rs/curve25519_dalek/
https://github.com/stellar/slingshot

!13

	INTRODUCTION
	Transactions
	Program execution
	Contracts
	Constraints
	Scalability
	Privacy
	Performance
	Conclusion
	Future work
	Authors (A-Z)
	REFERENCEs

