Skip to content

stephens999/ashr

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
R
 
 
man
 
 
src
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CRAN_Status_Badge Build Status AppVeyor Build Status Coverage Status Coverage Status

This repository contains an R package for performing "Adaptive Shrinkage."

To install the ashr package first you need to install devtools:

install.packages("devtools")
library(devtools)
install_github("stephens999/ashr")

Running Adaptive Shrinkage

The main function in the ashr package is ash. To get minimal help:

library(ashr)
?ash

More background

The ashr ("Adaptive SHrinkage") package aims to provide simple, generic, and flexible methods to derive "shrinkage-based" estimates and credible intervals for unknown quantities $\beta=(\beta_1,\dots,\beta_J)$, given only estimates of those quantities ($\hat\beta=(\hat\beta_1,\dots, \hat\beta_J)$) and their corresponding estimated standard errors ($s=(s_1,\dots,s_J)$).

The "adaptive" nature of the shrinkage is two-fold. First, the appropriate amount of shrinkage is determined from the data, rather than being pre-specified. Second, the amount of shrinkage undergone by each $\hat\beta_j$ will depend on the standard error $s_j$: measurements with high standard error will undergo more shrinkage than measurements with low standard error.

Methods Outline

The methods are based on treating the vectors $\hat\beta$ and $s$ as "observed data", and then performing inference for $\beta$ from these observed data, using a standard hierarchical modelling framework to combine information across $j=1,\dots,J$.

Specifically, we assume that the true $\beta_j$ values are independent and identically distributed from some unimodal distribution $g$. By default we assume $g$ is unimodal about zero and symmetric. You can specify or estimate a different mode using the mode parameter. You can allow for asymmetric $g$ by specifying mixcompdist="halfuniform".

Then, we assume that the observations $\hat\beta_j \sim N(\beta_j,s_j)$, or alternatively the normal assumption can be replaced by a $t$ distribution by specifying df, the number of degrees of freedom used to estimate $s_j$. Actually this is important: do be sure to specify df if you can.