Permalink
Browse files

Merge master into gh-pages

  • Loading branch information...
2 parents 2a1d4d2 + b00350f commit a63ddafc37529d6569050863e2af692f5a09da4b @steveWang committed Aug 17, 2012
Showing with 133 additions and 25 deletions.
  1. +3 −4 cs191.html
  2. +3 −4 ee105.html
  3. +2 −3 ee120.html
  4. +3 −4 markdown
  5. +20 −4 phys112.html
  6. +34 −5 phys137a.html
  7. +22 −1 sp2012/phys112/phys112.md
  8. +46 −0 sp2012/phys137a/phys137a.md
View
@@ -1,4 +1,4 @@
-<div class='wrapper'>
+<div><div class='wrapper'>
<p><a name='1'></a></p>
<h1>CS 191: Qubits, Quantum Mechanics and Computers</h1>
<h2>Introduction -- January 17, 2012</h2>
@@ -2560,11 +2560,10 @@
div.style.width = '15%';
for (var i = 0; i < ll; i++) {
div.innerHTML += '<a href="\#' + a[i].name + '">'
- + a[i].parentElement.nextElementSibling
- .nextElementSibling.innerText
+ + a[i].parentElement.nextElementSibling.innerHTML
+ '</a><br />';
}
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>
+</script></div>
View
@@ -1,4 +1,4 @@
-<div class='wrapper'>
+<div><div class='wrapper'>
<p><a name='1'></a></p>
<h1>EE 105: Devices &amp; Circuits</h1>
<h2>Wednesday, January 18, 2012.</h2>
@@ -1814,11 +1814,10 @@
div.style.width = '15%';
for (var i = 0; i < ll; i++) {
div.innerHTML += '<a href="\#' + a[i].name + '">'
- + a[i].parentElement.nextElementSibling
- .nextElementSibling.innerText
+ + a[i].parentElement.nextElementSibling.innerHTML
+ '</a><br />';
}
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>
+</script></div>
View
@@ -1,4 +1,4 @@
-<div class='wrapper'>
+<div><div class='wrapper'>
<p><a name='1'></a></p>
<h1>EE 120: Signals and Systems</h1>
<h2>January 17, 2012.</h2>
@@ -1810,5 +1810,4 @@
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>
-</div>
+</script></div>
View
@@ -2,7 +2,7 @@
if `test -n "$1" && test -f $1`; then
fname=`echo $1 | sed -r "s/\.[^.]*$//"`.html
- echo "<div class='wrapper'>"
+ echo "<div><div class='wrapper'>"
cat $1 | markdown_py -x mathjax
echo "</div><div class='pos'></div>"
echo "<script src='mathjax/unpacked/MathJax.js?config=default'></script>
@@ -31,12 +31,11 @@ if (ll > 0) {
div.style.width = '15%';
for (var i = 0; i < ll; i++) {
div.innerHTML += '<a href=\"\#' + a[i].name + '\">'
- + a[i].parentElement.nextElementSibling
- .nextElementSibling.innerText
+ + a[i].parentElement.nextElementSibling.innerHTML
+ '</a><br />';
}
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>"
+</script></div>"
fi
View
@@ -1,4 +1,4 @@
-<div class='wrapper'>
+<div><div class='wrapper'>
<p><a name='1'></a></p>
<h1>Physics 112: Statistical Mechanics</h1>
<h2>January 18, 2012</h2>
@@ -2560,7 +2560,24 @@
for all practical purposes, does not exist.</p>
<p>Indeed, in this case, the chemical potentials add.</p>
<p>Problem: running out of time. Try to tell a little bit about how we discuss
-the </p><div class='pos'></div>
+the formation of atoms in the early universe. Neutrons, protons,
+electrons. At the early part (before about 3 minutes in the age of the
+universe), we had too high of energy, and the neutrons plus protons could
+not form deuterium. When the temperature dropped, deuterium was able to
+form, and we had that. Then we could form Helium-3, Helium-4, etc. We have
+to be a little careful when we have two charged particles, we have a
+positive potential from the EM forces between the particles.</p>
+<p>Let me show just one thing: we can use this kind of argument to follow the
+expansion of the density of various components. In the space of a few
+moments, you are forming all of the light nuclei in the universe. Can try
+to measure amount of deuterium and whatnot. You arrive at the fact that
+ordinary matter is only a tiny part of what we observe in the universe.</p>
+<p>By the way: cosmic microwave background gives exactly the same results with
+totally different physics.</p>
+<p>Conclusion: what I wanted to conclude was the link between nuclear physics
+at small scale and the universe at large scale. Now attempting to explore
+links between particle physics / quantum gravity and the universe.</p>
+<p>Inflation: origin of small scale quantum structure.</p></div><div class='pos'></div>
<script src='mathjax/unpacked/MathJax.js?config=default'></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () {
@@ -2593,5 +2610,4 @@
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>
-</div>
+</script></div>
View
@@ -1,4 +1,4 @@
-<div class='wrapper'>
+<div><div class='wrapper'>
<p><a name='1'></a></p>
<h1>Physics 137A: Quantum Mechanics</h1>
<h2>Wednesday, January 18</h2>
@@ -799,7 +799,37 @@
<p>Fine-structure of hydrogen: taking into account spin interaction with
magnetic field induced by relative motion of proton (larmor precession)</p>
<p>Quadrupoles, nuclear spin, total angular momentum of electron. Angular
-momentum of atom: <mathjax>$I_N + \vec{J} = \vec{F}_{\mathrm{atom}}$</mathjax>.</p></div><div class='pos'></div>
+momentum of atom: <mathjax>$I_N + \vec{J} = \vec{F}_{\mathrm{atom}}$</mathjax>.</p>
+<p><a name='37'></a></p>
+<h1>Physics 137A: Quantum Mechanics</h1>
+<h1>Friday, April 27</h1>
+<p>spin combinations, parity, stuff. spans space. doesn't have good symmetry
+under imagined operators.</p>
+<p>Annihilation of conjugate coordinates: discrete Fourier transforms and
+stuff. <mathjax>$M = m_1 + m_2$</mathjax>, <mathjax>$\mu = \frac{m_1m_2}{m_1 + m_2}}$</mathjax>.</p>
+<p>center of mass and stuff. Two-body problem.</p>
+<p><mathjax>$\frac{1}{\Psi(R)} \frac{p^2}{2M}\Psi_{cm} = E_{cm}$</mathjax>.</p>
+<p><mathjax>$\frac{1}{\Psi(r)} \parens{\frac{p^2}{2M} + \gamma} \Psi_{rel} = E_{rel}$</mathjax>.</p>
+<p><mathjax>$E = E_{rel} + E_{cm}$</mathjax>.</p>
+<p>Everything on the one-body problem maps directly onto the two-body
+problem. There's one small difference: we can claim we're not interested in
+the center-of-mass motion. We want to know the intrinsic structure, so we
+can just worry about the relative motion.</p>
+<p>In addition, there's spin. There are now two spins. <mathjax>$\ket{nlm; s_1m_{s1}
+s_2m_{s2}}$</mathjax>.</p>
+<p>Bosons and fermions. If you use separation of variables for
+<mathjax>$\Psi(\vec{r_1}, \vec{r_2})$</mathjax>, what does this wave function have to look
+like if we require symmetry? This wave function has probably one of two
+possibilities: we exchange quantum numbers, or we introduce a minus
+sign. Symmetric or antisymmetric under interchange of particle quantum
+numbers.</p>
+<p>Powerful theorem: depending on particle, only one is possible. Bosons: must
+build symmetry under interchange. Fermions: must be antisymmetric.</p>
+<p>Spin triplet state is even under particle exchange, and spin singlet is odd
+under particle exchange.</p>
+<p>Symmetry: can interchange. Have another spin buried in that Pauli
+originally introduced. Now you have this proton neutron stuff and can just
+continue.</p></div><div class='pos'></div>
<script src='mathjax/unpacked/MathJax.js?config=default'></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Register.StartupHook("TeX Jax Ready",function () {
@@ -826,11 +856,10 @@
div.style.width = '15%';
for (var i = 0; i < ll; i++) {
div.innerHTML += '<a href="\#' + a[i].name + '">'
- + a[i].parentElement.nextElementSibling
- .nextElementSibling.innerText
+ + a[i].parentElement.nextElementSibling.innerHTML
+ '</a><br />';
}
var div = document.getElementsByClassName('wrapper')[0];
div.style.width = '80%';
}
-</script>
+</script></div>
@@ -3360,4 +3360,25 @@ for all practical purposes, does not exist.
Indeed, in this case, the chemical potentials add.
Problem: running out of time. Try to tell a little bit about how we discuss
-the
+the formation of atoms in the early universe. Neutrons, protons,
+electrons. At the early part (before about 3 minutes in the age of the
+universe), we had too high of energy, and the neutrons plus protons could
+not form deuterium. When the temperature dropped, deuterium was able to
+form, and we had that. Then we could form Helium-3, Helium-4, etc. We have
+to be a little careful when we have two charged particles, we have a
+positive potential from the EM forces between the particles.
+
+Let me show just one thing: we can use this kind of argument to follow the
+expansion of the density of various components. In the space of a few
+moments, you are forming all of the light nuclei in the universe. Can try
+to measure amount of deuterium and whatnot. You arrive at the fact that
+ordinary matter is only a tiny part of what we observe in the universe.
+
+By the way: cosmic microwave background gives exactly the same results with
+totally different physics.
+
+Conclusion: what I wanted to conclude was the link between nuclear physics
+at small scale and the universe at large scale. Now attempting to explore
+links between particle physics / quantum gravity and the universe.
+
+Inflation: origin of small scale quantum structure.
@@ -1195,3 +1195,49 @@ magnetic field induced by relative motion of proton (larmor precession)
Quadrupoles, nuclear spin, total angular momentum of electron. Angular
momentum of atom: $I_N + \vec{J} = \vec{F}_{\mathrm{atom}}$.
+
+<a name='37'></a>
+
+Physics 137A: Quantum Mechanics
+===============================
+Friday, April 27
+================
+
+spin combinations, parity, stuff. spans space. doesn't have good symmetry
+under imagined operators.
+
+Annihilation of conjugate coordinates: discrete Fourier transforms and
+stuff. $M = m_1 + m_2$, $\mu = \frac{m_1m_2}{m_1 + m_2}}$.
+
+center of mass and stuff. Two-body problem.
+
+$\frac{1}{\Psi(R)} \frac{p^2}{2M}\Psi_{cm} = E_{cm}$.
+
+$\frac{1}{\Psi(r)} \parens{\frac{p^2}{2M} + \gamma} \Psi_{rel} = E_{rel}$.
+
+$E = E_{rel} + E_{cm}$.
+
+Everything on the one-body problem maps directly onto the two-body
+problem. There's one small difference: we can claim we're not interested in
+the center-of-mass motion. We want to know the intrinsic structure, so we
+can just worry about the relative motion.
+
+In addition, there's spin. There are now two spins. $\ket{nlm; s_1m_{s1}
+s_2m_{s2}}$.
+
+Bosons and fermions. If you use separation of variables for
+$\Psi(\vec{r_1}, \vec{r_2})$, what does this wave function have to look
+like if we require symmetry? This wave function has probably one of two
+possibilities: we exchange quantum numbers, or we introduce a minus
+sign. Symmetric or antisymmetric under interchange of particle quantum
+numbers.
+
+Powerful theorem: depending on particle, only one is possible. Bosons: must
+build symmetry under interchange. Fermions: must be antisymmetric.
+
+Spin triplet state is even under particle exchange, and spin singlet is odd
+under particle exchange.
+
+Symmetry: can interchange. Have another spin buried in that Pauli
+originally introduced. Now you have this proton neutron stuff and can just
+continue.

0 comments on commit a63ddaf

Please sign in to comment.