Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

414 lines (342 sloc) 7.997 kB
/*
* Copyright (c) 2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "expression.h"
# include "scope.h"
# include <iostream>
# include <typeinfo>
# include <cstring>
# include <ivl_assert.h>
# include <cassert>
using namespace std;
Expression::Expression()
: type_(0)
{
}
Expression::~Expression()
{
}
void Expression::set_type(const VType*typ)
{
assert(type_ == 0);
type_ = typ;
}
bool Expression::symbolic_compare(const Expression*) const
{
cerr << get_fileline() << ": internal error: "
<< "symbolic_compare() method not implemented "
<< "for " << typeid(*this).name() << endl;
return false;
}
ExpAttribute::ExpAttribute(ExpName*bas, perm_string nam)
: base_(bas), name_(nam)
{
}
ExpAttribute::~ExpAttribute()
{
delete base_;
}
ExpBinary::ExpBinary(Expression*op1, Expression*op2)
: operand1_(op1), operand2_(op2)
{
}
ExpBinary::~ExpBinary()
{
delete operand1_;
delete operand2_;
}
bool ExpBinary::eval_operand1(ScopeBase*scope, int64_t&val) const
{
return operand1_->evaluate(scope, val);
}
bool ExpBinary::eval_operand2(ScopeBase*scope, int64_t&val) const
{
return operand2_->evaluate(scope, val);
}
ExpUnary::ExpUnary(Expression*op1)
: operand1_(op1)
{
}
ExpUnary::~ExpUnary()
{
delete operand1_;
}
ExpAggregate::ExpAggregate(std::list<element_t*>*el)
: elements_(el? el->size() : 0)
{
assert(el);
size_t idx = 0;
while (! el->empty()) {
assert(idx < elements_.size());
elements_[idx++] = el->front();
el->pop_front();
}
}
ExpAggregate::~ExpAggregate()
{
for (size_t idx = 0 ; idx < elements_.size() ; idx += 1)
delete elements_[idx];
}
ExpAggregate::choice_t::choice_t(Expression*exp)
: expr_(exp)
{
}
ExpAggregate::choice_t::choice_t()
{
}
ExpAggregate::choice_t::choice_t(prange_t*rang)
: range_(rang)
{
}
ExpAggregate::choice_t::~choice_t()
{
}
bool ExpAggregate::choice_t::others() const
{
return expr_.get() == 0 && range_.get() == 0;
}
Expression*ExpAggregate::choice_t::simple_expression(bool detach_flag)
{
Expression*res = detach_flag? expr_.release() : expr_.get();
return res;
}
prange_t*ExpAggregate::choice_t::range_expressions(void)
{
return range_.get();
}
ExpAggregate::element_t::element_t(list<choice_t*>*fields, Expression*val)
: fields_(fields? fields->size() : 0), val_(val)
{
if (fields) {
size_t idx = 0;
while (! fields->empty()) {
assert(idx < fields_.size());
fields_[idx++] = fields->front();
fields->pop_front();
}
}
}
ExpAggregate::element_t::~element_t()
{
for (size_t idx = 0 ; idx < fields_.size() ; idx += 1)
delete fields_[idx];
delete val_;
}
ExpArithmetic::ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(op)
{
// The xCONCAT type is not actually used.
assert(op != xCONCAT);
}
ExpArithmetic::~ExpArithmetic()
{
}
/*
* Store bitstrings in little-endian order.
*/
ExpBitstring::ExpBitstring(const char*val)
: value_(strlen(val))
{
for (size_t idx = value_.size() ; idx > 0 ; idx -= 1)
value_[idx-1] = *val++;
}
ExpBitstring::~ExpBitstring()
{
}
ExpCharacter::ExpCharacter(char val)
: value_(val)
{
}
ExpCharacter::~ExpCharacter()
{
}
ExpConcat::ExpConcat(Expression*op1, Expression*op2)
: operand1_(op1), operand2_(op2)
{
}
ExpConcat::~ExpConcat()
{
delete operand1_;
delete operand2_;
}
ExpConditional::ExpConditional(Expression*co, list<Expression*>*tru,
list<ExpConditional::else_t*>*fal)
: cond_(co)
{
if (tru) true_clause_.splice(true_clause_.end(), *tru);
if (fal) else_clause_.splice(else_clause_.end(), *fal);
}
ExpConditional::~ExpConditional()
{
delete cond_;
while (! true_clause_.empty()) {
Expression*tmp = true_clause_.front();
true_clause_.pop_front();
delete tmp;
}
while (! else_clause_.empty()) {
else_t*tmp = else_clause_.front();
else_clause_.pop_front();
delete tmp;
}
}
ExpConditional::else_t::else_t(Expression*cond, std::list<Expression*>*tru)
: cond_(cond)
{
if (tru) true_clause_.splice(true_clause_.end(), *tru);
}
ExpConditional::else_t::~else_t()
{
delete cond_;
while (! true_clause_.empty()) {
Expression*tmp = true_clause_.front();
true_clause_.pop_front();
delete tmp;
}
}
ExpEdge::ExpEdge(ExpEdge::fun_t typ, Expression*op)
: ExpUnary(op), fun_(typ)
{
}
ExpEdge::~ExpEdge()
{
}
ExpFunc::ExpFunc(perm_string nn)
: name_(nn), argv_(0)
{
}
ExpFunc::ExpFunc(perm_string nn, list<Expression*>*args)
: name_(nn), argv_(args->size())
{
for (size_t idx = 0; idx < argv_.size() ; idx += 1) {
ivl_assert(*this, !args->empty());
argv_[idx] = args->front();
args->pop_front();
}
ivl_assert(*this, args->empty());
}
ExpFunc::~ExpFunc()
{
for (size_t idx = 0 ; idx < argv_.size() ; idx += 1)
delete argv_[idx];
}
ExpInteger::ExpInteger(int64_t val)
: value_(val)
{
}
ExpInteger::~ExpInteger()
{
}
bool ExpInteger::evaluate(ScopeBase*, int64_t&val) const
{
val = value_;
return true;
}
ExpLogical::ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpLogical::~ExpLogical()
{
}
ExpName::ExpName(perm_string nn)
: name_(nn), index_(0), lsb_(0)
{
}
ExpName::ExpName(perm_string nn, list<Expression*>*indices)
: name_(nn), index_(0), lsb_(0)
{
/* For now, assume a single index. */
ivl_assert(*this, indices->size() == 1);
index_ = indices->front();
indices->pop_front();
}
ExpName::ExpName(perm_string nn, Expression*msb, Expression*lsb)
: name_(nn), index_(msb), lsb_(lsb)
{
}
ExpName::ExpName(ExpName*prefix, perm_string nn)
: prefix_(prefix), name_(nn), index_(0), lsb_(0)
{
}
ExpName::ExpName(ExpName*prefix, perm_string nn, Expression*msb, Expression*lsb)
: prefix_(prefix), name_(nn), index_(msb), lsb_(lsb)
{
}
ExpName::~ExpName()
{
delete index_;
}
const char* ExpName::name() const
{
return name_;
}
bool ExpName::symbolic_compare(const Expression*that) const
{
const ExpName*that_name = dynamic_cast<const ExpName*> (that);
if (that_name == 0)
return false;
if (name_ != that_name->name_)
return false;
if (that_name->index_ && !index_)
return false;
if (index_ && !that_name->index_)
return false;
if (index_) {
assert(that_name->index_);
return index_->symbolic_compare(that_name->index_);
}
return true;
}
void ExpName::set_range(Expression*msb, Expression*lsb)
{
assert(index_==0);
index_ = msb;
assert(lsb_==0);
lsb_ = lsb;
}
ExpRelation::ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpRelation::~ExpRelation()
{
}
ExpString::ExpString(const char* value)
: value_(strlen(value))
{
for(size_t idx = 0; idx < value_.size(); idx += 1)
value_[idx] = value[idx];
}
ExpString::~ExpString()
{
}
ExpUAbs::ExpUAbs(Expression*op1)
: ExpUnary(op1)
{
}
ExpUAbs::~ExpUAbs()
{
}
ExpUNot::ExpUNot(Expression*op1)
: ExpUnary(op1)
{
}
ExpUNot::~ExpUNot()
{
}
Jump to Line
Something went wrong with that request. Please try again.