Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

1052 lines (918 sloc) 29.706 kB
/*
* Copyright (c) 1998-2000 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT) && !defined(macintosh)
#ident "$Id: cprop.cc,v 1.30 2001/10/28 01:14:53 steve Exp $"
#endif
# include "config.h"
# include "netlist.h"
# include "netmisc.h"
# include "functor.h"
# include <assert.h>
/*
* The cprop function below invokes constant propogation where
* possible. The elaboration generates NetConst objects. I can remove
* these and replace the gates connected to it with simpler ones. I
* may even be able to replace nets with a new constant.
*/
struct cprop_functor : public functor_t {
unsigned count;
virtual void signal(Design*des, NetNet*obj);
virtual void lpm_add_sub(Design*des, NetAddSub*obj);
virtual void lpm_compare(Design*des, NetCompare*obj);
virtual void lpm_compare_eq_(Design*des, NetCompare*obj);
virtual void lpm_ff(Design*des, NetFF*obj);
virtual void lpm_logic(Design*des, NetLogic*obj);
virtual void lpm_mux(Design*des, NetMux*obj);
};
void cprop_functor::signal(Design*des, NetNet*obj)
{
}
void cprop_functor::lpm_add_sub(Design*des, NetAddSub*obj)
{
// For now, only additions are handled.
if (obj->attribute("LPM_Direction") != "ADD")
return;
// If the low bit on the A side is 0, then eliminate it from
// the adder, and pass the B side directly to the
// result. Don't reduce the adder smaller then a 1-bit
// adder. These will be eliminated later.
while ((obj->width() > 1)
&& link_drivers_constant(obj->pin_DataA(0))
&& (driven_value(obj->pin_DataA(0)) == verinum::V0)) {
NetAddSub*tmp = 0;
tmp = new NetAddSub(obj->scope(), obj->name(), obj->width()-1);
//connect(tmp->pin_Aclr(), obj->pin_Aclr());
//connect(tmp->pin_Add_Sub(), obj->pin_Add_Sub());
//connect(tmp->pin_Clock(), obj->pin_Clock());
//connect(tmp->pin_Cin(), obj->pin_Cin());
connect(tmp->pin_Cout(), obj->pin_Cout());
//connect(tmp->pin_Overflow(), obj->pin_Overflow());
for (unsigned idx = 0 ; idx < tmp->width() ; idx += 1) {
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx+1));
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx+1));
connect(tmp->pin_Result(idx), obj->pin_Result(idx+1));
}
connect(obj->pin_Result(0), obj->pin_DataB(0));
delete obj;
des->add_node(tmp);
obj = tmp;
count += 1;
}
// Now do the same thing on the B side.
while ((obj->width() > 1)
&& link_drivers_constant(obj->pin_DataB(0))
&& (driven_value(obj->pin_DataB(0)) == verinum::V0)) {
NetAddSub*tmp = 0;
tmp = new NetAddSub(obj->scope(), obj->name(), obj->width()-1);
//connect(tmp->pin_Aclr(), obj->pin_Aclr());
//connect(tmp->pin_Add_Sub(), obj->pin_Add_Sub());
//connect(tmp->pin_Clock(), obj->pin_Clock());
//connect(tmp->pin_Cin(), obj->pin_Cin());
connect(tmp->pin_Cout(), obj->pin_Cout());
//connect(tmp->pin_Overflow(), obj->pin_Overflow());
for (unsigned idx = 0 ; idx < tmp->width() ; idx += 1) {
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx+1));
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx+1));
connect(tmp->pin_Result(idx), obj->pin_Result(idx+1));
}
connect(obj->pin_Result(0), obj->pin_DataA(0));
delete obj;
des->add_node(tmp);
obj = tmp;
count += 1;
}
// If the adder is only 1 bit wide, then replace it with the
// simple logic gate.
if (obj->width() == 1) {
NetLogic*tmp;
if (obj->pin_Cout().is_linked()) {
tmp = new NetLogic(obj->scope(),
des->local_symbol(obj->name()), 3,
NetLogic::AND);
connect(tmp->pin(0), obj->pin_Cout());
connect(tmp->pin(1), obj->pin_DataA(0));
connect(tmp->pin(2), obj->pin_DataB(0));
des->add_node(tmp);
}
tmp = new NetLogic(obj->scope(), obj->name(), 3, NetLogic::XOR);
connect(tmp->pin(0), obj->pin_Result(0));
connect(tmp->pin(1), obj->pin_DataA(0));
connect(tmp->pin(2), obj->pin_DataB(0));
delete obj;
des->add_node(tmp);
count += 1;
return;
}
}
void cprop_functor::lpm_compare(Design*des, NetCompare*obj)
{
if (obj->pin_AEB().is_linked()) {
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_AGEB().is_linked() );
assert( ! obj->pin_ALB().is_linked() );
assert( ! obj->pin_ALEB().is_linked() );
assert( ! obj->pin_AGB().is_linked() );
assert( ! obj->pin_ANEB().is_linked() );
lpm_compare_eq_(des, obj);
return;
}
}
void cprop_functor::lpm_compare_eq_(Design*des, NetCompare*obj)
{
NetScope*scope = obj->scope();
/* First, look for the case where constant bits on matching A
and B inputs are different. This this is so, the device can
be completely eliminated and replaced with a constant 0. */
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (! link_drivers_constant(obj->pin_DataA(idx)))
continue;
if (! link_drivers_constant(obj->pin_DataB(idx)))
continue;
if (driven_value(obj->pin_DataA(idx)) ==
driven_value(obj->pin_DataB(idx)))
continue;
NetConst*zero = new NetConst(scope, obj->name(), verinum::V0);
connect(zero->pin(0), obj->pin_AEB());
delete obj;
des->add_node(zero);
count += 1;
return;
}
/* Still may need the gate. Run through the inputs again, and
look for pairs of constants. Those inputs can be removed. */
unsigned top = obj->width();
for (unsigned idx = 0 ; idx < top ; ) {
if (! link_drivers_constant(obj->pin_DataA(idx))) {
idx += 1;
continue;
}
if (! link_drivers_constant(obj->pin_DataB(idx))) {
idx += 1;
continue;
}
obj->pin_DataA(idx).unlink();
obj->pin_DataB(idx).unlink();
top -= 1;
for (unsigned jj = idx ; jj < top ; jj += 1) {
connect(obj->pin_DataA(jj), obj->pin_DataA(jj+1));
connect(obj->pin_DataB(jj), obj->pin_DataB(jj+1));
obj->pin_DataA(jj+1).unlink();
obj->pin_DataB(jj+1).unlink();
}
}
/* If we wound up disconnecting all the inputs, then remove
the device and replace it with a constant. */
if (top == 0) {
NetConst*one = new NetConst(scope, obj->name(), verinum::V1);
connect(one->pin(0), obj->pin_AEB());
delete obj;
des->add_node(one);
count += 1;
return;
}
/* If there is only one bit left, then replace the comparator
with a simple XOR gate. */
if (top == 1) {
NetLogic*tmp = new NetLogic(scope, obj->name(), 3,
NetLogic::XOR);
connect(tmp->pin(0), obj->pin_AEB());
connect(tmp->pin(1), obj->pin_DataA(0));
connect(tmp->pin(2), obj->pin_DataB(0));
delete obj;
des->add_node(tmp);
count += 1;
return;
}
if (top == obj->width())
return;
NetCompare*tmp = new NetCompare(scope, obj->name(), top);
connect(tmp->pin_AEB(), obj->pin_AEB());
for (unsigned idx = 0 ; idx < top ; idx += 1) {
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx));
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx));
}
delete obj;
des->add_node(tmp);
count += 1;
}
void cprop_functor::lpm_ff(Design*des, NetFF*obj)
{
// Look for and count unlinked FF outputs. Note that if the
// Data and Q pins are connected together, they can be removed
// from the circuit.
unsigned unlinked_count = 0;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (connected(obj->pin_Data(idx), obj->pin_Q(idx))) {
obj->pin_Data(idx).unlink();
obj->pin_Q(idx).unlink();
}
if (! obj->pin_Q(idx).is_linked())
unlinked_count += 1;
}
// If the entire FF is unlinked, remove the whole thing.
if (unlinked_count == obj->width()) {
delete obj;
count += 1;
return;
}
// If some of the FFs are unconnected, make a new FF array
// that does not include the useless FF devices.
if (unlinked_count > 0) {
NetFF*tmp = new NetFF(obj->scope(), obj->name(),
obj->width()-unlinked_count);
connect(tmp->pin_Clock(), obj->pin_Clock());
connect(tmp->pin_Enable(), obj->pin_Enable());
connect(tmp->pin_Aload(), obj->pin_Aload());
connect(tmp->pin_Aset(), obj->pin_Aset());
connect(tmp->pin_Aclr(), obj->pin_Aclr());
connect(tmp->pin_Sload(), obj->pin_Sload());
connect(tmp->pin_Sset(), obj->pin_Sset());
connect(tmp->pin_Sclr(), obj->pin_Sclr());
unsigned tidx = 0;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1)
if (obj->pin_Q(idx).is_linked()) {
connect(tmp->pin_Data(tidx), obj->pin_Data(idx));
connect(tmp->pin_Q(tidx), obj->pin_Q(idx));
tidx += 1;
}
assert(tidx == obj->width() - unlinked_count);
delete obj;
des->add_node(tmp);
count += 1;
return;
}
}
void cprop_functor::lpm_logic(Design*des, NetLogic*obj)
{
NetScope*scope = obj->scope();
switch (obj->type()) {
case NetLogic::NAND:
case NetLogic::AND: {
unsigned top = obj->pin_count();
unsigned idx = 1;
unsigned xs = 0;
/* Eliminate all the 1 inputs. They have no effect
on the output of an AND gate. */
while (idx < top) {
if (! link_drivers_constant(obj->pin(idx))) {
idx += 1;
continue;
}
if (driven_value(obj->pin(idx)) == verinum::V1) {
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
continue;
}
if (driven_value(obj->pin(idx)) != verinum::V0) {
idx += 1;
xs += 1;
continue;
}
/* Oops! We just stumbled on a driven-0 input
to the AND gate. That means we can replace
the whole bloody thing with a constant
driver and exit now. */
NetConst*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
case NetLogic::NAND:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs were eliminated, then replace
the gate with a constant 1 and I am done. */
if (top == 1) {
NetConst*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
case NetLogic::NAND:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs are unknowns, then replace the
gate with a Vx. */
if (xs == (top-1)) {
NetConst*tmp;
tmp = new NetConst(scope, obj->name(), verinum::Vx);
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the AND with a BUF and exit now. */
if (top == 2) {
NetLogic*tmp;
switch (obj->type()) {
case NetLogic::AND:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF);
break;
case NetLogic::NAND:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new [N]OR gate that has the right number of
inputs, connected in the right place. */
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
obj->name(), top,
obj->type());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
}
case NetLogic::NOR:
case NetLogic::OR: {
unsigned top = obj->pin_count();
unsigned idx = 1;
/* Eliminate all the 0 inputs. They have no effect
on the output of an OR gate. */
while (idx < top) {
if (! link_drivers_constant(obj->pin(idx))) {
idx += 1;
continue;
}
if (driven_value(obj->pin(idx)) == verinum::V0) {
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
continue;
}
if (driven_value(obj->pin(idx)) != verinum::V1) {
idx += 1;
continue;
}
/* Oops! We just stumbled on a driven-1 input
to the OR gate. That means we can replace
the whole bloody thing with a constant
driver and exit now. */
NetConst*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
case NetLogic::NOR:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If all the inputs were eliminated, then replace
the gate with a constant 0 and I am done. */
if (top == 1) {
NetConst*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetConst(scope, obj->name(), verinum::V0);
break;
case NetLogic::NOR:
tmp = new NetConst(scope, obj->name(), verinum::V1);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the OR with a BUF and exit now. */
if (top == 2) {
NetLogic*tmp;
switch (obj->type()) {
case NetLogic::OR:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF);
break;
case NetLogic::NOR:
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT);
break;
default:
assert(0);
}
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new [N]OR gate that has the right number of
inputs, connected in the right place. */
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
obj->name(), top,
obj->type());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
}
case NetLogic::XNOR:
case NetLogic::XOR: {
unsigned top = obj->pin_count();
unsigned idx = 1;
/* Eliminate all the 0 inputs. They have no effect
on the output of an XOR gate. */
while (idx < top) {
if (! link_drivers_constant(obj->pin(idx))) {
idx += 1;
continue;
}
if (driven_value(obj->pin(idx)) == verinum::V0) {
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
} else {
idx += 1;
}
}
/* Look for pairs of constant 1 inputs. If I find a
pair, then eliminate both. Each iteration through
the loop, the `one' variable holds the index to
the previous V1, or 0 if there is none.
The `ones' variable counts the number of V1
inputs. After this loop completes, `ones' will be
0 or 1. */
unsigned one = 0, ones = 0;
idx = 1;
while (idx < top) {
if (! link_drivers_constant(obj->pin(idx))) {
idx += 1;
continue;
}
if (driven_value(obj->pin(idx)) == verinum::V1) {
if (one == 0) {
one = idx;
ones += 1;
idx += 1;
continue;
}
obj->pin(idx).unlink();
top -= 1;
if (idx < top) {
connect(obj->pin(idx), obj->pin(top));
obj->pin(top).unlink();
}
obj->pin(one).unlink();
top -= 1;
if (one < top) {
connect(obj->pin(one), obj->pin(top));
obj->pin(top).unlink();
}
assert(ones == 1);
ones = 0;
continue;
}
idx += 1;
}
/* If all the inputs were eliminated, then replace
the gate with a constant 0 and I am done. */
if (top == 1) {
verinum::V out = obj->type()==NetLogic::XNOR
? verinum::V1
: verinum::V0;
NetConst*tmp = new NetConst(scope, obj->name(), out);
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
delete obj;
count += 1;
return;
}
/* If there is a stray V1 input and only one other
input, then replace the gate with an inverter and
we are done. */
if ((top == 3) && (ones == 1)) {
unsigned save;
if (! link_drivers_constant(obj->pin(1)))
save = 1;
else if (driven_value(obj->pin(1)) != verinum::V1)
save = 1;
else
save = 2;
NetLogic*tmp;
if (obj->type() == NetLogic::XOR)
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT);
else
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF);
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(save), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* If we are down to only one input, then replace
the XOR with a BUF and exit now. */
if (top == 2) {
NetLogic*tmp;
if (obj->type() == NetLogic::XOR)
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::BUF);
else
tmp = new NetLogic(scope,
obj->name(), 2,
NetLogic::NOT);
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
connect(obj->pin(0), tmp->pin(0));
connect(obj->pin(1), tmp->pin(1));
delete obj;
count += 1;
return;
}
/* Finally, this cleans up the gate by creating a
new XOR gate that has the right number of
inputs, connected in the right place. */
if (top < obj->pin_count()) {
NetLogic*tmp = new NetLogic(scope,
obj->name(), top,
obj->type());
des->add_node(tmp);
tmp->pin(0).drive0(obj->pin(0).drive0());
tmp->pin(0).drive1(obj->pin(0).drive1());
for (unsigned idx = 0 ; idx < top ; idx += 1)
connect(tmp->pin(idx), obj->pin(idx));
delete obj;
count += 1;
return;
}
break;
}
default:
break;
}
}
/*
* This detects the case where the mux selects between a value an
* Vz. In this case, replace the device with a bufif with the sel
* input used to enable the output.
*/
void cprop_functor::lpm_mux(Design*des, NetMux*obj)
{
if (obj->size() != 2)
return;
if (obj->sel_width() != 1)
return;
/* If the first input is all constant Vz, then replace the
NetMux with an array of BUFIF1 devices, with the enable
connected to the select input. */
bool flag = true;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (! link_drivers_constant(obj->pin_Data(idx, 0))) {
flag = false;
break;
}
if (driven_value(obj->pin_Data(idx, 0)) != verinum::Vz) {
flag = false;
break;
}
}
if (flag) {
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
NetLogic*tmp = new NetLogic(obj->scope(),
des->local_symbol(obj->name()),
3, NetLogic::BUFIF1);
connect(obj->pin_Result(idx), tmp->pin(0));
connect(obj->pin_Data(idx,1), tmp->pin(1));
connect(obj->pin_Sel(0), tmp->pin(2));
des->add_node(tmp);
}
count += 1;
delete obj;
return;
}
/* If instead the second input is all constant Vz, replace the
NetMux with an array of BUFIF0 devices. */
flag = true;
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
if (! link_drivers_constant(obj->pin_Data(idx, 1))) {
flag = false;
break;
}
if (driven_value(obj->pin_Data(idx, 1)) != verinum::Vz) {
flag = false;
break;
}
}
if (flag) {
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
NetLogic*tmp = new NetLogic(obj->scope(),
des->local_symbol(obj->name()),
3, NetLogic::BUFIF0);
connect(obj->pin_Result(idx), tmp->pin(0));
connect(obj->pin_Data(idx,0), tmp->pin(1));
connect(obj->pin_Sel(0), tmp->pin(2));
des->add_node(tmp);
}
count += 1;
delete obj;
return;
}
}
/*
* This functor looks to see if the constant is connected to nothing
* but signals. If that is the case, delete the dangling constant and
* the now useless signals. This functor is applied after the regular
* functor to clean up dangling constants that might be left behind.
*/
struct cprop_dc_functor : public functor_t {
virtual void lpm_const(Design*des, NetConst*obj);
};
void cprop_dc_functor::lpm_const(Design*des, NetConst*obj)
{
// 'bz constant values drive high impedance to whatever is
// connected to it. In otherwords, it is a noop.
{ unsigned tmp = 0;
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
if (obj->value(idx) == verinum::Vz) {
obj->pin(idx).unlink();
tmp += 1;
}
if (tmp == obj->pin_count()) {
delete obj;
return;
}
}
// For each bit, if this is the only driver, then set the
// initial value of all the signals to this value.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
if (count_outputs(obj->pin(idx)) > 1)
continue;
Nexus*nex = obj->pin(idx).nexus();
for (Link*clnk = nex->first_nlink()
; clnk ; clnk = clnk->next_nlink()) {
NetObj*cur;
unsigned pin;
clnk->cur_link(cur, pin);
NetNet*tmp = dynamic_cast<NetNet*>(cur);
if (tmp == 0)
continue;
tmp->pin(pin).set_init(obj->value(idx));
}
}
// If there are any links that take input, the constant is
// used structurally somewhere.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
if (count_inputs(obj->pin(idx)) > 0)
return;
// Look for signals that have NetESignal nodes attached to
// them. If I find any, this this constant is used by a
// behavioral expression somewhere.
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
Nexus*nex = obj->pin(idx).nexus();
for (Link*clnk = nex->first_nlink()
; clnk ; clnk = clnk->next_nlink()) {
NetObj*cur;
unsigned pin;
clnk->cur_link(cur, pin);
NetNet*tmp = dynamic_cast<NetNet*>(cur);
if (tmp == 0)
continue;
assert(tmp->scope());
// If the net has an eref, then there is an
// expression somewhere that reads this signal. So
// the constant does get read.
if (tmp->get_eref() > 0)
return;
// If the net is a port of the root module, then
// the constant may be driving something outside
// the design, so do not eliminate it.
if ((tmp->port_type() != NetNet::NOT_A_PORT)
&& (tmp->scope()->parent() == 0))
return;
}
}
// Done. Delete me.
delete obj;
}
void cprop(Design*des)
{
// Continually propogate constants until a scan finds nothing
// to do.
cprop_functor prop;
do {
prop.count = 0;
des->functor(&prop);
} while (prop.count > 0);
cprop_dc_functor dc;
des->functor(&dc);
}
/*
* $Log: cprop.cc,v $
* Revision 1.30 2001/10/28 01:14:53 steve
* NetObj constructor finally requires a scope.
*
* Revision 1.29 2001/07/25 03:10:48 steve
* Create a config.h.in file to hold all the config
* junk, and support gcc 3.0. (Stephan Boettcher)
*
* Revision 1.28 2001/06/15 04:14:18 steve
* Generate vvp code for GT and GE comparisons.
*
* Revision 1.27 2001/06/07 02:12:43 steve
* Support structural addition.
*
* Revision 1.26 2001/02/18 01:07:32 steve
* check signals in the cprop functor.
*
* Revision 1.25 2001/02/16 03:27:31 steve
* Constant propagation for compare ==.
*
* Revision 1.24 2001/02/10 04:50:54 steve
* Catch constants driving root module ports. (PR#130)
*
* Revision 1.23 2000/12/30 03:11:15 steve
* Propagate initial value of constants into wires.
*
* Revision 1.22 2000/11/23 01:55:52 steve
* Propagate constants through xnor gates. (PR#51)
*
* Revision 1.21 2000/11/19 05:26:58 steve
* Replace AND constand propagation.
*
* Revision 1.20 2000/11/18 05:13:27 steve
* Thorough constant propagation for or and nor gates.
*
* Revision 1.19 2000/11/18 04:10:37 steve
* Handle constant propagation through XOR gates,
* including reducing the gate to a constant,
* a buffer or an inverter if possible.
*
* Revision 1.18 2000/11/11 00:03:36 steve
* Add support for the t-dll backend grabing flip-flops.
*
* Revision 1.17 2000/10/07 19:45:42 steve
* Put logic devices into scopes.
*
* Revision 1.16 2000/10/06 21:26:34 steve
* Eliminate zero inputs to xor.
*
* Revision 1.15 2000/08/02 14:48:01 steve
* use bufif0 if z is in true case of mux.
*
* Revision 1.14 2000/07/25 02:55:13 steve
* Unlink z constants from nets.
*
* Revision 1.13 2000/07/15 05:13:43 steve
* Detect muxing Vz as a bufufN.
*
* Revision 1.12 2000/06/25 19:59:41 steve
* Redesign Links to include the Nexus class that
* carries properties of the connected set of links.
*
* Revision 1.11 2000/06/24 22:55:19 steve
* Get rid of useless next_link method.
*
* Revision 1.10 2000/05/14 17:55:04 steve
* Support initialization of FF Q value.
*
* Revision 1.9 2000/05/07 04:37:56 steve
* Carry strength values from Verilog source to the
* pform and netlist for gates.
*
* Change vvm constants to use the driver_t to drive
* a constant value. This works better if there are
* multiple drivers on a signal.
*
* Revision 1.8 2000/04/28 21:00:28 steve
* Over agressive signal elimination in constant probadation.
*
* Revision 1.7 2000/02/23 02:56:54 steve
* Macintosh compilers do not support ident.
*
* Revision 1.6 2000/01/02 17:56:42 steve
* Do not delete constants that input to exressions.
*
* Revision 1.5 1999/12/30 04:19:12 steve
* Propogate constant 0 in low bits of adders.
*
* Revision 1.4 1999/12/17 06:18:15 steve
* Rewrite the cprop functor to use the functor_t interface.
*
* Revision 1.3 1999/12/17 03:38:46 steve
* NetConst can now hold wide constants.
*
* Revision 1.2 1998/12/02 04:37:13 steve
* Add the nobufz function to eliminate bufz objects,
* Object links are marked with direction,
* constant propagation is more careful will wide links,
* Signal folding is aware of attributes, and
* the XNF target can dump UDP objects based on LCA
* attributes.
*
* Revision 1.1 1998/11/13 06:23:17 steve
* Introduce netlist optimizations with the
* cprop function to do constant propogation.
*
*/
Jump to Line
Something went wrong with that request. Please try again.