Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

628 lines (511 sloc) 15.103 kb
/*
* Copyright (c) 2000-2002 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: net_design.cc,v 1.29 2002/11/02 03:27:52 steve Exp $"
#endif
# include "config.h"
# include <iostream>
/*
* This source file contains all the implementations of the Design
* class declared in netlist.h.
*/
# include "netlist.h"
# include "util.h"
# include <strstream>
Design:: Design()
: errors(0), nodes_(0), procs_(0), lcounter_(0)
{
procs_idx_ = 0;
des_precision_ = 0;
nodes_functor_cur_ = 0;
nodes_functor_nxt_ = 0;
}
Design::~Design()
{
}
string Design::local_symbol(const string&path)
{
strstream res;
res << "_L" << (lcounter_++) << ends;
return path + "." + res.str();
}
void Design::set_precision(int val)
{
if (val < des_precision_)
des_precision_ = val;
}
int Design::get_precision() const
{
return des_precision_;
}
unsigned long Design::scale_to_precision(unsigned long val,
const NetScope*scope) const
{
int units = scope->time_unit();
assert( units >= des_precision_ );
while (units > des_precision_) {
units -= 1;
val *= 10;
}
return val;
}
NetScope* Design::make_root_scope(const char*root)
{
NetScope *root_scope_;
root_scope_ = new NetScope(0, root, NetScope::MODULE);
root_scope_->set_module_name(root);
root_scopes_.push_back(root_scope_);
return root_scope_;
}
NetScope* Design::find_root_scope()
{
assert(root_scopes_.front());
return root_scopes_.front();
}
list<NetScope*> Design::find_root_scopes()
{
return root_scopes_;
}
const list<NetScope*> Design::find_root_scopes() const
{
return root_scopes_;
}
/*
* This method locates a scope in the design, given its rooted
* heirarchical name. Each component of the key is used to scan one
* more step down the tree until the name runs out or the search
* fails.
*/
NetScope* Design::find_scope(const hname_t&path) const
{
if (path.peek_name(0) == 0)
return 0;
for (list<NetScope*>::const_iterator scope = root_scopes_.begin()
; scope != root_scopes_.end(); scope++) {
NetScope*cur = *scope;
if (strcmp(path.peek_name(0), cur->basename()) != 0)
continue;
unsigned hidx = 1;
while (cur) {
const char*name = path.peek_name(hidx);
if (name == 0)
return cur;
cur = cur->child(name);
hidx += 1;
}
}
return 0;
}
/*
* This is a relative lookup of a scope by name. The starting point is
* the scope parameter is the place within which I start looking for
* the scope. If I do not find the scope within the passed scope,
* start looking in parent scopes until I find it, or I run out of
* parent scopes.
*/
NetScope* Design::find_scope(NetScope*scope, const hname_t&path) const
{
assert(scope);
if (path.peek_name(0) == 0)
return scope;
for ( ; scope ; scope = scope->parent()) {
unsigned hidx = 0;
const char*key = path.peek_name(hidx);
NetScope*cur = scope;
do {
cur = cur->child(key);
if (cur == 0) break;
hidx += 1;
key = path.peek_name(hidx);
} while (key);
if (cur) return cur;
}
// Last chance. Look for the name starting at the root.
return find_scope(path);
}
/*
* Find a parameter from within a specified context. If the name is
* not here, keep looking up until I run out of up to look at. The
* method works by scanning scopes, starting with the passed scope and
* working up towards the root, looking for the named parameter. The
* name in this case can be hierarchical, so there is an inner loop to
* follow the scopes of the name down to to key.
*/
const NetExpr* Design::find_parameter(const NetScope*scope,
const hname_t&path) const
{
for ( ; scope ; scope = scope->parent()) {
unsigned hidx = 0;
const NetScope*cur = scope;
while (path.peek_name(hidx+1)) {
cur = cur->child(path.peek_name(hidx));
if (cur == 0)
break;
hidx += 1;
}
if (cur == 0)
continue;
if (const NetExpr*res = cur->get_parameter(path.peek_name(hidx)))
return res;
}
return 0;
}
/*
* This method runs through the scope, noticing the defparam
* statements that were collected during the elaborate_scope pass and
* applying them to the target parameters. The implementation actually
* works by using a specialized method from the NetScope class that
* does all the work for me.
*/
void Design::run_defparams()
{
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
(*scope)->run_defparams(this);
}
void NetScope::run_defparams(Design*des)
{
{ NetScope*cur = sub_;
while (cur) {
cur->run_defparams(des);
cur = cur->sib_;
}
}
map<hname_t,NetExpr*>::const_iterator pp;
for (pp = defparams.begin() ; pp != defparams.end() ; pp ++ ) {
NetExpr*val = (*pp).second;
hname_t path = (*pp).first;
char*name = path.remove_tail_name();
/* If there is no path on the name, then the targ_scope
is the current scope. */
NetScope*targ_scope = des->find_scope(this, path);
if (targ_scope == 0) {
cerr << val->get_line() << ": warning: scope of " <<
path << "." << name << " not found." << endl;
delete[]name;
continue;
}
bool flag = targ_scope->replace_parameter(name, val);
if (! flag) {
cerr << val->get_line() << ": warning: parameter "
<< name << " not found in "
<< targ_scope->name() << "." << endl;
}
delete[]name;
}
}
void Design::evaluate_parameters()
{
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
(*scope)->evaluate_parameters(this);
}
void NetScope::evaluate_parameters(Design*des)
{
NetScope*cur = sub_;
while (cur) {
cur->evaluate_parameters(des);
cur = cur->sib_;
}
// Evaluate the parameter values. The parameter expressions
// have already been elaborated and replaced by the scope
// scanning code. Now the parameter expression can be fully
// evaluated, or it cannot be evaluated at all.
typedef map<string,param_expr_t>::iterator mparm_it_t;
for (mparm_it_t cur = parameters_.begin()
; cur != parameters_.end() ; cur ++) {
long msb = 0;
long lsb = 0;
bool range_flag = false;
NetExpr*expr;
/* Evaluate the msb expression, if it is present. */
expr = (*cur).second.msb;
if (expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(expr);
if (! tmp) {
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_line()
<< ": internal error: "
<< "unable to evaluate msb expression "
<< "for parameter " << (*cur).first << ": "
<< *expr << endl;
des->errors += 1;
continue;
}
assert(nexpr);
delete expr;
(*cur).second.msb = nexpr;
tmp = dynamic_cast<NetEConst*>(nexpr);
}
assert(tmp);
msb = tmp->value().as_long();
range_flag = true;
}
/* Evaluate the lsb expression, if it is present. */
expr = (*cur).second.lsb;
if (expr) {
NetEConst*tmp = dynamic_cast<NetEConst*>(expr);
if (! tmp) {
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_line()
<< ": internal error: "
<< "unable to evaluate lsb expression "
<< "for parameter " << (*cur).first << ": "
<< *expr << endl;
des->errors += 1;
continue;
}
assert(nexpr);
delete expr;
(*cur).second.lsb = nexpr;
tmp = dynamic_cast<NetEConst*>(nexpr);
}
assert(tmp);
lsb = tmp->value().as_long();
assert(range_flag);
}
/* Evaluate the parameter expression, if necessary. */
expr = (*cur).second.expr;
assert(expr);
if (! dynamic_cast<const NetEConst*>(expr)) {
// Try to evaluate the expression.
NetExpr*nexpr = expr->eval_tree();
if (nexpr == 0) {
cerr << (*cur).second.expr->get_line()
<< ": internal error: "
"unable to evaluate parameter value: " <<
*expr << endl;
des->errors += 1;
continue;
}
// The evaluate worked, replace the old expression with
// this constant value.
assert(nexpr);
delete expr;
(*cur).second.expr = nexpr;
// Set the signedness flag.
(*cur).second.expr->cast_signed( (*cur).second.signed_flag );
}
/* If the parameter has range information, then make
sure the value is set right. */
if (range_flag) {
long wid = (msb >= lsb)? msb - lsb : lsb - msb;
wid += 1;
NetEConst*val = dynamic_cast<NetEConst*>((*cur).second.expr);
assert(val);
verinum value = val->value();
if (! (value.has_len()
&& (value.len() == wid)
&& (value.has_sign() == (*cur).second.signed_flag))) {
verinum tmp (value, wid);
tmp.has_sign ( (*cur).second.signed_flag );
delete val;
val = new NetEConst(tmp);
(*cur).second.expr = val;
}
}
}
}
string Design::get_flag(const string&key) const
{
map<string,string>::const_iterator tmp = flags_.find(key);
if (tmp == flags_.end())
return "";
else
return (*tmp).second;
}
/*
* This method looks for a signal (reg, wire, whatever) starting at
* the specified scope. If the name is hierarchical, it is split into
* scope and name and the scope used to find the proper starting point
* for the real search.
*
* It is the job of this function to properly implement Verilog scope
* rules as signals are concerned.
*/
NetNet* Design::find_signal(NetScope*scope, hname_t path)
{
assert(scope);
char*key = path.remove_tail_name();
if (path.peek_name(0))
scope = find_scope(scope, path);
while (scope) {
if (NetNet*net = scope->find_signal(key)) {
delete key;
return net;
}
if (scope->type() == NetScope::MODULE)
break;
scope = scope->parent();
}
delete key;
return 0;
}
NetMemory* Design::find_memory(NetScope*scope, hname_t path)
{
assert(scope);
char*key = path.remove_tail_name();
if (path.peek_name(0))
scope = find_scope(scope, path);
while (scope) {
if (NetMemory*mem = scope->find_memory(key)) {
delete key;
return mem;
}
scope = scope->parent();
}
delete key;
return 0;
}
NetFuncDef* Design::find_function(NetScope*scope, const hname_t&name)
{
assert(scope);
NetScope*func = find_scope(scope, name);
if (func && (func->type() == NetScope::FUNC))
return func->func_def();
return 0;
}
NetFuncDef* Design::find_function(const hname_t&key)
{
NetScope*func = find_scope(key);
if (func && (func->type() == NetScope::FUNC))
return func->func_def();
return 0;
}
NetScope* Design::find_task(NetScope*scope, const hname_t&name)
{
NetScope*task = find_scope(scope, name);
if (task && (task->type() == NetScope::TASK))
return task;
return 0;
}
NetScope* Design::find_task(const hname_t&key)
{
NetScope*task = find_scope(key);
if (task && (task->type() == NetScope::TASK))
return task;
return 0;
}
NetEvent* Design::find_event(NetScope*scope, const hname_t&path)
{
assert(scope);
while (scope) {
if (NetEvent*ev = scope->find_event(path)) {
return ev;
}
// If this is a simple name, then do not scan up scopes
// past a module scope. This is a Verilog scoping rule.
if ((path.component_count() == 1)
&& (scope->type() == NetScope::MODULE))
break;
scope = scope->parent();
}
return 0;
}
void Design::add_node(NetNode*net)
{
assert(net->design_ == 0);
if (nodes_ == 0) {
net->node_next_ = net;
net->node_prev_ = net;
} else {
net->node_next_ = nodes_->node_next_;
net->node_prev_ = nodes_;
net->node_next_->node_prev_ = net;
net->node_prev_->node_next_ = net;
}
nodes_ = net;
net->design_ = this;
}
void Design::del_node(NetNode*net)
{
assert(net->design_ == this);
assert(net != 0);
/* Interact with the Design::functor method by manipulate the
cur and nxt pointers that is is using. */
if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = nodes_functor_nxt_->node_next_;
if (net == nodes_functor_nxt_)
nodes_functor_nxt_ = 0;
if (net == nodes_functor_cur_)
nodes_functor_cur_ = 0;
/* Now perform the actual delete. */
if (nodes_ == net)
nodes_ = net->node_prev_;
if (nodes_ == net) {
nodes_ = 0;
} else {
net->node_next_->node_prev_ = net->node_prev_;
net->node_prev_->node_next_ = net->node_next_;
}
net->design_ = 0;
}
void Design::add_process(NetProcTop*pro)
{
pro->next_ = procs_;
procs_ = pro;
}
void Design::delete_process(NetProcTop*top)
{
assert(top);
if (procs_ == top) {
procs_ = top->next_;
} else {
NetProcTop*cur = procs_;
while (cur->next_ != top) {
assert(cur->next_);
cur = cur->next_;
}
cur->next_ = top->next_;
}
if (procs_idx_ == top)
procs_idx_ = top->next_;
delete top;
}
/*
* $Log: net_design.cc,v $
* Revision 1.29 2002/11/02 03:27:52 steve
* Allow named events to be referenced by
* hierarchical names.
*
* Revision 1.28 2002/10/19 22:59:49 steve
* Redo the parameter vector support to allow
* parameter names in range expressions.
*
* Revision 1.27 2002/08/16 05:18:27 steve
* Fix intermix of node functors and node delete.
*
* Revision 1.26 2002/08/12 01:34:59 steve
* conditional ident string using autoconfig.
*
* Revision 1.25 2002/07/03 05:34:59 steve
* Fix scope search for events.
*
* Revision 1.24 2002/06/25 02:39:34 steve
* Fix mishandling of incorect defparam error message.
*
* Revision 1.23 2001/12/03 04:47:15 steve
* Parser and pform use hierarchical names as hname_t
* objects instead of encoded strings.
*
* Revision 1.22 2001/10/20 05:21:51 steve
* Scope/module names are char* instead of string.
*/
Jump to Line
Something went wrong with that request. Please try again.